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Abstract

Most learning to rank research has assumed
that the utility of different documents is in-
dependent, which results in learned ranking
functions that return redundant results. The
few approaches that avoid this have rather
unsatisfyingly lacked theoretical foundations,
or do not scale. We present a learning-to-
rank formulation that optimizes the fraction
of satisfied users, with a scalable algorithm
that explicitly takes document similarity and
ranking context into account. We present
theoretical justifications for this approach,
as well as a near-optimal algorithm. Our
evaluation adds optimizations that improve
empirical performance, and shows that our
algorithms learn orders of magnitude more
quickly than previous approaches.

1. Introduction

Identifying the most relevant results to a query is a
central problem in web search, hence learning ranking
functions has received a lot of attention (e.g., Burges
et al., 2005; Chu and Ghahramani, 2005; Taylor et al.,
2008). One increasingly important goal is to learn
from user interactions with search engines, such as
clicks. We address the task of learning a ranking func-
tion to minimizes the likelihood of query abandonment
(i.e. no click). This objective is particularly interesting
as query abandonment is a major challenge in today’s
search engines, and is also sensitive to the diversity
and redundancy among documents presented.

We consider the Multi-Armed Bandit (MAB) setting
(e.g. Cesa-Bianchi and Lugosi, 2006), which captures
many online learning problems wherein an algorithm
chooses sequentially among a fixed set of alternatives
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(“arms” or “strategies”). MAB algorithms are ideal
for online settings with exploration/exploitation trade-
offs. While most MAB literature corresponds to learn-
ing a single best alternative (single-slot MAB), MAB
algorithms can also be extended to multiple slots, e.g.
to learn a ranking of documents that minimizes query
abandonment (Radlinski et al., 2008; Streeter and
Golovin, 2009). However, most MAB algorithms are
impractical at web scales.

Prior work on MAB algorithms has considered exploit-
ing structure in the strategy space to improve conver-
gence rates. One particular approach, articulated by
Kleinberg et al. (2008) is well suited to our scenario:
when the strategies (in our case, documents) form a
metric space and the payoff function satisfies a Lips-
chitz condition with respect to the metric. The metric
space allows the algorithm to make inferences about
similar documents without exploring them. Further,
they propose a “zooming algorithm” that learns to
adaptively refine explored regions of the strategy space
where there is likelihood of higher payoff, and provide
strong provable guarantees about its performance.

In web search, a metric space directly models similarity
between documents.1 Further, one can use additional
signals. A search user typically scans results top down,
and clicks on more relevant documents. One can there-
fore infer the context in which a click happened: the
skipped documents at higher ranks. To fully exploit
the context we factor in both conditional clickthrough
rates and correlated clicks. The former conditions on
the event that the user skipped a set of documents (as
suggested by Chen and Karger, 2006), and the latter
refers to the probability that two documents are both
relevant (or irrelevant) to a given user.

Our contributions. This paper initiates the study of
online learning-to-rank in metric spaces. We propose a

1In fact, most offline learning-to-rank approaches also
rely on similarity between documents, at least implicitly.
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simple learning model that explicitly considers corre-
lation of clicks and similarity between documents, and
admits efficient bandit algorithms that, unlike those in
prior work on bandit-based learning-to-rank, scale to
large document collections. We study this model both
theoretically and empirically. First, we validate the
expressiveness of our model by providing an explicit
construction for a wide family of plausible user distri-
butions which fit the model. Second, we design several
algorithms for our model, joining and extending ideas
from “ranked bandits” (Radlinski et al., 2008), bandits
on metric spaces (Kleinberg et al., 2008) and contex-
tual bandits (Slivkins, 2009).2 Third, we provide prov-
able scalability guarantees. Finally, we empirically
study their performance using the above-mentioned
construction with realistic parameters.

In a more abstract view, we tackle the problem of us-
ing side information on document similarity in the on-
line learning-to-rank setting. We focus on the case
of “ideally clean” similarity data, with a two-pronged
high-level question: how to model such data, and how
to use it algorithmically. We believe that studying the
“clean” case is useful (and perhaps necessary) to in-
form and guide the corresponding data-driven work.

Outline. We define the model in Section 2, validate
its expressiveness in Section 3, design algorithms in
Section 4, prove scalability guarantees in Section 5,
and discuss simulations in Section 6. It is worth noting
that much of the theoretical (provable) contribution
concerns setting up the model in Sections 2, 3, 4. The
details of that (namely, all proofs) are omitted from
this version due to space constraints. The full version
of this paper can be found at arxiv.org.

2. Multi-slot bandits in metric spaces

Let us introduce and motivate the online learning-to-
rank problem that we study in this paper.

Learning problem. Following (Radlinski et al.,
2008), we are interested in learning an optimally di-
verse ranking of documents for a given query. We
model it as a multi-slot MAB problem as follows. Let
X be a set of documents (“arms”). Each ‘user’ is rep-
resented by a function π : X → {0, 1}, where π(x) = 1
means that document x ∈ X is “relevant” to the user.
Let FX be a set of all functions X → {0, 1}, i.e. the set
of all possible users. Users come from a distribution P

2For more work on (contextual) bandits on metric
spaces, see (Agrawal, 1995; Kleinberg, 2004; Pandey et al.,
2007; Auer et al., 2007; Hazan and Megiddo, 2007; Bubeck
et al., 2008; Kleinberg and Slivkins, 2010).

on FX that is fixed but not revealed to an algorithm.3

In each round, the following happens: a user arrives,
sampled independently from P; an algorithm outputs
a list of k results; the user scans the results top-down,
and clicks on the first relevant one. The goal is to
maximize the expected fraction of users who click on a
result. Note that in contrast with prior work on diver-
sifying existing rankings (e.g.Carbonell and Goldstein,
1998), our aim is to directly learn a diverse ranking.

Click probability. The pointwise mean of P is a
function µ : X → [0, 1] such that µ(x) , Eπ∼P [π(x)].
Thus, µ(x) is the click probability for document x if it
appears in the top slot. Each slot i > 1 is examined
by the user only in the event that all documents in
the higher slots are not clicked, so the relevant click
probabilities for this slot are conditional on this event.
Formally, fix a subset of documents S ⊂ X and let
ZS , {π(·) = 0 on S} be the event that all documents
in S are not relevant to the user. Let (P|ZS) be the
distribution of users obtained by conditioning P on
this event, and let µ(· |ZS) be its pointwise mean.

Metric spaces. Throughout the paper, let (X,D) be
a metric space.4 A function ν : X → R is said to
be Lipschitz-continuous (L-continuous) with respect
to (w.r.t.) (X,D) if

|ν(x)− ν(y)| ≤ D(x, y) for all x, y ∈ X. (1)

User distribution P is called L-continuous w.r.t. (X,D)
if so is its pointwise mean µ.

Document similarity. To allow us to incorpo-
rate information about similarity between documents,
we start with the model proposed by Kleinberg et
al.(2008), called Lipschitz MAB : an algorithm is given
a metric space (X,D) w.r.t. which the pointwise mean
µ is L-continuous.5 This model suffices for learning the
document at the top position (k = 1).

However, for lower ranked documents this model is not
sufficiently informative since the relevant click proba-
bilities µ(·|ZS) are conditional. We will assume con-
ditional L-continuity: P is called conditionally L-
continuous w.r.t. (X,D) if the conditional pointwise
mean µ(·|ZS) is L-continuous for all S ⊂ X.

Now, a document x in slot i > 1 is examined only if
event ZS happens, where S is the set of documents in

3Note that this also models users for whom documents
are probabilistically relevant (Radlinski et al., 2008)

4I.e., X is a set and D is a non-negative symmetric
function on X ×X such that (i) D(x, y) = 0 ⇐⇒ x = y,
and (ii) D(x, y) +D(y, z) ≥ D(x, z) (triangle inequality).

5One only needs to assume that similarity between any
two documents x, y is summarized by a number δx,y such
that |µ(x)−µ(y)| ≤ δx,y. Then one obtains a metric space
by taking the shortest paths closure.
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the higher slots. x has a conditional click probability
µ(x|ZS). The function µ(· |ZS) satisfies the Lipschitz
condition (1), which will allow us to use the machinery
from MAB problems on metric spaces.

Document model. Web documents are often classi-
fied into hierarchies, where closer pairs are more simi-
lar.6 For evaluation, we assume the documents X fall
in such a tree, with each document x ∈ X a leaf in the
tree. On this tree, we consider a very natural metric:
the ε-exponential tree metric: the distance between
any two nodes is exponential in the depth of their
least common ancestor, with base ε ∈ (0, 1). How-
ever, our algorithms and analyses extend to arbitrary
metric spaces; see full version for further discussion.

Observation. An alternative notion of document
similarity focuses on correlation between clicks. Call
P conditionally L-correlated w.r.t. (X,D) if

Pr
π∼(P|ZS)

[π(x) 6= π(y)] ≤ D(x, y) ∀x, y ∈ X,S ⊂ X.

It is easy to see that conditional L-correlation implies
conditional L-continuity. Moreover, in the full version
we show that conditional L-continuity w.r.t. (X,D)
implies conditional L-correlation w.r.t. (X, 2D). Thus,
the two notions are essentially equivalent.

3. Model Expressiveness

Our approach relies on the conditional L-continuity of
the user distribution, which is a non-trivial property
about correlated clicks. We now argue that this prop-
erty is plausible in a realistic setting, and provide a
family of user distributions to be used in experiments
in Section 6. We accomplish both by defining a natural
(albeit highly stylized) generative model for the user
distribution. Given a tree metric space (X,D) and
the desired pointwise mean µ, this model provides a
rich family of user distributions that are conditionally
L-continuous w.r.t. (X, cD), for some small c.

The generative model is a tree-shaped Bayesian net-
work in which leaves correspond to the click events
on documents. The tree is essentially a topical taxon-
omy on documents such that the click event on each
sub-topic is obtained from that on the parent topic
via a low-probability mutation. It is fairly easy to see
that the mutation probabilities need to be bounded in
terms of the distance between the child and the par-
ent, and derive a necessary and sufficient condition to
obtain a given pointwise mean µ. The hard part is to
prove that the low-probability mutations are sufficient
to guarantee conditional L-correlation.

Assume documents are leaves of a finite rooted edge-

6E.g., the Open Directory Project http://dmoz.org/

Algorithm 1 User distribution for tree metrics

Input: Tree (root r, node set V ); µ(r) ∈ [0, 1]
mutation probabilities q0, q1 : V → [0, 1]

Output: random click vector π : V → {0, 1}

function AssignClicks(tree node v)
b← π(v)
for each child u of v do

π(u)←

{
1− b w/prob qb(u)

b otherwise

AssignClicks(u)

Pick π(r) ∈ {0, 1} at random with expectation µ(r)
AssignClicks(r)

weighted tree with node set V and leaf set X ⊂ V .
Let D be the (weighted) shortest-paths metric on V .

The high-level construction is very intuitive. We start
with a function µ : X → [α, 1

2 ], α > 0, that is L-
continuous w.r.t. (X,D). We can show (proof omit-
ted) that µ can be extended from X to V so that
µ : V → [α, 1

2 ] is L-continuous w.r.t. (V,D). We pick
π(root) ∈ {0, 1} at random with a suitable expecta-
tion, and then proceed top-down so that the child’s
click is obtained from the parent’s click via a low-
probability mutation. The mutation is parameterized
by functions q0, q1 : V → [0, 1], as described in Algo-
rithm 1. These parameters let us vary the degree of
independence between each child and its parent, re-
sulting in a rich family of user distributions.

To ensure that E[π(v)] = µ(v) for all v ∈ V , we posit

µ(u) = (1− µ(v)) q0(u) + µ(v)(1− q1(u)) (2)

whenever u is a child of v. Further, we assume that

q0(u) + q1(u) ≤ D(u, v)/min(µ(u), µ(v)). (3)

For a concrete example, one could define

(q0(u), q1(u)) =


(

0, µ(v)−µ(u)
µ(v)

)
if µ(v) ≥ µ(u)(

µ(u)−µ(v)
1−µ(v) , 0

)
otherwise.

(4)

We show that the user distribution π constructed by
Algorithm 1 has pointwise mean µ, it is L-correlated

w.r.t. Dµ(x, y) , D(x, y) min
(

1
α ,

3
µ(x)+µ(y)

)
, and

conditionally L-correlated w.r.t. Dµ(x, y) 2
1−Dµ(x,y) .

The proof of this result, omitted due to space con-
straints, is a key theoretical contribution of this work,
and by far the most technical one. It can be found in
the full version of this paper. One could strengthen
this result by replacing Dµ with the shortest-paths
metric induced by Dµ. Further, the result can be ex-
tended to arbitrary metric spaces.
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4. Algorithms

In this section we present algorithms for the problem
as defined in Section 2. We start by describing prior
work and simple adaptations of existing algorithms,
following with a presentation of two new algorithms
that explicitly take context into account.

In what follows, the “metric-aware” algorithms are
well-defined for arbitrary metric spaces, but for sim-
plicity we present them for a special case: documents
are leaves in a document tree τd with an ε-exponential
tree metric. In all these algorithms, a subtree is chosen
in each round. Then a document in this subtree is sam-
pled at random, choosing uniformly at each branch.

Ranked Bandits. Letting Bandit be some algorithm
for the MAB problem, the “ranked” bandit algorithm
RankBandit for the multi-slot MAB problem is defined
as follows (Radlinski et al., 2008). We have k slots
(i.e., ranks) for which we wish to find the best docu-
ments to present. In each slot i, a separate copy Ai of
Bandit is instantiated. In each round, if a user clicks
on slot i, then this slot receives a payoff of 1, and all
higher (i.e., skipped) slots j < i receive a payoff of 0.
For slots j > i, the state is rolled back as if this round
had never happened (as if the user never considered
these documents). If no slot is clicked, then all slots
receive a payoff of 0.

In (Radlinski et al., 2008), this approach gives rise to
algorithms RankUCB1 and RankEXP3, based on MAB
algorithms UCB1 and EXP3 (Auer et al., 2002a, 2002b).
EXP3 is designed for the adversarial setting with no
assumptions on how the clicks are generated, which
translates into concrete provable guarantees for Rank-
EXP3. UCB1 is geared towards the stochastic setting
with i.i.d. payoffs on each arm, although the per-
slot i.i.d. assumption breaks for slots i > 1 because
of the influence of the higher slots. Nevertheless, in
small-scale experiments RankUCB1 performs much bet-
ter than RankEXP3 (Radlinski et al., 2008).

In UCB1-style algorithms, including the zooming al-
gorithm, one can damp exploration by replacing the
4 log(T ) factor in (5) with 1. Such change effectively
makes the algorithm more optimistic; it was found
beneficial for RankUCB1 by Radlinski et al. (2008). We
will denote this version by appending ‘+’ to the algo-
rithm’s name, e.g. RankUCB1+. We will see that it can
also greatly improve average performance here.

Using the metric space. Both above algorithms
are impractical when there are too many documents
to explore them all. To avoid this challenge, we can
exploit the similarity information provided by the met-
ric space in our setting. Since the payoff function µ(·)
is an L-continuous function on (X,D), we can use the

Algorithm 2 “Zooming algorithm” in trees

initialize (document tree τd):
A←∅; activate(root(τd))

activate( u ∈ nodes(τd) ):
A←A∪ {u}; n(u)←0; r(u)←0

Main loop:
u← argmaxu∈A

r(u)
n(u) + 2 rad(u)

“Play” a random document from subtree(u)
r(u)← r(u) + {reward}; n(u)← n(u) + 1
if rad(u) < W(u) then

deactivate u: remove u from A
activate all children of u

(single-slot) bandit algorithms that are designed for
the Lipschitz MAB problem to improve the speed of
convergence of the RankedBandit approach.

The meta-algorithm GridBandit (Kleinberg, 2004) is
one such algorithm. It proceeds in phases: In phase i,
the depth-i subtrees are treated as “arms”, and a fresh
copy of Bandit is run on these arms.7 Phase i lasts for
kε−2i rounds, where k is the number of depth-i sub-
trees. This meta-algorithm (coupled with an adver-
sarial MAB algorithm such as EXP3) is the only prior
algorithm that takes advantage of the metric space
in the adversarial setting. Following (Radlinski et al.,
2008), we expect GridEXP3 to be overly pessimistic for
our problem, trumped by the corresponding stochastic
MAB approaches such as GridUCB1.

The “zooming algorithm” (Kleinberg et al., 2008, Al-
gorithm 2) is a more efficient version of GridUCB1: in-
stead of iteratively reducing the grid size in the entire
metric space, it selectively refines the grid in promising
areas. It maintains a setA of active subtrees which col-
lectively partition the leaf set. In each round the active
subtree with the maximal index is chosen. The index
of a subtree is (assuming stochastic payoffs) the best
available upper confidence bound on the click proba-
bilities in this subtree. It is defined via the confidence
radius8 given (letting T be the time horizon) by

rad(·) ,
√

4 log(T )/(1 + #samples(·)). (5)

The algorithm “zooms in” on a given active sub-
tree u (de-activates u and activates all its children)
when rad(u) becomes smaller than its width W(u) ,
εdepth(u) = maxx,x′∈uD(x, x′). The “ranked zooming
algorithm” will be denoted RankZoom.

Contextual bandits. Our subsequent algorithms
leverage prior work on contextual MAB. The relevant

7As an empirical optimization, previous events can also
be replayed to better initialize later phases.

8The meaning of rad(·) is that the sample average is
within ±rad(·) from the true mean with high probability.
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Algorithm 3 ContextZoom in trees

initialize (document tree τd, context tree τc):
A←∅; activate( root(τd), root(τc) )

activate ( u ∈ nodes(τd), uc ∈ nodes(τc) ):
A←A∪ {(u, uc)}; n(u, uc)←0; r(u, uc)←0

Main loop:
Input a context h ∈ nodes(τc)

(u, uc)← argmax
(u,uc)∈A:h∈uc

W(u×uc)+ r(u,uc)
n(u,uc)+rad(u,uc)

“Play” a random document from subtree(u)
r(u,uc)←r(u,uc)+{reward}; n(u,uc)←n(u,uc)+1
if rad(u, uc) < W(u, uc) then

deactivate (u, uc): remove (u, uc) from A
activate all pairs (child(u), child(uc))

contextual MAB setting is as follows: in each round
nature reveals a context h, an algorithm chooses a doc-
ument x, and the resulting payoff is an independent
{0, 1} sample with expectation µ(x|h). Further, one
is given similarity information: metrics D and Dc on
documents and contexts, resp., such that for any two
documents x, x′ and any two contexts h, h′ we have

|µ(x|h)− µ(x′|h′)| ≤ D(x, x′) +Dc(h, h′). (6)

We will use the “contextual zooming algorithm”
(ContextZoom) from (Slivkins, 2009). This algorithm
is well-defined for arbitrary metrics D,Dc, but for sim-
plicity we will state it for ε-exponential tree metrics.

Let us assume that documents and contexts are leaves
in a document tree τd and context tree τc, resp. The
algorithm (see Algorithm 3 for pseudocode) maintains
a set A of active strategies of the form (u, uc), where u
is a subtree in τd and uc is a subtree in τc. At any given
time the active strategies partition the space of all
(document, context) pairs, henceforth the DC-space.
In each round, a context h arrives, and one of the ac-
tive strategies (u, uc) with h ∈ uc is chosen: namely
the one with the maximal index, and then a document
x ∈ u is picked uniformly at random. The index of
(u, uc) is, essentially, the best available upper confi-
dence bound on expected payoffs from choosing a doc-
ument x ∈ u given a context h ∈ uc: as per (Slivkins,
2009), with high probability it holds that

index(u, uc) ≥ µ(x|h), ∀x ∈ u, h ∈ uc. (7)

The index is defined via sample average, confidence
radius (5), and “width” W(u ×uc), which is an upper
bound on the diameter in the DC-space:

W(u, uc) ≥ max
x,x′∈u, h,h′∈uc

D(x, x′) +Dc(h, h′). (8)

The (de)activation rule ensures that the active strate-
gies form a finer partition in the regions of the DC-

space that correspond to higher payoffs and more fre-
quently occurring contexts.

New approach: ranked contextual algorithms.
We now present a new approach in which the upper
slot selections are taken into account as a context.

The slot algorithms in the RankBandit setting can
make their selections sequentially. Then w.l.o.g. each
slot algorithm Ai knows the set S of documents in
the upper slots. We propose to treat S as a “con-
text” to Ai. Specifically, Ai will assume that none of
the documents in S is clicked, i.e. event ZS happens
(else the i-th slot is ignored by the user). For each
such round, the click probabilities for Ai are given by
µ(· |ZS), which is an L-continuous function on (X,D).

Let us specify a suitable metric Dc on contexts S ⊂ X
which (as we show in the full version) satisfies (6):

Dc(S, S′) , 4 inf
∑n
j=1D(xj , x

′
j), (9)

where the infimum is taken over all n ∈ N and over all
n-element sequences {xj} and {x′j} that enumerate,
possibly with repetitions, all documents in S and S′.

Having defined Dc, we can use any contextual MAB
algorithm for Ai. We will use ContextZoom.

Let us supply the missing details as they apply to the
(i + 1)-th slot. (For slot 1, ContextZoom reduces to
Algorithm 2.) The contexts are unordered i-tuples
of documents. Given a document tree τd, let us de-
fine context tree τc as follows. Depth-l nodes of τc
are unordered i-tuples of depth-l nodes from τd, and
leaves are contexts. The root of τc is (r . . . r), where
r = root(τd). For each internal node uc = (u1 . . . ui)
of τc, its children are all unordered tuples (v1 . . . vi)
such that each vj is a child of uj in τd. This com-
pletes the definition of τc. Letting u and uc be level-l
subtrees of τd and τc, resp., it follows from (9) that
Dc(S, S′) ≤ 4i εl for any contexts S, S′ ∈ uc. Thus
setting W(u×uc) , εl(4i+ 1) satisfies (8).

We will use ContextZoom (with τc and W(u, uc) as
above) for slots i ≥ 2; for slot 1, contexts are empty,
so ContextZoom reduces to Algorithm 2. The resulting
“ranked” algorithm is called RankContextZoom.

We can further exploit the conditional L-continuity.
In the analysis of ContextZoom, the index can be de-
creased, improving performance, as long as (7) holds.
Fix context S ⊂ X. Since µ(y|ZS) = 0 for any y ∈ S,

µ(x|ZS) = |µ(x|ZS)− µ(y|ZS)| ≤ D(x, y), ∀y ∈ S
hence µ(x|ZS) ≤ D(x, S) , miny∈S D(x, y). (10)

The intuition is that nearby documents being non-
relevant limits how good a given document can be.
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Using (10) we can decrease the index of many strate-
gies while keeping it a valid upper confidence bound on
payoffs. Thus, we “upgrade” RankContextZoom with
the following correlation rule: for each active strategy
(u, uc), where u is a subtree of documents, and uc is a
set of contexts, cap the index of each (u, uc) at D(u, S).

We also define RankCorrZoom, a version of RankZoom
which uses a similar “correlation rule”: for each slot,
cap the index of each active subtree u at D(u, S). We
view it as a light-weight version of RankContextZoom.

5. Provable scalability guarantees

Here we summarize the relevant provable guarantees
from prior work, and apply them to our multi-slot algo-
rithms. The purpose is two-fold: to provide intuition
behind these algorithms, and to prove their scalability.
We also provide an improved convergence result.

Single-slot bandits. Provable guarantees for single-
slot MAB algorithms are usually expressed via regret
w.r.t. a benchmark: the best arm in hindsight. Regret
R(T ) of an algorithm is the expected payoff of the
benchmark in T rounds minus that of the algorithm.

For MAB with n arms, EXP3 (Auer et al., 2002b)

achieves regret R(T ) = Õ(
√
nT ) against an oblivious

(non-adaptive) adversary. In the stochastic setting,
UCB1 (Auer et al., 2002a) performs much better, with
logarithmic regret:9 letting ∆(x) = maxµ(·)− µ(x),

R(T ) = min
r>0

(
rT +

∑
x∈X: ∆(x)>r

O(log T )
∆(x)

)
. (11)

For the Lipschitz MAB problem (Kleinberg, 2004;
Kleinberg et al., 2008), regret guarantees are indepen-
dent of the number of arms. Against an oblivious ad-
versary, GridEXP3 has regret

R(T ) = Õ(T (d+1)/(d+2)), (12)

where d is the covering dimension of the metric space.
For the stochastic setting, GridUCB1 has the same re-
gret guarantee, whereas the zooming algorithm has re-
gret (12) w.r.t. a different, smaller d (“zooming dimen-
sion”) which is much smaller (e.g., d = 0) for “benign”
problem instances, see (Kleinberg et al., 2008).10

For the contextual MAB problem, regret is w.r.t. a
much stronger benchmark: the best arm in hindsight
for every given context. ContextZoom has regret (12)
with d equal to the “contextual zooming dimension”
of the problem instance, which for the i-th slot in

9Regret in (11) is logarithmic for every fixed µ. For a

worst-case µ it is Θ̃(
√
nT ), matching EXP3.

10For both algorithms there is a “better” µ-specific guar-
antee in the style of (11), of which (12) is the worst case.

our setting is at most i × CoveringDim, but is much
smaller with “benign” context arrivals and “benign”
click probabilities, see (Slivkins, 2009) for details.

Multi-slot bandits. Letting T be the time horizon
and OPT be the probability of clicking on the optimal
ranking, algorithm RankBandit achieves

E[#clicks] ≥ (1− 1
e )T × OPT− k R(T ), (13)

where R(T ) is any upper bound on regret for Bandit

in each slot (Radlinski et al., 2008).

In the multi-slot setting, performance of an algorithm
is defined as the time-averaged expected number of
clicks. If R(T ) = o(T ), performance of RankBandit

converges with time to (1− 1
e )OPT (or exceeds it), which

is proved worst-case optimal. Thus, as long as R(T )
scales well with #documents (e.g., as in (12)), Radlin-
ski et al. (2008) interpret (13) as a proof of an algo-
rithm’s scalability in the multi-slot MAB setting.

RankBandit is an online version of the greedy algo-
rithm: an offline fully informed algorithm that selects
documents greedily slot by slot from top to bottom.
The performance of this algorithm is called the greedy
optimum,11 which is equal (1− 1

e ) OPT in the worst case
but can be as good as OPT. Thus, greedy optimum is
a natural benchmark for RankBandit. Surprisingly,
results w.r.t. this benchmark are absent.

Our results. We show that RankGridEXP3 and
RankContextZoom scale to large document collections,
in the sense that they achieve (13) with R(T ) that
does not degenerate with #documents. (We simply
note that their regret bounds plug into (13).)

Further, we obtain an improved convergence result:
the performance of RankContextZoom converges with
time to (or exceeds) the greedy optimum.12

Discussion. It is not clear whether, and under which
assumptions, this convergence result can be extended
to the “ranked” versions of non-contextual bandit al-
gorithms such as RankUCB1. One assumption that ap-
pears essential is the uniqueness of the “greedy rank-
ing”. Indeed, if the pointwise mean µ(·) has two peaks
with equal value, then a “reasonable” slot 1 algorithm
will alternate between (the vicinities of) these peaks,
thus distorting the statistics for the slot 2 algorithm
and causing it to converge on a suboptimal document;
see the full version for a specific example.

Discussion. We believe that the above guarantees do

11If due to ties there are multiple “greedy rankings”,
define the greedy optimum via the worst of them.

12Proof outline: Since the number of arms is finite, by
induction on k we can prove that for a large enough time
T , in all but o(T ) rounds we have a greedy ranking.
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not reflect the full power of our algorithms and our
setting. First, we conjecture that (13) can be strength-
ened to use the greedy optimum as a benchmark, and
(in some sense) be extended to “ranked” versions of
non-contextual stochastic MAB algorithms. Second,
the guarantees for RankContextZoom seem unsatisfy-
ing, as they only use a weak form of the regret bound
for ContextZoom.13 Finally, one should be able to ex-
press and prove the empirically observed performance
gains of the “correlation rule”.

6. Evaluation

Let us evaluate the performance of the algorithms pre-
sented in Section 4: “metric-oblivious” RankUCB1 and
RankEXP3, “metric-aware” non-contextual RankGrid-
UCB1, RankGridEXP3 and RankZoom, and contextual
RankContextZoom and RankCorrZoom.

Experimental setup. Using the generative model
from Section 3 (Algorithm 1 with (4)), we created a
document collection of size |X| = 215 ≈ 32, 000 in a
binary ε-exponential tree metric space with ε = 0.837.
This is a realistic number of documents that may be
considered in detail for a typical web search query af-
ter pruning very unlikely documents. The value for
ε was chosen so that the most dissimilar documents
in the collection still have a non-trivial similarity, as
may be expected for web documents. Each document’s
expected relevance µ(x) was set by first identifying a
small number of “peaks” yi ∈ X, choosing µ(·) for
these documents, and then defining the relevance of
other documents as the minimum allowed while obey-
ing L-continuity and a background relevance rate µ0:

µ(x) , max(µ0,
1
2 −miniD(x, yi)).

For internal nodes in the tree, µ is defined bottom-
up (from leaves to the root) as the mean value of all
children nodes.

Our simulation was run over a 5-slot ranked bandit
setting, learning the best 5 documents. We considered
300,000 user visits sampled from P per Algorithm 1.
Performance within 50,000 impressions, typical for the
number of times relatively frequent queries are seen by
commercial search engines in a month, is essential for
any practical applicability of this approach, although
a longer evaluation allows for a deeper understanding
of the convergence properties of the algorithms.

We consider two models for µ(·). In the first model,
two “peaks” {y1, y2} are selected at random with
µ(·) = 1

2 , and µ0 set to 0.05. The second model is less

13Namely, we ignore the effect that for a given slot, con-
texts S ⊂ X may gradually converge and become “low-
dimensional”; see the full version for more discussion.
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Figure 1. Various learning algorithms on 5-slot problem in-
stances with two relevance peaks (above) or random (Chi-
nese Restaurant Process) relevance (below).

“rigid” (and thus more realistic): the relevant docu-
ments yi and their expected relevance rates µ(·) are
selected according to a Chinese Restaurant Process
with parameters n=20 and θ=2, see (Radlinski et al.,
2008) for details, and with µ0 = 0.01.

As baselines we use selecting documents at random
and the offline greedy ranking (see Section 5).

Experimental results (see Figure 1).

RankEXP3 and RankUCB1 perform as poorly as picking
documents randomly: the three curves are indistin-
guishable. This is due to the large number of avail-
able documents and slow convergence rates of these
algorithms. It is consistent with results reported by
(Radlinski et al., 2008) on just 50 documents.

Making the UCB1-style algorithms “optimistic” (“+”,
see Section 4) improved performance dramatically. In
particular, GridUCB1+ performed best of the non-
contextual algorithms. RankZoom performs compara-
bly to RankUCB1+, and becomes extremely effective if
made optimistic. For the two contextual algorithms,
we saw a similar increase in performance, hence we
only show the performance of the optimistic versions.

RankCorrZoom+ achieves the best empirical perfor-
mance, converging rapidly to near-optimal rankings.
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Figure 2. Comparison of zooming variants in a two-slot set-
ting over a small document collection.

RankZoom+ is a close second. Interestingly, the the-
oretically preferred RankContextZoom does not per-
form as well in simulations. This appears to be due
to the much larger branching factor in the strategies
activated by RankContextZoom slowing down the con-
vergence.

Secondary experiment. As discussed in Section 5,
some RankBandit-style algorithms may converge to a
suboptimal ranking if µ has multiple peaks with sim-
ilar values. To investigate this, we designed a small-
scale experiment presented in Figure 2. We generated
a small collection of 128 documents using the same
setup with two “peaks”, and assumed 2 slots. Each
peak corresponds to a half of the user population, with
peak value µ = 1

2 and background value µ0 = 0.05.

We see that RankContextZoom+ converges more slowly
than the other zooming variants, but eventually out-
performs them. This confirms our intuition, and sug-
gests that RankContextZoom+ may eventually outper-
form the other algorithms on a larger collection.

7. Further directions

This paper initiates the study of online learning to
rank in metric spaces, focusing on the “clean” similar-
ity model (conditional L-continuity). As discussed in
Section 5, we conjecture that provable guarantees for
the algorithms can be improved significantly. On the
experimental side, future work will include evaluating
the model on web search data, and designing suffi-
ciently memory- and time-efficient implementations to
allow experiments on real users. An interesting chal-
lenge in such endeavor would be to come up with effec-
tive similarity measures. An natural next step would
be to also exploit the similarity between search queries.

References

Agrawal, R. (1995). The continuum-armed bandit problem.
SIAM J. Control and Optimization, 33(6):1926–1951.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002a). Finite-
time analysis of the multiarmed bandit problem. Ma-
chine Learning, 47(2-3):235–256.

Auer, P., Cesa-Bianchi, N., Freund, Y., and Schapire, R.
(2002b). The nonstochastic multiarmed bandit problem.
SIAM J. Comput., 32(1):48–77.

Auer, P., Ortner, R., and Szepesvári, C. (2007). Im-
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