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Discrete Element Texture Synthesis

(a) plum stack (b) pebble sculpture (c) dish with corns, carrots, and beans

Figure 1: Discrete element texture synthesis. Given a small input exemplar (left within each image), our method can synthesize the corresponding output
with user specified size and shape (right within each image). Our method, being data driven, can produce a variety of effects, including realistic/artistic
phenomena, regular/semi-regular/irregular distribution, different number of element types, and variations in element properties including size, shape, and
orientation. Case (a) is a semi-regular distribution with the input manually placed as the effect is difficult to achieve via physical simulation. The output
in case (b) has very different shape and boundary conditions from the input. Case (c) contains different types of elements and different input and output
shapes/boundary-conditions: the input is prepared on a planar board with the output served in a curved plate.

Abstract1

A variety of natural and man-made phenomena can be characterized2

by repetitive discrete elements. Examples include a stack of fruits,3

a plate of dish, or a stone sculpture. Although certain results can4

be produced via existing methods based on procedural or physical5

simulation, these are often designed for specific applications. Some6

of these methods can also be hard to control.7

We present discrete element texture synthesis, a data-driven method8

for placing repetitive discrete elements within a given large-scale9

structure. Our main goal is to provide a general approach that works10

for a variety of phenomena instead of just specific scenarios. We11

also want it easy to use, as the user only needs to specify an in-12

put exemplar for the detailed elements and the overall output struc-13

ture, and our approach will produce the desired combination. Our14

method is inspired by texture synthesis, a methodology tailored for15

generating repetitions. However, existing texture synthesis meth-16

ods cannot adequately handle discrete elements, often producing17

unnaturally broken or merged elements. Our method not only pre-18

serves the individual element properties such as color, shape, size,19

and orientation, but also their aggregate distributions. It also allows20

certain application specific controls, such as boundary constraints21

for physically realistic appearance. Our key idea is a new neighbor-22

hood metric for element distribution as well as an energy formu-23

lation for synthesis quality and control. As an added benefit, our24

method can also be applied for editing element distributions.25

Keywords: discrete element, texture synthesis, editing26

1 Introduction27

A variety of natural or man-28

made phenomena can be char-29

acterized by a distinctive large30

scale structure with repetitive31

small scale elements. Some32

common examples include a stash of fruits or vegetables, a tiled33

house, or a stone sculpture. Due to the potential scale and complex-34

ity of such phenomena, it would be desirable to let the user specify35

only the overall structure while having automatic algorithms to pro-36

duce the detailed elements.37

One common method is physical simulation, for which the user38

specifies certain input controls (e.g. initial or boundary condi-39

tion) and simply let the algorithm run course to produce the results40

[Baraff and Witkin 1997]. The primary advantage of physical sim-41

ulation is fidelity to realism. However, such methods can be hard42

to control, as to produce the desired output the user might need to43

repeatedly tweak the input parameters. Physical simulation might44

not be suitable for man-made or artistic effects (e.g. see [Cho et al.45

2007]). Another possibility is the procedural approach [Ebert et al.46

2002]. However, procedural methods are known for their limited47

generality and only applicable to specific distribution (e.g. Poisson48

disk [Lagae and Dutré 2005]) or phenomenon (e.g. rocks [Peytavie49

et al. 2009]). Furthermore, even though many procedural methods50

offer control via input parameters, tuning these to achieve the de-51

sired effects might require significant expertise.52

Our main goal is to provide a general approach for placing repetitive53

discrete elements within a given large-scale structure. By general,54

we mean the approach should work for a variety of phenomena in-55

stead of tied to specific applications. We also want it easy to use,56

i.e. the user only needs to specify a small exemplary swath of de-57

tailed elements and the overall output shape, and the approach will58

produce the desired combination. In addition, we would like to pro-59

duce both realistic and artistic effects simply via user specified el-60

ement swath and output shape, as existing methods might not offer61

the kind of flexibility and control that a user desires.62

We present discrete element texture synthesis, a data-driven ap-63

proach for placing repetitive discrete elements within a given large-64

scale structure. We draw inspirations from texture synthesis [Wei65

et al. 2009], a methodology for producing natural repetitions from66

given exemplars. But unlike prior methods that might produce bro-67

ken or merged elements (Figure 2), our method not only preserves68

the individual elements but also their aggregate distributions. Our69

key idea is a texture neighborhood definition for elements as well as70

a metric measuring neighborhood similarity. By ensuring that the71

input and output have similar texture neighborhoods, we are able72

to synthesize outputs that not only preserve the individual elements73

but also resemble aggregate distributions in the input exemplars.74

Thus, the user can easily achieve the desired result by simply sup-75

plying a proper input exemplar as well as the desired overall output76

size and shape. Since the user has maximum flexibility in specify-77

ing both the input exemplar and the output shape, our method is able78
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to achieve a variety of effects, including different dimensions (e.g.79

2D or 3D), different element properties (including shapes, sizes,80

colors) and distributions (e.g. regular/semi-regular/irregular), dif-81

ferent number of element types (e.g. a stack of plums or a plate82

of mixed vegetables), as well as physically realistic or artistic phe-83

nomena (e.g. a pile of pebbles or a decorative mosaic pattern).84

The main technical challenge of our approach is synthesizing el-85

ement distributions. Unlike many prior texture synthesis methods86

where the domain information p is given (e.g. positions of pixels,87

vertices, or voxels) and only the range information q needs to be88

determined (e.g. colors of pixels, vertices, or voxels), we have to89

compute both p and q as part of the synthesis process. We achieve90

this by a carefully designed metric for measuring the similarity be-91

tween two texture neighborhoods, accounting for both p and q.92

Even though there are prior methods targeting specific scenarios of93

this general problem (e.g. 2D NPAR distribution [Ijiri et al. 2008;94

Hurtut et al. 2009]), to our knowledge these are not for synthesizing95

general discrete elements, e.g. 3D or physically realistic effects for96

which our method can easily handle. We formulate our synthesis97

algorithm as an energy optimization process [Kwatra et al. 2005]98

to allow us not only properly determine p and q but also satisfy99

certain specific application demands, such as boundary constraints100

for physically plausible effects. We choose this optimization frame-101

work mainly for its flexibility, as both the basic neighborhood sim-102

ilarity as well as additional application-specific needs can be incor-103

porated as individual energy terms. Adopting a familiar framework104

of optimization also facilitates easy extension and adoption. How-105

ever, even though optimization is a common methodology and has106

been used in many different algorithms, the main challenges are on107

how to properly design the individual algorithmic components for108

discrete element synthesis.109

As an added benefit, our method can also be applied for editing110

element distributions. Specifically, the user can change not only q111

but also p of a few elements, and our method will automatically112

propagate such changes to all other elements with similar texture113

neighborhoods, relieving the user from the potential tedious chore114

of manual repetitions. This editing application is possible thanks to115

the texture neighborhood metric we developed for direct synthesis.116

2 Previous Work117

Multi-scale synthesis A variety of phenomena consists of118

small scale repetitions within a distinctive large scale structure.119

Such phenomena could be computed with better quality or effi-120

ciency by applying different methods for different scales; some121

examples include fluid turbulence [Kim et al. 2008; Narain et al.122

2008], hair strands [Wang et al. 2009], crowds [Lerner et al. 2007;123

Narain et al. 2009], or motion fields [Ma et al. 2009]. Our approach124

follows this general philosophy and focuses on discrete elements.125

Example-based texturing Example-based texturing is a gen-126

eral data-driven methodology for synthesizing repetitive phenom-127

ena (see survey in [Wei et al. 2009]). However, the basic repre-128

sentations in most existing texture synthesis methods such as pix-129

els [Efros and Leung 1999], vertices [Turk 2001] or voxels [Kopf130

et al. 2007] cannot adequately represent individual or discrete el-131

ements with semantic meanings, such as common objects seen in132

our daily lives. Without a basic representation that has knowledge133

of the discrete elements it would be very difficult to synthesize these134

elements adequately; even though artifacts could be reduced via ad-135

ditional constraints on top of existing methods (e.g. [Zhang et al.136

2003; Wu and Yu 2004]), there is no guarantee that the individual137

elements would be preserved. Thus, the synthesized textures can138

have elements that are broken or merged with each other (Figure 2).139

Such artifacts can be quite visible and thus better avoided.140

input exemplar pixel synthesis element synthesis

Figure 2: Pixel versus element synthesis. The pixel synthesis result is
produced by combining discrete optimization [Han et al. 2006] with texton
mask [Zhang et al. 2003].

Geometry synthesis Our method is also related to geome-141

try synthesis, especially those via texture methods such as meshes142

[Zhou et al. 2006], models [Merrell and Manocha 2008], or ter-143

rains [Zhou et al. 2007]. However, similar to other texture synthe-144

sis methods these are mainly for continuous patterns and might lack145

necessary information to preserve or control discrete elements, e.g.146

broken elements as can be seen in Figure 5b of [Zhou et al. 2006].147

Element packing There exist methods that pack a set of dis-148

crete elements into a specific domain or shape, such as mosaic tiles149

[Hausner 2001; Kim and Pellacini 2002] or 3D object collage [Gal150

et al. 2007]. However, the element distributions in these methods151

are usually determined via specific procedures or semi-manual user152

interface, instead of from input exemplars targeted at general distri-153

butions as in our approach.154

Texture element placement Even though the majority of155

example-based texturing methods are not suitable for discrete el-156

ements, potential solutions have been explored by a few pioneering157

works. However, despite the promises shown in these techniques,158

they might fall short in certain aspects. Dischler et al. [2002] and159

Liu et al. [2009] obtain distribution from input exemplars to place160

2D textons, but these techniques are not designed for general dis-161

crete elements. Barla et al. [2006] synthesized discrete elements162

but their positions are determined by Lloyd relaxation, not from the163

input exemplars. Ijiri et al. [2008] synthesized element positions164

via a growth method similar to [Efros and Leung 1999] but their165

method appears to be less general and more complex than ours,166

e.g. dealing with only 1-ring neighborhoods and requiring trian-167

gulation. Thus their method is sufficient for the target 2D NPAR168

applications but probably not for more general effects such 3D or169

physically realistic distribution. Jodoin et al. [2002] and Kim et170

al. [2009] applied texture synthesis for generating stipple distribu-171

tions, but not general discrete elements. Hurtut et al. [2009] took172

into account element attributes via area and appearance analysis,173

but only deals with static 2D non-photorealistic elements, not 3D174

or physically-realistic phenomena. Our method is inspired by these175

pioneering works, but aims at synthesizing discrete elements in a176

general setting, including 2D and 3D distribution, volume and sur-177

face synthesis, regular/semi-regular/irregular configuration, varia-178

tions in number of element types, shapes, sizes, as well as artistic179

and physically-realistic effects.180

3 Core Algorithm181

Given an input exemplar z consisting of a set of elements with the
relevant domain/position p and range/attribute q information, our
goal is to synthesize an output x that it is similar to z in terms of
both p and q. We can formulate this synthesis of discrete elements
as an optimization problem [Kwatra et al. 2005] by minimizing the
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following energy function:

Et(x; z) =
∑
s∈X†

|xs − zs|2 (1)

whereEt measures the similarity between the input exemplar z and182

the output x via local neighborhoods around elements. Specifically,183

for each output element s, we take a small set of elements near it as184

the texture neighborhood xs, find the most similar input neighbor-185

hood zs, and measure their distance |xs− zs|. We repeat this same186

process for each s ∈ X†, a subset of all input elements, and sum187

their squared differences. Our goal is to find an output x with low188

energy value. Below we describe details about our energy formu-189

lation as well as a solver for this optimization problem. For each190

reference, we have summarized the algorithm in Pseudocode 1.191

function x← DiscreteElementTextureOptimization(z)
// x: output distribution
// z: input exemplar
x← Initialize(z) // Section 4.2
iterate until convergence or enough # of iterations reached

// search phase, i.e. the “M-step” in [Kwatra et al. 2005]{
zs, s ∈ X†}← Search(x, z)

// assignment phase, i.e. the “E-step” in [Kwatra et al. 2005]
Assign(

{
zs, s ∈ X†}, x)

end
return x

function
{
zs, s ∈ X†}← Search(x, z) // Section 3.4

foreach element s ∈X† // X†: a subset of all output elements
xs← output neighborhood around s
zs← find most similar neighborhood in z to xs

end
return {zs}

function Assign({zs}, x) // Section 3.5
foreach output element s ∈X

p(s)← weighted combination of predicted positions
p(s)← from output neighborhoods that overlap s
q(s)← select the vote that minimizes the energy function

end

Pseudocode 1: Discrete element texture synthesis.

3.1 User Inputs192

In addition to the input exemplar, the user also needs to supply the193

following main inputs:194

Neighborhood size This is the standard parameter for195

neighborhood-based texture synthesis [Wei et al. 2009]. The user196

simply specifies the spatial extent of the neighborhoods, and for197

each element s, we construct its neighborhood n(s) by taking the198

union of all elements within the spatial extent centered at s.199

Output shape The user also needs to define the output size and200

shape. Our algorithm will then attempt to obey it as much as pos-201

sible, i.e. filling the domain interior with elements while avoiding202

them spill outside the domain. The algorithm will also try to main-203

tain similarity between input and output boundary element config-204

urations.205

Element attributes The user can also specify what kinds of el-206

ement properties to consider. The element positions p are manda-207

tory, but the range attributes q such as element type, geometry, and208

appearance could be optional depending on the target applications.209

See Section 3.3 for more details.210

3.2 Neighborhood Metric211

The neighborhood similarity metric is the core component for
neighborhood-based texture synthesis algorithms [Wei et al. 2009].
For traditional texture synthesis that has fixed sample positions p,
this can be done easily by either simple sum-of-squared differences
(SSD) of the range information q (such as colors) in a regular
setting (e.g. pixels or voxels) or by resampling irregular samples
into a regular setting before proceeding with SSD as in the former
case (e.g. mesh vertices). However, in our case, since we have
to synthesize both p and q, we need to incorporate both of them
into the neighborhood metric. Formally, let n(s) denote the spa-
tial neighborhood around an element s. We measure the distance
|n(so)− n(si)|2 between the neighborhoods of two elements so
and si via the following formula:

|n(so)− n(si)|2 =
∑

s′o∈n(so)

∣∣p̂(s′o)− p̂(s′i)
∣∣2 + α

∣∣q(s′o)− q(s′i)
∣∣2

(2)

where s′o is an element ∈ n(so), s′i ∈ n(si) the “matching” element212

of s′o (explained below), p̂(s′) = p(s′) − p(s) (i.e. the relative213

position of s′ with respect to the neighborhood center s), and α the214

relative weight between domain p and range q information.215

Intuitively, what Equation 2 tries to achieve is (1) align the two216

neighborhoods n(so) and n(si), (2) match up their elements in217

pairs {(s′i, s′o)}, and (3) compute the sum of squared differences218

of both p and q among all the pairs. We determine the pairings by219

first identifying the pair (s′i, s
′
o) with minimum |p̂(s′o)− p̂(s′i)|,220

exclude them for further consideration, and repeat the process to221

find the next pair until n(so) runs out of elements. (We prevent222

n(si) from running out of elements before n(so) by not presetting223

its spatial extent, essentially giving n(si) an ∞ size.) We have224

found that the heuristic above works well in practice, and provides225

similar quality with a more rigorous but much slower approach that226

considering all possible pair matching (s′i, s
′
o) in brute force.227

input output

Figure 3: Illustration for our neighborhood metric. Each pair of matched
input and output elements has not only similar relative positions (to the cen-
ter element) but also similar color, shape, and orientation. Unmatched input
elements are shown in black.

We use the neighborhood metric above throughout our algorithm,228

including both the search and the assignment steps. Specifically,229

in the search step, we use only the scalar distance value computed230

by Equation 2 to pick the most similar input neighborhood zs for231

each output neighborhood xs. However, in the assignment step, we232

need further information for the matching pairs {(s′i, s′o)} in order233

to determine the p and q values for the output element s. More234

details can be found in Section 3.4 & 3.5.235

Note that even though some prior methods have adopted similar236

neighborhood metric for discrete elements, they do not entirely sat-237

isfy our needs. For example, [Barla et al. 2006] uses Hausdorff dis-238

tance and thus does not allow explicit control of pair-wise element239

matching, e.g. the need to avoid duplications, and [Ijiri et al. 2008]240

considers only 1-ring neighbor positions p instead of our formula-241
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tion that allows not only general neighborhoods but also considers242

both p and q. Furthermore, our neighborhood definition does not243

require additional processing such as triangulation in [Ijiri et al.244

2008], making our method easier to implement, especially for non-245

2D applications such as 3D volume or surface synthesis.246

3.3 Element attributes p and q247

Here, we describe more details about the element domain p and248

range q information, and how to measure their differences in Equa-249

tion 2. The p part is relatively straightforward; it is just the element250

position, and we measure the difference p(s)−p(s′) between two251

elements s and s′ via the usual Euclidean metric. The q part can252

contain a variety of information depending on the particular appli-253

cation scenario. For the simplest case of point distribution, q can254

be empty. Below is a list for more typical applications involving255

concrete objects as elements:256

Orientation The orientation of an element is represented as a nor-257

malized quaternion for both 2D and 3D cases. We compute258

the difference between two quaternions via the standard ap-259

proach of taking the inverse cosine of their dot product.260

Geometry Each element can have geometry with different size and261

shape from one another. In general, we can measure the dif-262

ference between two element geometries via Hausdorff dis-263

tance (after aligning element centers and orientations to avoid264

double counting their contributions).265

Appearance Each element can also have different appearance at-266

tributes, including colors and textures. We can measure their267

appearance differences via color histograms.268

Type In general, both the geometry and appearance are parts of the269

intrinsic element attributes (that remain largely invariant with270

respect to position and orientation). Beyond geometry and271

appearance, we can also consider other kinds of intrinsic ele-272

ment attributes depending on the specific application contexts,273

such as high level semantic meanings. For maximum flexibil-274

ity, we allow the user to specify the distance metric between275

intrinsic element properties. In addition, when the number of276

input elements is sufficiently small or can be grouped into a277

small number of types, we can pre-compute their intrinsic dis-278

tances for run time efficiency. For most of our examples, we279

have found it sufficient to use an integer number to identify280

the element type, and set the intrinsic distance to be 0 if they281

are the same, and or 1 if not.282

3.4 Search Step283

During the search step, we find, for each output element so, the284

best match input element si with the most similar neighborhood,285

i.e. minimizing the energy value in Equation 2. This search can be286

conducted by exhaustively examining every input element, but this287

can be computationally expensive. Instead, we adopt k-coherence288

search for constant time computation, as detailed in Section 4.3.289

3.5 Assignment Step290

p assignment At the beginning of the assignment step, we have
multiple input neighborhoods

{
zs′o

}
overlapping every output ele-

ment so, where zs′o is the matching input neighborhood for output
element s′o as determined in the search step (Section 3.4) and s′o is
sufficiently close to so so that the spatial extent of zs′o covers so.
Each such zs′o provides a predicted position p̃(s′o, so) for element
so:

p̃(s′o, so) = p(s′o) + p(si)− p(s′i) (3)

where si/s′i indicates the matching input element for so/s′o as de-291

scribed in the neighborhood metric (Section 3.2). See Figure 4.292

input output

Figure 4: Illustration for the assignment step.

To minimize the energy functionEt in Equation 1, the sample posi-
tion p(so) is updated as a weighted combination of all {p̃(s′o, so)}
where zs′o covers so:

p(so) =

∑
s′o

ω(s′o, so) · p̃(s′o, so)∑
s′o

ω(s′o, so)
(4)

The relative weight ω is determined as

ω(s′o, so) =
1

α|s′o − so|+ 1
(5)

where α is a user-specified constant. We have found it sufficient to293

set α = 0 which yields Equation 4 to a simple (equal weighted)294

average.295

q assignment We assign q by a simple voting scheme. For
each output element so, we gather a set of votes {q(si)}, where
each si is matched to so for a certain overlapping neighborhood de-
termined in the search step (see Figure 4). Then we choose the one
that has the minimum sum of distance across the vote set {q(si)}:

q(so) = argminq(si)

∑
si′∈{si}

|q(si)− q(si′)|2 (6)

where si′ runs through the set of elements {si} matched to so dur-296

ing the search step. Essentially, what we are trying to do is to find297

a q(so) that is closest to the arithmetic average of {q(si)}; this298

is very similar to the use of a discrete solver [Han et al. 2006] for299

solving a least squares problem [Kwatra et al. 2005].300

Discussion In the assignment steps we use blend for p (Equa-301

tion 4) but selection for q (Equation 6). (In some sense, the for-302

mer is analogous to the least squares solver [Kwatra et al. 2005]303

while the latter the discrete k-coherence solver [Han et al. 2006].)304

The main reason is that blend works better than selection for p, but305

might not be suitable for all q attributes. For example, the orienta-306

tion, shape or type information might not be meaningfully blended.307

Furthermore, to apply k-coherence acceleration (Section 4.3), we308

will have to copy instead of blending the q information.309

4 Advanced Features310

Here, we describe several advanced features of our method beyond311

the core algorithm presented in Section 3.312

4.1 Synthesis control313

Even though texture synthesis can automatically produce a station-314

ary output, for realistic effects, it is usually desirable to control cer-315

tain global aspects of the synthesis process. This synthesis con-316

trol has appeared in prior methods, e.g. controllable [Lefebvre and317
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Hoppe 2005] or globally-varying [Zhang et al. 2003; Wei et al.318

2008] synthesis. Here, we describe several synthesis controls that319

we have found useful in producing our results.320

Overall shape Given a user specified output domain shape321

(Section 3.1), we would like the synthesis process to comply with322

this as much as possible, i.e. put elements inside instead of out-323

side the overall shape, and transfer boundary/interior output ele-324

ments from similarly configured boundary/interior input elements.325

We can achieve this with a density map c that shaped as the out-326

put domain with values within the range [0, 1], where higher value327

indicates larger probability of element appearance.328

In the search step, we find the input neighborhood zs that minimizes
not only the usually texture (dis)similarity |xs − zs|2 but also an
additional term λ|cs−zs|2, where λ is a relative weight and cs the
sampled density value of xs. Specifically,

|cs − zs|2 =
∑
s′i∈zs

|c(s′i)− 1|2 (7)

where {c(s′i)} are sampled density c values at positions329

{p(so) + p(s′i)− p(si), s
′
i ∈ zs}. Essentially, we shift the entire330

input neighborhood zs to the center location p(so) and sample c at331

the shifted element positions.332

Local orientation The user can also optionally specify a lo-333

cal orientation of the output texture so that the output patterns are334

aligned with the user choice instead of the default global coordi-335

nate frame. This allows the production of more interesting results,336

e.g. oriented flow patterns as in [Ijiri et al. 2008]. Algorithmically,337

this can be easily achieved by using the local instead of the global338

frame at each element during each step of our algorithm, including339

neighborhood metric, search, assignment, and initialization. Note340

that the incorporation of local frames into a texture optimization341

framework has been done in prior methods, e.g. [Ma et al. 2009].342

Constraints For certain application scenarios it might be desir-343

able to maintain specific constraints, e.g. minimize penetrations for344

physical elements or avoid elements floating in the mid air. Even345

though texture synthesis cannot completely guarantee all these con-346

straints, it can usually be tuned to produce visually plausible results.347

For inter-penetration, we have found that minimizing neighborhood348

dissimilarity in Equation 2 would also lead to less penetrations. For349

other kinds of constraints, we have found it effective to restrain the350

kinds of input elements that can be transferred to the constrained351

output regions. (This is a commonly used method in texture syn-352

thesis, e.g. for volumetric layers [Owada et al. 2004].) For example,353

to reduce the chance of elements floating in the mid air, during the354

search step we only select input floor elements for output floor ele-355

ments. During the assignment step, we maintain the vertical eleva-356

tion of these floor elements to be invariant while minimizing other357

energy terms as described in Section 3.5. Similar mechanisms can358

be applied to other kinds of constraints, as we will show in Sec-359

tion 5.360

4.2 Initialization361

White noise This is perhaps the simplest and most flexible ini-362

tialization method, by randomly copying elements from the input to363

the output domain. One downside of such a white noise initializa-364

tion, though, is that it may require an excessive number of iterations365

to converge via our optimization procedure. It could also get stuck366

in a local minimum, causing unsatisfactory element distribution in367

certain regions of the output.368

Patch copy To address the deficiencies of white noise initial-369

ization, we have found another strategy, patch copy, which works370

quite well. Patch-base synthesis has demonstrated to be effective371

for image textures (see e.g. [Liang et al. 2001; Efros and Freeman372

2001] and the survey in [Wei et al. 2009]). Here, we apply a simi-373

lar method for initialization. We first divide the input exemplar and374

output region into uniform grids, with each grid cell correspond-375

ing to a patch of elements, and then randomly copy input patches376

into output grids, just like patch-based image synthesis. In addition,377

when copying patches we take into account the user controls (Sec-378

tion 4.1), such as aligning patches with local orientations as well379

as preferring input patches with similar boundary conditions to the380

output region.381

4.3 Acceleration by k-coherence382

Since our method copies the q information from input to output ele-383

ments, we can apply k-coherence [Tong et al. 2002] throughout our384

entire algorithm. The main difference between our method and the385

original k-coherence method is that we have to deal with irregularly386

placed samples. However, this problem has been addressed in the387

context of irregular mesh vertices [Han et al. 2006], and we could388

adopt a similar strategy here. Specifically, during the pre-process,389

we can build a similarity-set for each input sample via our search-390

step as described in Section 3.4. At run-time, we build the candi-391

date set by collecting the similarity sets from all the neighboring392

elements, with the offset part properly computed by the recorded393

element pairs (Section 3.2).394

5 Results395

5.1 Element distribution396

Our method can produce a variety of element distributions with dif-397

ferent attributes, such as dimensionality (2D/3D), volume/surface398

synthesis, regular/semi-regular/irregular distribution, number of el-399

ement types, variations in element size/shape/color/texture, out-400

put domain size/shape/orientation, and artistic/realistic phenomena.401

Since our method is data driven, we can handle all these by simply402

using different input exemplars and output domains. We wish to403

emphasize that the input and output specifications are more or less404

de-coupled, i.e. the same input exemplar can be used for different405

output domains, and vice versa (see Figure 6). This is a key factor406

facilitating easy and flexible usage of our method.407

Input exemplar properties Using input exemplars with differ-408

ent properties, our method can produce a variety of different results409

as shown in Figure 1 & Figure 6. We begin with the simplest but410

also very common case of one type of elements, e.g. Figure 1a,411

6a, and 6e. But even such one-element-type distributions may have412

certain properties that cannot be easily captured by procedural or413

physical simulation methods. For example, the user might prefer to414

arrange a stack of plums in a near-regular configuration (Figure 1a),415

or a collection of carrots in specific orientations (Figure 6f, 6g, and416

6h). Notice that these examples cannot be produced by physical417

simulation (e.g. dropping objects until they come to rest) as the out-418

puts are unlikely to reach the desired user intention. One possibility419

is to manually place the elements, but this could quickly become420

very tedious for sufficiently large outputs. Using our method, the421

user only needs to manually place a small input exemplar and our422

method will automatically produce the desired output. The bananas423

(Figure 6a) present another interesting case due to their unique long424

and curvy shapes. For this case, we generated the input via physical425

simulation to show that our method can produce visually realistic426

outputs via physically validated input. More interesting distribution427

can be produced by multiple types of elements with different sizes428
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and shapes, e.g. a dish containing corns, diced carrots, and green429

beans (Figure 1c).430

Output domain properties In addition to the input exemplar431

properties like element type and distribution, the user can also spec-432

ify the output domain properties, including size, shape, and orienta-433

tion field, to achieve different effects. Beyond physically plausible434

shapes like a stack, a box, a pile, or a bowl as shown in Figure 1 and435

6, the user can also specify a more complex or interesting shape as436

a sculpture (Figure 1b), a tai-chi pattern (Figure 6f), a knot (Fig-437

ure 6h), or a building (Figure 6k). Our method can also be applied438

to both volume (e.g. Figure 1) and surface/shell (e.g. Figure 6k, 6l,439

and 6m) synthesis. Note that these results span both physically re-440

alistic as well as artistic effects. As noted in [Cho et al. 2007], phys-441

ical simulation might produce output distributions that look flat or442

boring. To produce visually more appealing effects, it is often de-443

sirable to have the output in a physically unstable or implausible444

configuration. Cho et al. [2007] achieved this via certain ad-hoc445

approaches, e.g. stopping physical simulation in the middle prior446

to completion (Figure 10 in [Cho et al. 2007]) or using repeated447

skimming and an up-side-down collision mesh (Figure 15 in [Cho448

et al. 2007]). Our method can easily produce the desired effect in a449

more principled and more controllable manner by simply using the450

proper output domains.451

(a) with boundary handling

(b) no boundary handling

Figure 5: Boundary condition comparisons. Shown here are the profile
views for the texture in Figure 1c.

Boundary handling Properly boundary handling is important452

to produce satisfactory results for certain discrete element textures453

that exhibit different distributions near and away from the overall454

boundaries, e.g. floor or box sides. Our experimental results in-455

dicate that these boundary conditions can be adequately handled456

by our control mechanisms described in Section 4.1. Without such457

mechanisms, the synthesis results might exhibit poor boundary con-458

ditions, as shown in Figure 5. We wish to emphasize that our459

method does not require all possible output boundary configura-460

tions to be present in the input exemplar; as shown in Figure 1 and461

6, even though the output can contain different boundary shapes and462

orientations not present in the simpler input exemplars, the combi-463

nation of local orientation and boundary handling can still produce464

satisfactory results.465

5.2 Distribution editing466

As an added benefit, our method can also be applied for editing dis-467

crete element textures, for not only individual element properties q468

but also their distributions p. All these can be achieved by the very469

same algorithms that we have built for synthesizing discrete ele-470

ment textures, especially the neighborhood metric. Texture editing471

has been shown to be useful for a variety of application scenarios472

(see e.g. [Brooks and Dodgson 2002; Matusik et al. 2005; Zhou473

et al. 2006; Liu et al. 2009; Cheng et al. 2010]). Our method fol-474

lows this line of thinking, but can achieve certain effects that may475

benefit from the explicit knowledge of the discrete elements.476

Figure 7 demonstrates a potential example. Given an input pattern477

consisting of discrete elements, we aim to use our method to edit the478

element properties q and distributions p to produce more versatile479

effects. The user may simply select a typical element, performs480

some edits, and our method will automatically propagate relevant481

edits to all other elements with similar neighborhoods to the user482

interacted element. Note that without our automatic propagation,483

it would be quite tedious for the user to manually repeat the same484

edits to all relevant elements.485

5.3 Usage and parameters486

Input preparation Unlike other texture synthesis applications487

where the input exemplars can be obtained directly (e.g. download-488

ing an image), for discrete element textures the user would have to489

do some work to produce the input exemplars, including both the490

individual elements and their distribution. For the results shown491

in this paper, we prepare the elements via standard modeling tools492

(e.g. Maya) and distribute them either manually or by simple sim-493

ulation. For the modeling part, we have found it sufficient to make494

just one element for each type and the quality seems to work quite495

well for human perceptions [Ramanarayanan et al. 2008]. If addi-496

tional element prototypes are desired, we have found it sufficient to497

slightly perturb the prototype element properties (e.g. geometry or498

color) via procedural noise. For the distribution part, since the in-499

put exemplar is usually quite small, manual placement seems quite500

feasible (e.g. the inputs for Figure 1a, 6e & 6i). It is also possible501

to use simple physical simulation for the input distribution for more502

random or physically realistic effects, even for outputs that might503

not be easy to produce via simulation (e.g. Figure 1b).504

Parameters Similar to prior texture synthesis methods, one of505

the most important parameters is the neighborhood size. In our506

results we have found it sufficient to use a neighborhood size con-507

taining roughly 1- to 3-ring neighbors (∼ 3n to 7n neighborhood508

in n-D pixel synthesis) depending on whether the pattern is more509

stochastic or structured. Other important parameters include α (for510

Equation 2) and λ (for Equation 7), for which we set to be of the511

same order of magnitude as the average distance between elements.512

(For example, if the average element distance is 0.01 we just set α513

and λ ∈ [0.005 0.05].)514

Regarding speed, our current implementation takes about seconds515

to minutes to generate each result, containing number of elements in516

the range 500 ∼ 2000. We have found this fast enough to produce517

results shown in the paper, even though we have not attempted any518

further speed optimization beyond the basic k-coherence introduced519

in Section 4.3.520

6 Limitations and Future Work521

Even though our method can produce visually plausible results, it522

cannot guarantee certain domain specific properties, e.g. complete523

obedience to physical laws like gravity or shape penetration. If such524

properties need to be more strongly enforced, one possibility is to525

add them as extra energy terms into our current framework.526

Our approach synthesizes element distribution only but not the in-527

dividual elements, for which we rely on user inputs. It will be in-528

teresting to devise methods that can more automatically obtain the529

individual elements, e.g. 2.1d textons [Ahuja and Todorovic 2007],530

vector primitives [Hurtut et al. 2009], or even 3D geometry.531
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(a) bananas (b) box (c) bowl (d) Gaussian shape

(e) carrots (f) tai-chi (g) radial pattern (h) 3D knot

(i) sticks

(j) tiles (k) hut (l) cabin (m) cabin

Figure 6: Element distribution. The input exemplars are shown as smaller images, with the corresponding synthesis results shown on larger ones. Each
exemplar in (a), (e), and (i) is used to produce multiple outputs with different sizes, shapes, or orientation fields. The same output model is used to produce
different results in (l) and (m) via different exemplars in (i) and (j).

We also rely on the user input for the overall output shape. On one532

hand this provides the flexibility for the users to choose whatever533

shapes they like, but on the other hand it may be a nuisance if the534

users do not feel like doing so. For the latter case it would be in-535

teresting to apply more automatic methods to determine the output536

shape, e.g. what would the output shape be for a pile of potatoes?537

We have only tried to apply our method to static but not dynamic el-538

ement distributions. Based on texture optimization, we believe that539

our basic framework can be applied for frame coherent animation540

effects as in [Kwatra et al. 2005; Kyriakou and Chrysanthou 2008].541

The really interesting issue here is on what kinds of input exem-542

plars to specify; dynamic inputs would be easier for our method to543

work with, but static inputs might be more convenient and practical544

to obtain.545
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