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Figure 1: Oil paint simulated by an implementation of the system presented in [Baxter et al. 2001] (left), by our method (middle) and by 

the commercial package ArtRage 3 (right). Compared with [Baxter et al. 2001], our technique produces more organic color streaks and 

much less color blurring. Compared with the ArtRage strokes, ours appear more natural since the ArtRage method of sweeping a 1D 

texture to simulate strokes give less variation and control than the 3D deformable brushes offered by our system. 

Abstract 

Recent years have witnessed significant advances in 3D brush 
modeling and simulation in digital paint tools. Compared with 
traditional 2D brushes, a 3D brush can be both more intuitive and 
more expressive by offering an experience closer to wielding a 
real, physical brush. To support popular media types such as oil 
and pastel, most previous 3D brush models have implemented 
paint smearing and mixing. This is generally accomplished by a 
simple repeated exchange of paint between the 3D brush and 2D 
canvas, with the paint picked up by the brush typically mapped 
directly onto the brush surface. In this paper we demonstrate that 
both repeated exchanges and direct mapping of paint onto brush 
surfaces are sub-optimal choices, leading to excessive loss of 
color detail and computational inefficiencies. We present new 
techniques to solve both problems, first by using a canvas 
snapshot buffer to prevent repeated paint exchange, and second by 
mapping brush paint onto a 2D, resolution-matched pickup map 
that sits underneath the brush, instead of mapping onto the 3D 
brush itself. Together, these act to minimize resampling artifacts, 
helping to preserve fine streaks and color details in strokes, while 
at the same time yielding improved efficiency by never sampling 
the brush more densely than necessary. We demonstrate the 
effectiveness of our method in a real-time paint system 
implemented on the GPU that simulates pastel and oil paint. Our 
method is simple and effective, and achieves a level of realism for 
these two media not attained by any previous work.  

Keywords: digital painting, virtual tools, resampling, oil painting, 
pastel, natural media modeling 

1. Introduction  

Digital painting has been an active subject of study for over 30 
years [Smith 2001] and has become an indispensible component 
of common graphic tool sets (e.g. the Adobe Creative Suite). 
Unlike physical painting with real brush and canvas, digital 
painting offers several unique capabilities such as easy undo and 
saving the artwork at different stages, as well as lossless copy and 

reproduction. As a result, digital painting has become a popular 
way to create illustrations for everything from books, to 
advertising, to background mattes in movie production.  

However there are still some nuances of real art media and 
positive attributes of real art tools which are not found in current 
digital systems. Specifically, marks made by real-world tools have 
an organic richness of detail and expressive variability that have 
yet to be captured adequately by any digital painting system. In 
this work, we focus in particular on oil and pastel, two media in 
which the interactions of tools and media are critical and give rise 
to both detail and variability.  Researchers have shown that the 
lack of expressive variability can be addressed by moving from 
simple 2D bitmap ―brushes‖ to more realistic models of real-
world tools, such as deformable 3D paint brush models [Baxter et 
al. 2001; Chu and Tai 2002; Adams et al. 2004; Baxter and Lin 
2004; Okaichi et al. 2008; Baxter and Govindaraju 2010].  
However, basically none of these previous techniques is able to 
recreate the fine details seen in real oil or pastel marks due to how 
the smearing and mixing of paint are implemented. We find that 
even with currently available commercial tools that specialize in 
natural art media (see Figure 3), stroke variation and/or color 
detail are lacking, making a recreation of effects like in Figure 2 
nearly impossible.  

 

 

Figure 2: Close-up of a real painting showing subtle streaks (top, 

oil painting © Scott Burdick; used with permisson) and smearing 

(bottom, pastel). 

 



For many artistic styles involving media such as oil paint and 
pastel, smearing and the detailed interactions that arise from it are 
essential components. We can think of smearing as a bidirectional 
and simultaneous process consisting of depositing paint from the 
brush to the canvas as well as picking up paint from the canvas 
onto the brush. To produce a smearing effect digitally, the 
simplest and most direct approach is to approximate the 
interaction as a sequence of repeated discrete transfers of paint 
between the brush and the canvas.  This is the approach taken by 
e.g. [Baxter et al. 2001; Baxter et al. 2004a; Baxter et al. 2004b; 
Van Haevre et al. 2007; Van Laerhoven and Van Reeth 2007].  

  

Figure 3: A comparison of smearing effects by ArtRage 3 (left) 

and by our system (right). In these tests, several horizontal strokes 

are smudged in a zigzag motion. Note that in the former only 

certain colors are picked up (dominated by black with other 

colors mostly ignored). Sweeping a 1D-texture in the former also 

creates discontinuity artifacts at acute corners. Corel Painter’s 

latest “Artists’Oils” produces results similar to Artrage’s.  

In an effort to support such smearing effects, prior 3D brush mod-
els e.g. [Baxter et al. 2001; Baxter and Lin 2004; Van Haevre et 
al. 2007; Van Laerhoven and Van Reeth 2007] have allowed the 
3D brush to pick up paint on its surface.  However, since the brush 
samples are generally not aligned with those of the canvas, some 
loss of detail due to resampling is inevitable, along with ineffi-
ciencies similar to those that motivate the use of mip-mapping for 
texture rendering. This alone might not be catastrophic; however, 
in previous work the one-time resampling error is compounded 
many fold by repeatedly resampling paint that was just deposited. 
Typically, paint is transferred between the canvas and brush 
hundreds of times during a stroke, with resampling occurring on 
each transfer.  This rapidly iterated resampling results in excessive 
blurring of the paint color as can be seen in Figure 1 (left) and 
Figure 16. We observe that it is essential to minimize this 
resampling in order to produce high-quality smearing results 
exhibiting sharp detail like that seen in Figure 2. 

Contributions: In this paper, we first analyze the key sources of 
blurring associated with digital painting algorithms for 3D 
brushes. Based on our analysis, we propose two novel techniques 
to drastically reduce this blurring.  First, we propose a new brush 
representation that uses a 3D brush plus a 2D, resolution-matched 
pickup map that sits underneath the brush. The pickup map is used 
for storing paint picked up from the canvas, instead of mapping 
this data directly onto the brush geometry as in previous work. 
This eliminates the problems associated with resolution mismatch 
between brush and canvas. Second, we introduce a special canvas 
snapshot buffer to avoid repeated resampling of the paint by 
preventing pickup of paint just deposited.  Importantly, with our 
snapshot buffer technique, picking up paint less recently deposited 
is allowed, leading to more realistic behavior for self-intersecting 
strokes. All of our techniques leverage the hardware acceleration 
capabilities of GPUs. 

Our new techniques have the advantage of minimizing resampling 
artifacts associated with the use of a 3D brush model, allowing us 
to simulate high-quality paint smearing efficiently. Using these 

techniques, we developed a real-time paint system that simulates 
pastel and oil paint, two art media that rely heavily on smearing. 
We performed quality and performance comparisons with prior 
algorithms [Baxter et al. 2001; Baxter and Lin 2004]. In practice, 
we observed our algorithms to achieve much higher quality than 
prior hardware-accelerated implementations without increasing 
the computational cost.  

2. Background 

Many traditional artists prefer not to use digital paint media 
because the existing digital tools lack the complexity and organic 
appearance of real media (compare e.g. Figures 2 and 19 with 
Figure 3 (left)). The complex nature of brushes and fluid paint is 
inherently difficult to reproduce digitally in real time. With 
viscous media like oil, or dry particulate media like chalk pastel, 
reproducing detailed smearing effects is particularly challenging.    

In oil painting, wet-in-wet [Appellof 1993] is a common technique 
that artists rely on. Stroking wet-in-wet means applying colors 
over and into one another while still wet. Technically, this process 
is just smearing wet paint on the canvas while depositing. Wet-in-
wet stroking is a key feature in the alla prima style, in which 
colors are laid down more or less as they would appear in the 
finished painting. Reworking is kept to a minimum to give a 
spontaneous effect. When paints are smeared, one should see 
delicate color streaks like those shown in Figure 2 or Figure 19 
(left). Artists also invented a technique called broken color 
[Appellof 1993; Flattmann 2007], which is to juxtapose different 
colors on the canvas and let the viewer’s eye mix them so that the 
colors stay vibrant. Often, broken colors are made with quick wet-
in-wet strokes so that traces of previously deposited colors peek 
through newly deposited ones (Figure 2). The broken color 
technique also applies to other art media like pastel. 

To improve the digital painting experience, researchers have 
devised computational models of various art media and tools in 
the past few decades. Recent advances show a trend towards using 
3D deformable brushes instead of 2D ones to better capture 
complex brush deformation to give more varied and controllable 
brush marks (e.g. [Baxter et al. 2001; Chu and Tai 2002; Adams 
et al. 2004; Baxter and Lin 2004; Okaichi et al. 2008]).  There is 
also a trend towards physically-based methods to better simulate 
the organic behavior of real paint (e.g. [Curtis et al. 1997; Baxter 
et al. 2004a; Baxter et al. 2004b; Rudolf et al. 2005; Chu and Tai 
2005]). The state of the art in watercolor simulation is quite good 
[Curtis et al. 1997; Chu and Tai 2005; Van Laerhoven and Van 
Reeth 2007]. However, watercolor simulation is based on 
modeling low-viscosity fluid, which tends to be very diffusive 
when wet and fixed when dry, so detailed smearing effects 
(crucial in pastel and oil) do not arise.  We next briefly review the 
state-of-the-art in the simulation of pastel and oil paint media.   

Pastel Simulation: Van Haevre et al. [2007] simulate pastel 
painting with a pastel pencil. Deposition and smearing are 
implemented by performing two-way paint transfer between 
pencil and paper. A height-field is used to represent the 3D 
geometry of the pencil tip and a 2D texture stores the paint pickup 
and is mapped onto the pencil tip. Paper weathering is also 
considered, in which the paper can be dented if the user presses 
too hard. Rudolf et al. [2005] also simulated wax crayon similarly 
with paper and crayon tip modelled as height-fields. However, 
they assumed wax would not be carried a long distance and 
modelled smearing by redistributing paint from a paper cell to its 
8 neighbors using a 3 × 3 mask rather than using a separate texture 
that stores picked up paint. Both Van Haevre et al. [2007] and 
Rudolf et al. [2005] simulated crayon weathering by trimming the 
crayon height-field. 
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Oil Paint Simulation: Baxter et al. [2001; 2004a; 2004b] 
simulated oil paint with various levels of complexity. Their first 
method [Baxter et al. 2001] was the simplest and closest to ours: 
two-way transfer of paint between canvas and brush was 
performed via a few texture buffers. Their second method [Baxter 
et al. 2004a] uses a conservative advection scheme in addition to 
the two-way transfer to simulate the paint dynamics, and a full-
spectrum rendering method for higher color accuracy. Their third 
method [Baxter et al. 2004b] models paint motion with the Stokes' 
equations, which are solved in 3D to allow a true volumetric 
modeling of oil paint. However, this gives too low a performance 
for practical use on current systems due to large computational 
requirements. All these paint models are coupled with a 3D brush 
model [Baxter et al. 2001; Baxter and Lin 2004]. Note that none 
of these three models was capable of preserving fine details. 
Okaichi et al. [2008] also simulated thick oil paint with a two-way 
transfer model similar to [Baxter et al. 2004a] along with a 3D 
painting knife model.  

Commercial Packages: Popular digital paint packages like Corel 
Painter 11 or Ambient Design ArtRage 3 feature pastel and oil 
paint models. To perform smearing, they appear to sample the 
paint on the canvas coarsely when they simulate paint pickup 
because the results lack detail (Figures 1 right and 3 left). Digital 
painters also use Adobe Photoshop to paint, but its tool set is not 
specifically designed for simulating real paint media, so the results 
tend more towards photorealistic styles. As far as we can tell, all 
these packages render the strokes either by dabbing a 2D footprint 
or sweeping a 1D texture along a stroke path. 

3. Overview 

In this section, we first describe a common paint simulation 
pipeline. We then explain how the issue of resampling arises and 
how our proposed techniques solve the problem.  

3.1 Paint Simulation Pipeline  

An interactive painting application obtains user input via an input 
device such as a graphics tablet, simulates the paint deposition, 
and then displays the deposited paint onto the screen. We 
specifically focus on interactive techniques for the simulation of 
the paint medium using a graphics processing unit (GPU). These 
algorithms assume the canvas resolution is fixed during a 
simulation and specified a priori by the user. A 3D brush drives 
the underlying paint simulation. The brush geometry can deform 
based on the orientation of the brush handle and pressure. 
Moreover, the brush geometry can transfer paint to and pick up 
paint from the canvas, i.e. a bidirectional transfer for paint 
smearing and mixing effects. The core steps involved in 
implementing the painting simulation in both our system and 
previous work are shown in Figure 4. 

 

 

 

 
 

 

Figure 4: The core steps for one brush footprint impression. 

To generate a footprint, we render the depth value of the brush 

geometry into a height-field and modulate this height-field with 

the canvas tooth to produce the footprint (Figure 5) similar to 

[Baxter et al. 2001; Chu and Tai 2002; Adams et al. 2004; Van 

Haevre et al. 2007]. The user input is sampled at discrete points, 

and a stroke is generated by repeatedly imprinting the 2D brush 

footprint between the two successive input points (Figure 6). The 

spacing between adjacent imprints has to be no larger than a 

single pixel on the canvas if the stroke is to be free of artifacts 

along the edges. While performing the stroke generation, the 

system needs to simulate paint being picked up by the brush from 

the canvas in addition to depositing the paint from the brush. This 

is performed during each imprint step.  

 

 

 

 

 

 

Figure 5: Intersecting brush geometry to get a footprint. 

  

Figure 6: Imprinting a brush footprint along a stroke trajectory. 

3.2 Sampling and Resampling Issues 

Previous researchers [Baxter et al. 2001; Baxter et al. 2004a; 
Baxter et al. 2004b; Okaichi et al. 2008] have used the above 
pipeline to simulate paint deposition with a smearing effect. 
However, the smearing of multiple colors in these works displays 
significantly more color diffusion than in real paint. Specifically, 
one expects to see streaks of different colors when paint is only 
gently mixed (compare Figure 2 (top) and Figure 17 with Figure 1 
(left)). We identify two causes for this loss of detail. The first is 
that the effective simulation resolution is limited by the lower of 
the canvas resolution and the brush pickup resolution. Often, the 
canvas and/or the brush resolutions are limited by the real-time 
requirement of the application. The other cause is resampling that 
occurs during paint transfer. We next examine these causes more 
closely.  

In general, numerical diffusion is common in digital reproductions 
of various natural phenomena. This is due to the finite resolution 
and the repeated resampling used in the computation. Researchers 
in fluid simulation have come up with various techniques to tackle 
this issue (e.g. the classic Riemann problem solutions for shock 
preservation in fluid dynamics [LeVeque 1992] or more recent 
examples in the graphics literature [Weiskopf 2004; Kim et al. 
2005]). In image processing, various methods have also been 
applied to preserve edge details while resampling [Barash 2000]. 
These techniques, however, add significant computational 
overhead to the simulation and to our knowledge have not been 
implemented in any digital paint programs. 

In previous 3D brush (or pastel stick or palette knife) models 

[Baxter et al. 2001; Adams et al. 2004; Baxter and Lin 2004; Van 

Haevre et al. 2007; Okaichi et al. 2008], paint pickup information 

is mapped to the brush geometry. Specifically, pickup is stored 

either as textures mapped on to the brush surface [Baxter et al. 

2001; Baxter and Lin 2004; Van Haevre et al. 2007], as vertex 

data on the brush surface mesh [Okaichi et al. 2008], or as 

samples scattered on the brush surface [Adams et al. 2004]. Paint 

on the canvas, on the other hand, is stored as textures mapped to 

the canvas [Baxter et al. 2001; Baxter and Lin 2004; Van Haevre 

et al. 2007; Okaichi et al. 2008] or as samples on the canvas 
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surface [Adams et al. 2004]. In general, using a deformable 3D 

brush model makes it hard to ensure we have matched resolutions 

on the brush and canvas surfaces, as projecting the brush surface 

down to the canvas changes the relative sampling densities.  The 

brush deformation can also be significant (e.g. the brush tip may 

spread). Most previous models (with rare exceptions like [Adams 

et al. 2004]) simply use a static resolution for the brush (Figure 7). 

This causes paint data to be up-sampled or down-sampled when 

we perform paint exchanges between the two surfaces. This 

implies the fidelity of the higher resolution data is wasted when 

the resolutions do not match.  

           

Figure 7: Canvas and brush with different resolution and 

alignment. 

The problems of resolution mismatch and sampling are 
encountered frequently in computer graphics. In some ways the 
problem of establishing a mapping between a 3D brush and the 
canvas is exactly the problem of texture filtering. Transferring 
paint from the brush to the canvas is essentially a matter of 
rendering a textured brush under an orthographic projection.  As 
such, mip-mapping the brush data would help solve the problems 
of either too much or too little resolution on the brush; however, it 
becomes expensive to update all the mip levels, and furthermore 
mip-mapping is inherently isotropic, whereas the sampling 
mismatch between a projected brush and canvas really requires 
anisotropic filtering, which is even more expensive. 

On the other hand, the problem of mapping from the canvas back 
to a 3D brush is in some ways similar to the problem of shadow 
mapping or projective texturing.  In this case, large stretch in the 
some parts of parameterization of the canvas projected onto the 
brush is unavoidable. This is the case for portions of the brush 
geometry nearly perpendicular to the canvas, which means that for 
some portions of the brush, the canvas-to-brush mapping will 
always be undersampled. 

Even if resolutions were roughly matched, there is another 
perhaps even more serious sampling issue. With previous 
implementations [Baxter et al. 2001; Van Haevre et al. 2007; 
Okaichi et al. 2008], paint just deposited is immediately picked up 
again, and thus resampled again, to implement smearing.  This 
creates a tight feedback loop that magnifies the blurring. For a 
brush footprint that is N pixels wide, stroking will resample each 
pixel along the stroke about N times, essentially applying an N-
iterated blurring filter to the color data.  

In the following discussion of our solutions to these problems, we 
adopt the texture-based pickup storage method and call the texture 
used to represent a layer of paint picked up by the brush the 
pickup map. We denote the texture that stores paint deposited on 
the canvas by canvas map.   

4. Our Method 

The key issue we have identified with previous work which 
attempts to simulate media like oil paint and pastel is the inability 
to preserve fine-scale color detail during smearing and mixing, 
particularly in conjunction with 3D brush models. We propose 

two new techniques that eliminate almost all of this blurring, 
explained in the next two subsections. 

4.1 Resolution-Matched Pickup Map 

To address the resampling problem related to differing resolutions 
of brush paint and canvas paint, we propose the use of a 
resolution-matched pickup map (Figure 8). Conceptually, this is a 
bitmap with the same resolution as the canvas, sitting under the 
3D brush. We call our proposition a hybrid approach because the 
brush geometry is 3D but the pickup information is represented on 
a flat 2D surface. Instead of performing bidirectional paint transfer 
between the canvas and the 3D brush, we now perform the same 
operations between the canvas and this 2D surface. To correlate 
the 3D brush motion/deformation with the 2D pickup map, we 
have the current footprint of the former act as a mask for the latter 
when performing the paint transfer.  

        

Figure 8: A flat pickup map sitting under the 3D brush with 

resolution matched to that of the canvas. 

We align the center of this pickup map to an anchor point on the 
3D brush, which can be the centroid of the bristle geometry for a 
brush (Figure 8 right), or the center of the base for a pastel stick. 
Given a certain brush size, we use the diagonal of the 3D 
bounding-box of the brush in rest position to bound the pickup 
map size so it is big enough to cover the brush for all possible 
brush transformation. If the user scales the brush, we scale the 
pickup map also to maintain matched resolutions. As the reso-
lution of this pickup map matches that of the canvas, there is no 
issue of resampling due to a mismatch of resolutions.  

 
 

 

      

  

                             

Figure 9: Restricting the pickup map to align to the pixel grid of 

the canvas irrespective to brush orientation (left) and rotating the 

map according the brush orientation (right). 

If we restrict the pickup map to align with the canvas pixel grid 
irrespective to how the brush is rotated relative to the canvas 
(Figure 9 left), we can eliminate resampling due to geometry 
misalignment too. However, this also means that paint picked up 
on one particular part of the brush does not stick to the same spot 
if the brush is rotated. Rotating the pickup map about its center so 
that the colors stay close to their original 3D positions (Figure 9 
right) largely alleviates this problem - the only dislocation is then 
due to the local bristle deformation and twisting of the brush. 
Given that even with a real brush it is not always clear exactly 
what paint has been picked up where, we find this to be acceptable 
for a practical user painting experience. Note that rotating the 
pickup map does cause resampling, but this does not significantly 
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degrade quality since the resolutions between canvas and pickup 
maps are matched and the resampling does not happen repeatedly.  

4.2 Canvas Snapshot Buffer 

The second issue responsible for loss of detail in previous work is 
the repeated resampling of paint. To greatly reduce this, we 
propose the use of a canvas snapshot buffer, Ω.  As previously 
explained, in a typical paint pipeline, paint is transferred between 
the brush and canvas at every impression along a stroke.  We 
modify that typical pipeline, using our snapshot buffer, as follows 
(see Figure 10). Before the first imprint of a stroke, Ω is initialized 
to be identical to the current canvas map. Then, before every 
subsequent imprint, Ω is updated to contain the latest version of 
the canvas map except for the region covered by the pickup map at 
the current brush position (green rectangle, Figure 10). By using 
Ω as the input canvas map to our paint pickup update algorithm 
instead of the canvas itself, we avoid the tight feedback loop 
during the bidirectional paint transfer, and thus effectively prevent 
the blurring that has plagued previous systems. The use of Ω also 
helps avoid quickly saturating to the brush color when blending 
with canvas paint (see Section 5, Deposition).  For comparisons 
with and without a snapshot buffer see Figure 14 and Figure 16. 

 

    

 

    
Figure 10: The canvas snapshot buffer Ω is all up-to-date except 

for the area covered by the pickup map, preventing repeated 

resampling and the attending blurring. 

The above simple update scheme works well in allowing the effect 
of self-overlapping except for acute stroke corners (Figure 11 
middle) and a few special cases like drawing a loop smaller than 
the pickup map size. These issues can be fixed by keeping track of 
the recent addition of the current stroke to produce a mask with 
which we decide if we use the current canvas map in our paint 
transfer operations. However, in our current system we only tackle 
the acute stroke issue by updating Ω with a complete snapshot 
when we detect a large change in the stroke direction, because the 
other occasions needing a fix are rare in practice. Finally, should 
no self-overlapping (Figure 11 left) be preferred, we can simply 
update Ω only at the beginning of a stroke. 

   

Figure 11: No self-overlapping (left), self-overlapping with 

artifact (middle) and correct self-overlapping (right). 

5. Paint Model Details 

We have implemented a paint system (Figure 12) that uses the 
proposed techniques to simulate pastel and oil paint. In certain 
parts of our paint model, we also made the simulation not strictly 
physical in favor of artistic control. For pastel simulation, we use 
a non-deforming 3D stick model as the paint applicator. We 
render pastel artwork with a flat and matte appearance. For oil 
painting, we use a deforming brush model as in [Baxter and 
Govindaraju 2010]. We also simulate ridges in oil paint formed by 

the brush bristles and render the paint glossy. Other parts of the 
simulation are essentially the same for both media. Although we 
use 3D brush models in our system, we note that our paint transfer 
pipeline is not tied to any particular 3D brush simulation 
technique. Furthermore, our method also integrates seamlessly 
with a traditional 2D brush model by simply treating the brush 
footprint as static—the 3D portion of our 3D/2D hybrid then just 
goes away. For instance, our system switches to a 2D brush when 
we have touch input (Figure 12 inset). In the rest of this section, 
we describe the details of our paint modeling. All operations 
described are performed in a per-pixel fashion using DirectX 10 
HLSL shader programs on a GPU. 

 
 

Figure 12: User interface of our paint system. 

Deposition: If we simply copy the brush source color onto the 
canvas as we imprint with the footprint without picking up 
existing canvas paint, we obtain solid strokes (Figure 13 left). To 
simulate bidirectional transfer, we render the strokes as a blend of 
the source color and the canvas map, depending on the brush 
footprint height value. To simulate re-deposition of paint pickup 
(Figure 13 middle and right), we determine the source color as: 

                  , 

where    is the source color,    is the intrinsic color of the pastel 
stick or the brush loading,    is the color on the pickup map,    is 
the thickness of the pickup layer, and lerp(a, b, t)  is the linear 
interpolation function defined as            .   

      

Figure 13: Depositing paint simply as solid color (left), and with 

textural detail giving a broken-color quality (right). 

If we use the deposition algorithm described so far without our 
snapshot buffer, the overlapping imprints quickly saturate the 
stroke to the source color giving a solid stroke almost like Figure 
13 (left) because the pickup map is immediately filled with paint 
just deposited. Thus, the use of our canvas snapshot buffer 
(Section 4.2) not only helps with resampling issues, but also helps 
avoid this quick saturation of color, while keeping the deposition 
algorithm simple.  

Note that in reality, the canvas tooth grips pastel pigments only up 
to a certain extent (amount of pickup is also limited likewise). 
Further deposition results in pastel dust that does not stay on the 
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surface. We could model this by adding a step in our deposition 
algorithm to check for a maximum deposition limit. However, we 
choose not to because this makes it impossible to continue 
overlaying strokes with nice textural blending (Figure 13 right). 

Ω as Artistic Control: We can actually use the presence or 
absence of our snapshot buffer, Ω, as an artistic control.  Should 
we want the paint to blend more, we can use the current canvas 
map instead of Ω in our algorithm (Figure 14 left). The increased 
blurring gives the impression of wet blending (when solvent is 
added to the paint) where the pigments mix more thoroughly. To 
control the amount of blending, we can simply use an 
interpolation of the canvas map and Ω as input to our algorithm.  

 

Figure 14: A comparison of smearing using different buffers as 

input to our paint pickup update algorithm.  

Color Streaks and Ridges: To create color streaks, we use a 
bump texture to modulate the brush footprint. To simulate ridges, 
we use a separate texture to drive paint thickness accumulation 
and removal at various spots touched by the brush. Both color 
streaks and ridges are shown in Figures 15 and 19. 

 

 

 

6. Results and Discussion 

Quality Verification: To confirm that our method of using a 
combination of a resolution-matched pickup map and the canvas 
snapshot, Ω, minimizes blurring, we conducted simple tests in 
which we smear one-pixel grid lines of paint strictly horizontally 
(Figure 16). When we use a brush of 60 × 60 pixels dab size with 
a brush-mapped texture at 128 × 128 resolution (using an 
implementation of [Baxter et al. 2001]), we observe prominent 
blurring (Figure 16 first row). We also used a 1024 × 1024 brush-
mapped texture to ensure the brush had sufficient resolution, but 
we obtained similar results (not shown), indicating brush 
resolution was already matching or exceeding the canvas 
resolution. The rest of the entries in Figure 16 were obtained using 
a 60 × 60 size brush with a resolution-matched pickup map and 
with different options in our simulation toggled. Note that since 

we are smearing horizontally, we should see the blue horizontal 
lines stay nearly unchanged. We see that the use of resolution-
matched pickup map alone does not remove excessive blurring 
because the blue lines diffuse vertically in the second row, 
although less severely than in the first row. The blue lines in the 
last three rows stay much sharper. With the pickup map restricted 
to be canvas-aligned, we see the blue lines stay perfectly sharp 
(rows 3 and 5). We conclude, however, that the fourth row with 
rotatable pickup map is the best choice overall because it 
minimizes blurring while allowing the paint to stick roughly to the 
correct location on the brush. Furthermore, the small amount of 
resampling due to map rotation can actually be beneficial for its 
anti-aliasing effect. 

Figure 16: Smearing test results. The top row result was obtained 
with previous method of using a brush-mapped texture [Baxter et 
al. 2001], while the rest were done with our system. 

Performance: Our system is quite responsive even on a low-end 
laptop – with a brush of dab size 60 × 60 pixels, it runs at 145 
frames per second (FPS) on a tabletPC with an AMD Turion X2 
Dual-Core Mobile RM-75 2.2GHz CPU and an ATI Mobility 
Radeon HD3200 GPU.  

 

Figure 17: A breakdown of GPU processing cost in our system.  

We perform paint simulation entirely on the GPU and brush 
dynamics simulation [Baxter and Govindaraju 2010] using a 
combination of CPU and GPU. In most cases, our system is GPU 
bound. Figure 17 shows a breakdown of GPU processing cost of 
our simulation in a typical scenario where the artwork is rendered 
at one-to-one zoom level and a brush of dab size 60 × 60 pixels is 
dragged at a moderate speed while maintaining a frame-rate of 
145 FPS. Note that the brush footprint impression is a major 
expense taking 70% or 78% of the total cost for the two cases of 
using a deformable brush and a non-deforming stick as the paint 
applicator, respectively. For an accurate evaluation of our paint 
transfer performance, we vary the brush size within a reasonable 
range and plot a graph showing the number of brush footprint 
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Figure 15: Close-up of an oil painting simulated with our system 

showing subtle ridges and color streaks. 



impressions per second (Figure 18). Our data indicates a clear 
decrease in number of impressions with increase in brush 
coverage, confirming that the paint transfer performance is largely 
determined by the number of processed pixels.  

  

Figure 18: Performance data of our paint simulation.  

For a system using brush-mapped texture to get a smearing quality 
on par with our use of pickup map, one may try to increase the 
canvas resolution (although the result would not be as good 
because canvas pixels would be blurred). Figure 16 indicates that 
at least an increase of 64x higher resolution is needed. This would 
have a major impact on the paint transfer performance and would 
lead to lower interactivity as demonstrated in Figures 17 and 18. 

Sample Artwork: To demonstrate the usability of our system, we 
show a few sample artworks, which were all done in a resolution 
of 2k × 1k pixels. Figure 19 left is a close-up of a real oil painting 
by artist Scott Burdick while Figure 19 right shows a painting 
made with our system to mimic that painting. Note that the 
simulated ridges and color streaks approach the same level of 
organic quality as the real painting. Figure 20 is another painting 
made using our oil paint model. Figure 21 shows a pastel painting 
created using our system. The background was made by smearing 
black and shades of blue. Because of the variations in the 
footprint, we have bits of black showing in the blues, which gives 
a pleasing, natural look (Figure 21 left inset). Figure 22 is another 
sample pastel painting made with our system. Note that our model 
is able to give the powdery feel of real soft pastel as colors are 
smeared (Figure 22 inset). We encourage the readers to watch our 
supplementary video to appreciate the effectiveness of our 
simulation. 

6. Conclusion and Future Work 

We have presented a new simple but effective brush 
representation scheme for digital painting that preserves desirable 
nuances in the brush marks. Achieving the same level of detail 
would otherwise require complex algorithms to reduce data 

diffusion or greater computation to maintain a higher effective 
simulation resolution. We showed how we apply our scheme in a 
simplified simulation pipeline for pastel and oil paint. We are able 
to produce high quality artwork in real-time even on a low-end 
PC. Our techniques for modeling the brush representation and 
paint transfer are general and can be applied to other paint 
simulation algorithms including systems with 2D brushes, but 
they are particularly effective in minimizing the blurring artifacts 
that have been characteristic of previous 3D brush systems. 

One major insight we garnered from this research is that storing 
paint pickup information in a flat 2D surface would actually 
produce better results than doing so on a 3D brush geometry. This 
is somehow counter-intuitive, as most people might consider the 
latter a more natural choice. Nevertheless, through our analysis 
and experiments, we have found that even though using a 2D 
pickup map would not attach paints as precisely as mapping the 
information onto a 3D brush model, the overall quality still 
improves significantly due to much reduced bidirectional 
resampling issues with the canvas. 

There are several other avenues for future work. To further reduce 

the effect of paint picked up not sticking to the same spot on the 

brush (Section 4.1), we can shift the pickup map to account for 

brush twisting. For oil painting, currently we only simulate 

shallow ridges. It would be nice to add thick paint support [Baxter 

et al. 2004a; Baxter et al. 2004b; Okaichi et al. 2008] so that the 

user can paint in the impasto style [Appellof 1993]. Furthermore, 

we have yet to simulate oil paint being thinned to give a semi-

transparent quality. Finally, the current system uses additive RGB 

color space; a subtractive color model, or more sophisticated 

models [Baxter et al. 2004a; Xu et al. 2007], can be employed 

instead should we want the colors to behave more realistically. 

For pastel, we can add more realism by modeling tool and surface 

weathering [Rudolf et al. 2005; Van Haevre et al. 2007].  
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Figure 19: Part of a real oil painting (left) and a similar result created by an artist with our system (right). The real painting was done 

by Scott Burdick (© Scott Burdick; used with permission). 



 

Figure 20: An oil painting created with our system. 

 

 

Figure 21: A pastel painting made with our system.  

 
 

Figure 22: Close-up of a pastel painting made with our system. 
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