
Online Submission ID: papers 0048

Nonlinear Revision Control for Images

(a) input

source

copy

paste

translate

perspctive

paste

translate

perspctive

(b) cloning (c) after cloning

source

copy

paste

translate

perspctive

paste

translate

perspctive

color_balance hue_saturation

(d) color edit (e) output

source

copy

paste

translate perspctive

paste

translate perspctivecolor_balance hue_saturation

(f) parallel paths

Figure 1: Nonlinear revision control example. Given the input image (a) with a single police car, the user first clones the car twice with proper translation
and perspective deformation (c) and then modify their colors (e). The corresponding DAGs are shown in (b) and (d). We use parallel paths to represent
independent operations that could have either disjoint regions of interest (b) or orthogonal operations (f). These paths could be hierarchical, from high level
(e.g. independent cars) to low level (e.g. translation and color editing for each car).

Abstract1

Revision control is a vital component of digital project manage-2

ment, and has been widely deployed for text files. Binary files, on3

the other hand, have received relatively less attention. This could4

be inconvenient for graphics applications, which might use a sig-5

nificant amount of binary data, such as images, videos, meshes,6

and animations. Existing strategies such as storing whole files for7

individual revisions or simple binary deltas could consume signif-8

icant storage and obscure vital semantic information. We present9

a nonlinear revision control system for images, designed with the10

common digital editing and sketching workflows in mind. We use11

DAG (directed acyclic graph) as the core structure, with DAG nodes12

representing editing operations and DAG edges the parallel spatial,13

temporal and semantic relationships between the nodes. The DAG14

facilitates not only meaningful display of the revision history but15

also common revision control operations such as review, replay,16

branching, and merging. We have also proposed an UI that visu-17

alizes the DAG information in an intuitive and user friendly man-18

ner. We have built a prototype system upon GIMP, an open source19

image editor, and demonstrate the effectiveness of method through20

user study as well as storage advantage through comparisons with21

alternative revision control systems.22

Keywords: revision control, images, nonlinear editing, interaction23

1 Introduction24

Revision control is an important component of digital content man-25

agement [Estublier et al. 2005]. Many people have experienced26

certain revision control systems (e.g. CVS, Subversion, Perforce,27

to name just a few), especially when working on collaborative28

projects. By storing history of files, revision control systems allow29

us revert mistakes and review changes. Revision control systems30

also facilitate collaborations between multiple users through mech-31

anisms such as merging, branching, and conflict resolving.32

So far, the development and deployment of revision control sys-33

tems have been focused more on text than binary files. This is un-34

derstandable, as text files tend to be more frequently used and re-35

vised, and easier to develop revision control mechanisms for. (Sim-36

ple line differencing already provides enough information for text37

files.) However, in many graphics projects, binary files, such as im-38

ages, videos, meshes, and animations, could be frequently used and39

revised as well. Here the lack of specific revision control system for40

binary files could cause several issues. Most existing general pur-41

pose revision systems employ a state-based model that stores the42

different revisions of a binary file individually without any diff/delta43

information, thus bloating storage space and making it hard to de-44

duce the changes made between revisions. Even when deltas [Hunt45

et al. 1998] (or other low-level information like pixel-wise diff) are46

used for reducing storage, they usually lack sufficient high-level se-47

mantic information for reviewing, coordination, branching, merg-48

ing, or visualization.49

To obtain the relevant high level information, automatic extraction50

has proven to be difficult and time consuming even for images under51

constrained setting (see e.g. [Seitz and Baker 2009]). Fortunately,52

such high level information can usually be recorded from live user53

actions with the relevant image editing software. The visualization54

and interaction design of such user action histories has long been a55

popular topic (e.g. [Kurlander 1993; Meng et al. 1998; Klemmer56

et al. 2002; Heer et al. 2008; Su et al. 2009]. Nevertheless, the57

lack of a formal representation that depicts the comprehensive rela-58

tionship (not only temporal but also spatial and semantic) between59

image editing actions makes these approaches both inefficient and60

insufficient for revision control.61

In this paper, we propose a nonlinear revision control system for62

images, designed with the ordinary digital editing and sketching63

workflows in mind. We achieve high-level and fine-granularity re-64

vision history by directly recording and consolidating user editing65

operations. The core idea of our system is a DAG (directed acyclic66

graph) representing the nonlinear spatial, temporal, and semantic67

dependencies between these recorded image editing operations (as68

DAG nodes). The fine operation granularity and dependency in-69

formation represented in our DAG makes it possible to design a70

centralized and intuitive user interface for primary functions in re-71

vision control system including revision navigation, branch, merge72

and conflict resolution. Furthermore, our DAG representation also73

serves as a framework for several non-linear editing and exploration74

functions proposed in prior art [Kurlander 1993; Su et al. 2009; My-75

ers and Kosbie 1996; Meng et al. 1998; Terry et al. 2004].76

Based on our core DAG representation we have devised several al-77

gorithm innovations for both internal system implementation and78

external user interface design. For the former, we propose methods79

for on-the-fly DAG construction during the user editing/sketching80

process as well as semi-automatic node aggregation + annotation81

for grouping many low-level operations (e.g. repeated strokes) into82

a few high level ones. We also devise mechanisms for automatic83

resolving and merging multiple concurrent/conflict user revisions.84

These, along with other technical innovations, including script-85

based action logging and action state cache, have been designed to86

ensure easy usage, high computation speed, and low storage size.87

For the latter, we propose an unified UI design that seamlessly inte-88

grates traditional revision history representation and our proposed89

1



Online Submission ID: papers 0048

underlying DAG structure, alongside the main user editing area.90

Within the unified UI, artists can navigate the revision history, ex-91

plore the design space with tools like selective undo/redo [Meng92

et al. 1998], parallel preview [Terry et al. 2004], and nonlinear oper-93

ation modification [Kurlander 1993; Su et al. 2009], while perform94

common revision control operations such as branching, merging,95

and conflict resolving. We have built a prototype system via GIMP96

[The GIMP Team 2009], an open source image editor, and demon-97

strate effectiveness of our system through user study and compar-98

isons with alternative revision control systems.99

2 Previous Work100

Our nonlinear revision control system for images is closely related101

to and primarily inspired by two major groups of prior art: digital102

content management and graphical history. We also review the prior103

usage of DAG and other related graph structures.104

Digital content management Digital content management105

refers to the general process of authoring, editing, collecting, pub-106

lishing, and distributing digital content, including both textual data107

like documents and source codes or binary data like graphics assets108

[Jacobsen et al. 2005]. Among the various components of digital109

content management, revision control remains one of the most im-110

portant part; see [Estublier et al. 2005] for a detailed history and111

survey of techniques in the context of software management. Ex-112

isting revision control mechanisms focus mainly on text rather than113

binary files as it is easier to deduce the changes via either low level114

(e.g. line diff) [Hunt and Szymanski 1977] or high level (e.g. pro-115

gramming language syntax) information [Jackson and Ladd 1994].116

However, for binary files, the prevailing methods either store the117

complete files for each revision or use certain crude binary diff118

methods to store the differences [Hunt et al. 1998]. Both of these119

methods can consume significant storage, and more importantly120

lack relevant high level semantic information designating the na-121

ture of the changes. These issues could hamper the adoption of122

revision control systems in managing graphics assets. Judging by123

the success of content management systems for graphics assets (e.g.124

Alienbrain [AVID Techology 2009]), such demands obviously ex-125

ist, but to our knowledge binary graphics assets have yet to enjoy as126

advanced revision control mechanisms as text files. The goal of our127

system is to fill this gap, allowing easy revision control for graphics128

assets. Within this paper we focus mainly on images as they are129

easier to visualize for illustration purposes and also tend to be more130

commonly used than other graphics data types.131

Graphical history There exists a rich literature on graphical132

history visualization and interaction. A comprehensive survey can133

be found in [Heer et al. 2008]. Here we focus mainly on works134

that employ different kinds of temporal history model, as it is most135

relevant to revision control. Prior graphical history methods can136

be classified into two major categories: linear [Kurlander 1993;137

Berlage 1994; Myers et al. 1997; Kurihara et al. 2005; Nakamura138

and Igarashi 2008] and nonlinear [Edwards and Mynatt 1997; Ed-139

wards et al. 2000; Klemmer et al. 2002; Hartmann et al. 2008; Su140

2007; Su et al. 2009] models. The linear history model, while suf-141

ficient for many visualization and interactive tasks, usually do not142

provide enough information for image revision control where pre-143

dominant operations are nonlinear, including branching, editing,144

and replay.145

Such parallel information is representable via a nonlinear history146

model, but to our knowledge, none of the existing methods provide147

sufficient information that depicts the comprehensive relationship148

between image editing operations (not only temporal but also spa-149

tial and semantic dependency), making them either inefficient (in150

terms of speed or storage) or insufficient for revision control. For151

example, in [Edwards and Mynatt 1997; Hartmann et al. 2008] the152

timeline is represented as a tree with nodes as states and edges as153

actions. Such state-based model is not suitable for revision con-154

trol due to potentially large storage size [Heer et al. 2008] and the155

loss of dependency information between operations. Edwards et al.156

[2000] deployed a multi-level history model in which many local157

linear histories are embedded within a global linear history. This158

allows only a single global timeline and thus cannot handle paral-159

lel revisions. Klemmer et al. [2002] also employed a state-based160

method and thus shared similar problems. An interesting feature161

of [Klemmer et al. 2002] is the representation of non-linear history162

tree in a linear comic-strip fashion by shrinking the branches into a163

single node. However, this may be confusing as reported in the user164

study. Su et al. [2007; 2009] proposed an inspiring methodol-165

ogy for representing revision history as in-place graphic instead of166

abstract timelines. However, we could not identify a coherent data167

structure for practical revision control in their works.168

Graph structure for computational tasks Many computa-169

tional tasks utilize a certain graph structure for modeling, e.g. vi-170

sualization flows [Levoy 1994; Parker and Johnson 1995; Konstan-171

tinides and Rasure 1994; Bavoil et al. 2005; Schroeder et al. 1997].172

Our method is similar to these prior art in that we also use the DAG,173

a kind of graph structure, for workflow management. However, our174

system aims at automatic construction of DAG from user interac-175

tions whereas in these visualization systems the users are expected176

to directly construct the flow pipeline. In a sense, our goal for auto-177

matic construction is similar to the work on shading models [Cook178

1984; Abram and Whitted 1990] even though we focus on a differ-179

ent domain of revision control for image editing. Graph structures180

have also been applied to solid modeling [Convard and Bourdot181

2004], where the history graph allows the modification of editing182

parameters, such as the length of certain object components. How-183

ever, the proposed technique is more for replaying graphical history184

(previous paragraph) than full fledged revision control.185

Highly related to our work, Generic Graphical Library (GEGL),186

the future core of popular image editor GIMP, also used a DAG187

representation. Although GEGL shares similar graph representa-188

tion like ours, it is mainly designed as the future internal infras-189

tructure for non-destructive image editing of GIMP. Nodes in the190

DAG can be image editing operations or low-level data structure191

like image buffer, thus the generated DAG is typically not com-192

prehensible to the users. Comparing to our DAG representation,193

GEGL also does not consider the semantic relationship between op-194

erations. Since GEGL is still under development and not yet fully195

integrated into GIMP, we could neither fully evaluate its functions196

and performance nor directly compare it against our method. How-197

ever, we do plan to release source code and integrate our system198

with GEGL + GIMP upon the completion of this project.199

3 Overview200

Core representation We use DAG (directed acyclic graph) as201

the core representation of our action-based revision history. A DAG202

is composed of nodes and (directed) edges. Nodes in our DAG rep-203

resent edition operations with relevant information including types,204

parameters and applied regions. DAG edges represents the relation-205

ships between the operations. A directed path exists between two206

nodes implies a spatial and semantic dependency and the path di-207

rection implies their temporal order. The DAG faithfully records208

the users’ editing operations and grows as they commit more oper-209

ations during their image editing sessions. And the image is always210

equivalent to the result generated by traversing the whole DAG.211

When dealing with image data, many modern state-based revision212

control systems (e.g. GIT, SVN and CVS) store separate images as213

revisions. On the contrary, in our system, we store only one DAG214

2



Online Submission ID: papers 0048

rev_0_0 rev_0_1

rev_0_2

rev_1_0

{ rev_1_0 }

(a) text-based

{ rev_1_0 }

(b) image-based

Figure 2: Basic UI that shows revision tree in two different styles. The
top left corner shows the revision number of the node under mouse cursor.

Figure 3: Main context of GIMP and our revision control UI for both
the revision tree and the DAG. When a DAG node is single-clicked, its
operation name will appear on the upper left window corner, and its spatial
context will be highlighted via a rectangular box within the whole image.
While double-clicked would switch the style of that particular node between
text and image.

while each revision is a sub-graph of the DAG.215

For representation and visualization purposes, we also allow a po-216

tentially hierarchical representation of DAG, where an aggregate217

node can represent a sub-graph.218

External user interface Based on this core DAG representa-219

tion, we design an user interface for revision control system that220

minimize the interruption of user’s creative process while maxi-221

mize the usability for various use case. An unified user interface222

is proposed to support the principle operations including branch,223

merge and revision history traversal. We design our UI so that it224

not only supports revision control but also facilitates experimental225

exploration of the design space by artists [Terry et al. 2004]. In this226

part, we focus on the questions of what features our system should227

support, and why we make these design decisions, as detailed in228

Section 4.229

Internal system implementation Our core DAG representa-230

tion is sufficiently flexible. However, to strike the right balance231

between computation speed, storage consumption, and easy usage,232

we have to carefully design our system. This part involves several233

algorithmic components for our system architecture and implemen-234

tation, as detailed in Section 5. In this part, we focus on the question235

of how we implement the system.236

237

rev_0_0 rev_0_1 rev_0_2 rev_0_3

source

color_balance

hue_saturation color_balance

sharpen

gamma

copy

paste

translate

(a) multi-color

rev_0_0 rev_0_1 rev_0_2 rev_0_3

source

color_balance

hue_saturation color_balance

sharpen

gamma

copy

paste

translate

(b) fill-color

Figure 4: Two different color representations in our advanced DAG UI. In
multi-color mode, nodes belonging to different revisions are colored as the
corresponding revision tree nodes. In fill-color mode, only nodes belonging
to the selected revisions are filled with the corresponding color.

4 User Interface238

For practical usage and evaluation, we have integrated our revision239

control system with GIMP [The GIMP Team 2009], an open source240

image editor, in the form of GIMP plug-in. Users can activate com-241

mand logging function, save revisions and invoke our revision con-242

trol plug-in from GIMP menu. Our revision control plug-in is di-243

rectly routed to the main drawing window of GIMP and is capable244

of providing interactive user feedback; more details about GIMP245

integration can be found in Section 5.246

The user interface of the original GIMP (as well as other commer-247

cial image sketching / editing software like Painter and Photoshop)248

already consists of many visible buttons and could be daunting to249

the users. Thus the main design principle of our revision control250

system is to provide an intuitive user interface that respects the logic251

of the original workflow of GIMP while avoiding unnecessary com-252

plexity to the users.253

The default user interface of our revision control system is simply254

a revision tree as shown in Figure 2. Users can switch between255

text-based mode where each node shows the revision number and256

image-based mode where each node shows the thumbnail of that257

revision. In both modes, when the user moves the mouse cursor258

over a particular node, the corresponding revision name will appear259

on the top-left corner.260

For advanced users who would like to identify the fine-grained261

operations between revisions for the purpose of reviewing or de-262

sign space exploration, she can switch on the underlying detailed263

DAG representation (Figure 3). Through DAG, users can appreci-264

ate the detailed dependency between operations. Similarly, users265

can switch between text-based and image-based modes for more266

visual clues.267

4.1 Image, Revision Tree, and DAG268

Here, we describe the high level relationships between the image269

and the corresponding DAG and revision tree. In a sense, the DAG270

is a finer resolution representation of the revision tree. And the final271

image can be reproduced via the sequence of operations recorded272

in the DAG.273

The three way relationships between images, DAGs and revision274

trees are linked through both static thumbnail images embedded in275

the latter two, as well as dynamic user interactions: when select-276

ing certain image regions, our system highlights the corresponding277

3



Online Submission ID: papers 0048

(a) merge from revision tree (b) conflict solver

Figure 5: UI for merging. Users can easily merge two revisions from the
revision tree (a). When conflicts are detected, our system launches a conflict
solver UI, showing the conflicting image regions (b). User can select one of
four merge options from the drop-down menu in the list.

revision tree and DAG nodes; conversely, when the mouse cursor278

is moved over a revision-tree/DAG node, the corresponding region279

will be highlighted within the whole image (Figure 2, 3, 4).280

Note that in most use cases, we do not directly expose the DAG281

to the users, as they might get distracted from their original work282

flows due to the potential visual complexity of the DAG. Fortu-283

nately, principle revision control functions such as history naviga-284

tion, branching and merging can be achieved directly from the re-285

vision tree.286

For advanced tasks, like nonlinear play-backs or DAG annotation,287

where direct DAG interaction is necessary, we also carefully design288

the user interface following the convention of the original GIMP289

interface (e.g. selection highlight on image, using default GIMP290

widget interface, etc).291

In the following two sections, we describe more detailed function-292

ality for both the revision tree and DAG through concrete examples.293

4.2 Revision Tree Visualization and Interaction294

Navigation We provide two display modes for our revision tree295

user interface (Figure 2): the text mode, where the node label rep-296

resents the branch number (first number) and revision number (sec-297

ond number), and the image mode, where small thumbnails of the298

corresponding revision nodes are shown in a comic strip fashion.299

Similar user interface designs that embed the snapshots of the im-300

age states into the graphical history can be found in many previous301

works (e.g. [Hartmann et al. 2008; Kurlander 1993]). Primary re-302

vision control operations such as rollback, branch, or merge can be303

performed directly on the revision tree via the right click pop-up304

menu (more details in Section 4.2).305

Branching and merging Branching and merging are two im-306

portant operations for nonlinear revision control in the context of307

software development. It is even more so when it comes to the308

open-ended creative content production, where it is common for309

artists to perform trial-and-error experiments to obtain the best out-310

come of design. As discussed in [Terry and Mynatt 2002; Hart-311

mann et al. 2008], the history of trial-and-error process itself and312

the ability to keep multiple versions (branching) of the design pro-313

vide valuable information for designers to achieve their goals. Con-314

sidering its potential high frequency of use, we try to simplify our315

user interface for branching and merging as much as possible.316

For branching, the user first navigates to the relevant revision, right317

clicks on the revision node, and selects the “create branch” option318

from pop-up menu. Then she can continue her editing from there.319

Merging can be performed between either (1) two branch (already320

checked-in) revisions or (2) one local (not-yet-checked-in) and one321

trunk (already checked-in) revisions. For scenario (1), the user sim-322

ply selects the two relevant revisions to be merged, and our revision323

control systems will first try to merge them automatically accord-324

(a) modification in trunk

rev_0_0 rev_0_1

(b) parallel branch editing

rev_0_0

rev_0_1

rev_1_0 rev_1_1

(c) merge result 1 (trunk first)

rev_0_0

rev_0_1

rev_1_0 rev_1_1

rev_0_2

(d) merge result 2 (branch first)

rev_0_0

rev_0_1

rev_1_0 rev_1_1

rev_0_2

(e) source

rev_0_0 Figure 6: A conflict merge exam-
ple. (a) and (b) show two parallel
editing. A conflict happens at the
dish region. (a) to (d) show four pos-
sible merge results. (Note that we
embed the revision tree inside each
image for illustration purpose.)

ing to their underlying DAGs (details in Section 5.2). When the325

two revisions cannot be automatically merged (due to conflicts that326

require user inputs to revolve), our system invokes a conflict resolu-327

tion dialog asking for manual intervention (Figure 5b). For scenario328

(2), a similar process happens without requiring the user to select329

the two revisions to be merged as that information can be auto-330

matically detected by the latest trunk version and the current local331

version. Since our UI and algorithms can support both scenarios in332

a very similar fashion, for clarity of presentation we will focus on333

scenario (1) in subsequent descriptions.334

Conflict solver Similar to merge options provided in modern335

revision control systems, we provide four possible merge options:336

trunk, branch, trunk first, branch first. For trunk option, the337

conflict content from the branch is completely discarded. For338

branch option, the conflicted content in the trunk is discarded. For339

trunk first option, contents from branch are appended after trunk340

ones. Finally, for branch first option, it is the other way around.341

Here we illustrate different outcomes of these four options using342

the example in Figure 6. Figure 6e is the original source image.343

Figure 6a represents the main trunk revision and Figure 6b the revi-344

sion in branch. When we tried to merge the branch back into trunk,345

the conflict happens at the dish region. If trunk option is taken, the346

conflict in the branch is discarded, and the merge result is identical347

to Figure 6a. Similarly, for branch option, the merge result is Fig-348

ure 6b. For trunk first option, the color modification in trunk took349

place prior to the clone operation in branch, thus the modified color350

is propagated (Figure 6c). For branch first option, clone opera-351

tion has the priority and thus only one dish is affected by the color352

modification (Figure 6d).353

4.3 DAG Visualization and Interaction354

As mentioned in Section 3, DAG is the core internal representation355

of our revision control system. In most cases, the DAG is hidden356

from users to reduce the visual clutter and the complexity of user357

interface. Nevertheless, there are still some situations where expos-358

4



Online Submission ID: papers 0048

(a) before

source

sharpen

hue_saturation

color_balance

sharpen

hue_saturation

color_balance

clone clone clone hue_saturation

(b) text-based DAG (c) image-based DAG (d) after

(e) selection from image (f) non-linear replay

source

hue_saturation LeftEye RightEye

(g) DAG aggregation and annotation (h) image-based DAG for (g)

Figure 7: Advanced DAG user interface. (b) shows the detailed DAG describing the digital retouching process. To find out the operation of interest, one can
either switch to image-based mode (c) or directly select on the image (e). After that, one can perform various interaction such as non-linear exploration (f) or
annotation (g).

ing DAG to the user might become useful. For example, one might359

be interested in reviewing the fine-grained operations of her own or360

others work flow to better appreciate the logic and process of the361

creativity production. Through DAG, users can clearly grasp the362

spatial, temporal and semantic dependencies between operations363

including parallel/independent operation sequences.364

In the following paragraphs, we first explain the visualization and365

interaction of DAG. We then further elaborate other use cases where366

DAG would be useful including non-linear design space explo-367

ration, merge and process annotation.368

Example Here we illustrate our system via a portrait retouching369

example (Figure 7). The retouching process includes eyes sharpen-370

ing, teeth whitening and eye-bag/mole removal. These are all useful371

and popular retouching techniques commonly seem in photography372

retouching process. We follow the process in [Kelby 2005], which373

is written for Photoshop user, but the idea is basically the same.374

DAG representation The DAG nodes are colored according to375

their corresponding revision tree nodes so that the user can easily376

figure out their correspondences (Figure 4a). For sufficiently com-377

plex revision history that may contain many colored nodes, we also378

provide another mode that highlights the relevant DAG nodes be-379

longs to the selected revision (Figure 4b). Similar to the revision380

tree nodes, users can browse the DAG in text-based (Figure 7b) or381

image-based (Figure 7c) style. In both representations, when the382

mouse cursor is over the node or thumbnail, the corresponding op-383

eration name will appear on the top-left window corner.384

Non-linear exploration Based on the selection scheme de-385

scribed above, users can easily achieve two important interactions386

in creative content production: non-linear design space exploration387

and history annotation.388

The open-ended design is typically a continuous trial-and-error pro-389

cess [Terry and Mynatt 2002; Hartmann et al. 2008]. Designers390

tend to try out all kinds of design possibilities, perform many side-391

by-side comparisons and try to figure out the best outcome through392

this experimental process.393

As discussed in Section 4.2, artists can already preserve and com-394

pare parallel working copies via revision tree user interface. Via395

DAG, artists can further access more detailed operation informa-396

tion for the design space exploration. For example, as shown in397

Figure 7f, to clarify the outcome of the image editing operations re-398

lated to character’s eyes, the user can selectively turn off the opera-399

tions related to left eye and perform a side-by-side comparison with400

right eye. The whole process is fairly simple; the user first circles401

the left eye on the image, our system then automatically highlights402

the related nodes. The user can then disable the nodes or adjust403

their parameters.404

DAG aggregation and annotation To further enhance read-405

ability, one can aggregate multiple nodes and add text annotation406

to provide better semantic description. This is similar to the idea407

of hierarchical command objects and command chunking proposed408

in [Kurlander and Feiner 1991; Myers and Kosbie 1996]. The user409

could select a collection of nodes and our system will fold the nodes410

into a single aggregate node. An example is shown in (Figure 7g),411

where we aggregate and annotate operations applied to the left and412

right eyes into separate aggregation nodes.413

Beside such manual selection, we also provide a semi-automatic414

mechanisms for DAG aggregation. The semi-automatic aggrega-415

tion is an interactive process where the system first automatic ag-416

gregates the operations using principles detailed below, followed by417

further user manual aggregation and annotation as described above.418

The principles for auto-aggregation are:419

Layer basis, for which operations applied on same layer are ag-420

gregated into a single node. In such cases, the DAG becomes421

similar to a layer list commonly seem in popular image ma-422

nipulation software such as GIMP or Photoshop.423

Spatial proximity, for which nodes applied on nearby regions are424

automatically aggregated.425

Operation similarity, for which operations with similar proper-426

ties or parameters, e.g. similarly colored brushes, are auto-427

5



Online Submission ID: papers 0048

(a) sketch

source

background

reflection

table

cherry

stick shadow

highlight

(b) semi-
auto-text

source

(c) semi-
auto-image

source

aggnode

aggnode

aggnode aggnode aggnode

aggnode

aggnode

aggnode

aggnode

aggnode

aggnode

brush

aggnode

aggnode

aggnode

aggnode

aggnode

aggnode

aggnode

aggnode

aggnode

aggnode

aggnode

(d) auto

Figure 8: A semi-automatic ag-
gregation example. The cherry
(a), painted with 673 strokes, will
produce an un-aggregated DAG
with at least 673 nodes (not
shown due to excessive complex-
ity). Our fully-automatic aggrega-
tion mechanism produces a DAG
with 24 nodes (d). Our semi-
automatic aggregation produces
a DAG with only 8 nodes plus
proper user annotation, as shown
in (b) and (c).

matically aggregated.428

Such semi-automatic aggregation and annotation are useful for a429

variety of scenarios, e.g. digital sketching which could easily con-430

tain hundreds or thousands of strokes. Without any aggregation,431

a DAG of such complexity could be difficult to comprehend. On432

the other hand, fully manual aggregation might be too tedious for433

the users, while fully automatic aggregation might not work well as434

there might not be well defined rules for aggregating strokes. Our435

semi-automatic mechanism helps users guide our system to aggre-436

gate DAG nodes as well as add meaningful annotation, which could437

be useful for later replay, review, or exploration.438

An example is shown in Figure 8, where the fully automatically439

aggregated DAG based on the principles listed above is shown in440

Figure 8d, which aggregate 673 nodes into 22. Although the auto-441

matic aggregated DAG shows dependency between strokes, without442

proper annotation, it did not provide too much meaningful informa-443

tion to the users. Our semi-automatic mechanism allows the user to444

intervene with the automatic aggregation process. Such interven-445

tion could take place on the fly, or later during the replay stage if446

the user prefers to focus on the drawing first. Figure 8b shows the447

DAG with user annotation. See Section 6 and the accompany video448

for more examples.449

5 System Implementation450

Besides external user interface, there are two main internal compo-451

nents in our system:operation recorder/replayer and DAG repos-452

itory. During image manipulation process, operation recorder453

quietly records all operations committed by the user. The opera-454

tion logs are parsed, transformed into DAG and stored in the DAG455

repository. Operation replayer can then replay the operations ac-456

cording to the DAG topology for various tasks such as command457

cache and non-linear play-back.458

Algorithm 1 Node Insertion
// G : DAG, initialized with a single source node
// V(G) : nodes in DAG
// E(G) : edges in DAG
// c : operation node to be inserted into DAG
// s : the source image (root) of the DAG
search for nodes v ∈ V(G) overlapped with c
if ‖v‖ = 0 then

E = E ∪ {(s, c)} //link to root node
else

while ‖v‖ 6= 0 do
v ← v(0)
calculate shortest path P from v to the last entry of the path
In reverse order of P, find first node p overlapped with c
E = E ∪ {(p, c)}
v = v −P

end while
end if
V = V ∪ {c}

Algorithm 2 Parallel Path Building
// V : nodes in DAG
// C : clusters containing paths to be parallelized
// class means operation class of the node
// search for path that can be parallelized
S← V
while ‖S‖ 6= 0 do

P← S(0)
while ∃p ∈ adj(P), whose class 6= class of all nodes in P do

P = P ∪ p
end while
C = C ∪P
S = S−P

end while
//parallelize the path
for all paths P in C do

find common ancestor p0 and children p1 of the path
remove all connected edges in P
create edges from p0 to p ∈ P
create edges from p ∈ P to p1

end for

Algorithm 3 Merge
// ri : revision number
// Gi : DAG of revision i
// Ti(v) : sub-tree with root v in DAG Gi

// V (G) : nodes in DAG
// C : conflict list
// assume users are merging branch revision rj into trunk revision ri

search for r0, common ancestor of ri, rj , and its DAG, G0

Gd = Gj −G0

//handle different structure in graph
for all vj ∈ V (Gd) (in BFS order) do

check for dependency between vj and vi, where vi ∈ V (Gi) −
V (G0)
if dependency exists, push sub-tree (Ti(vi), Tj(vj)) into C
else, insert vj into Gi using Algorithm 1

end for
invoke the conflict solver interface and obtain the merge options for the
users
for all sub-tree pair in C do

push the sub-tree pair in the order specified by the user using Algo-
rithm 1

end for

6



Online Submission ID: papers 0048

5.1 Operation Recorder/Replayer459

Our prototype revision control system is built upon GIMP. At its460

current version 2.7, GIMP has not yet provided any API for com-461

mand logging, as in its current architecture all commands are tightly462

bound with and invoked directly from user interface. As a result, to463

obtain fine-grained command log, we manually hard wired com-464

mands to our operation recorder and record useful information of465

the command including its name, parameter and working region.466

Hopefully, operation recording and replaying would be much eas-467

ier after GIMP developers implement the long desired feature of468

macro recording. In our prototype system, important GIMP opera-469

tions listed in Table 1 are supported.470

On the other hand, operation replay can be easily achieved, thanks471

to the procedure database (PDB) architecture in GIMP. Most useful472

high-level image editing functions are registered to the PDB and473

can be invoked by the plug-in. However, with the rapid evolution474

of GIMP, not all new functions have been added into PDB properly.475

For example, functions related to brushes are out-dated in PDB and476

one will have to register such functions manually if she would like477

to achieve operation replay.478

5.2 DAG Repository479

Three main components, log cleaner, graph builder and graph480

merger are responsible for maintaining the DAG repository.481

Log cleaner The log cleaner removes redundant and unneces-482

sary commands and group identical operations together, similar to483

the one proposed in [Grabler et al. 2009]. Redundant command logs484

often occur while the user is exploring the design space in a trial485

and error manner such as positioning an object in different places486

or filling a region with different colors. The log cleaning algorithm487

is quite simple; we linearly scan whole command log, locate chunk488

of identical commands and keep only the latest one. Note that we489

deploy a relatively conservative policy here to preserve the whole490

image editing process as much as possible.491

Graph builder The graph builder is responsible of building the492

DAG from the parsed log. The topology of the DAG conveys493

the spatial, temporal and semantic dependency between operations.494

Spatially independent operations, such as those applied on different495

layers or regions, are located in independent paths. Operations ap-496

plied on the same object/region but are semantic independent, such497

as translation and deformation, are put into parallel paths with the498

same ancestor and children nodes. The directional edges show the499

temporal order of the commands. Here we first introduce a node500

insertion routine considering spatial and temporal relationship fol-501

lowed by an algorithm to separate the semantic independent opera-502

tions into parallel paths.503

First, the DAG is initialized with a single source node, which could504

be a blank canvas or an existing image to be modified. Then for505

each operation node c to be inserted into the DAG, we search each506

independent path of DAG for the possible parent node p that is spa-507

tially overlapped with c and is the latest entries for that path. If p508

exists in the path, an edge p → c is inserted. Note that there is509

always a root node, which could be the source image or the latest510

revision of the image, whose region of interest covers whole image511

and thus there is at least one such node p in the DAG. Pseudo code512

for the node insertion routine is provided in Algorithm 1.513

Figure 1d is an example DAG built from Algorithm 1. As shown,514

operations applied to different regions are clustered into two inde-515

pendent sub-graphs. At this point, only spatial and temporal, but516

not semantic, dependencies between nodes are considered.517

To consider semantic dependency, we categorize operations into518

rigid transformation translation, rotation
deformation scale, shear, perspective
color and filter hue, saturation, color balance, birhgtness,

contrast, gamma, color fill, blur, sharpen
edit copy, paste, anchor, add/remove/duplicate

layer, layer mask
brush brush, pencil, eraser

Table 1: Supported operation classes.

five different classes as shown in Table 1 for which the first three519

rows are semantically independent (see also [Su 2007]). Semanti-520

cally independent operations applied on same object or region are521

represented as parallel paths in a DAG with the same ancestor and522

children nodes to convey more precise dependencies as well as to523

provide more flexibility in non-linear exploration and navigation.524

Figure 1f is the resulting DAG considering both spatial-temporal525

relationship and semantic dependency. The problem here can be526

viewed as trying to find out as many clusters containing nodes with527

semantic independent classes as possible. Here we use a straight528

forward greedy algorithm that starts from the DAG root and greed-529

ily looks for its neighbors for the operations that are applied on the530

same area and belong to independent operation class. The pseudo531

code is listed in Algorithm 2. Note that this is just a fast heuristic532

algorithm and might not be the best solution (find out largest num-533

ber of clusters). But the result is guaranteed to be correct (parallel534

paths contain only operation nodes within independent classes). To535

avoid distracting topology changes and save computation time, Al-536

gorithm 2 is applied at the end of user session or as user demands.537

DAG merger The DAG merger is responsible for maintaining538

the consistency between DAGs belong to different branches and re-539

visions. The possible usage scenarios have been discussed in Sec-540

tion 4.2, and here we describe the merge algorithm.541

With the underlying DAG, the merge algorithm is quite straight for-542

ward. We first calculate the difference graph between two DAGs.543

Then we tried to insert the nodes in the difference graph into the544

trunk (assume we are merging branch into trunk) with Algorithm 1.545

If conflicts are detected, the nodes and their sub-trees are pushed546

into the conflict list and wait for user’s decision on the insertion547

order. The detailed pseudo code is provided in Algorithm 3.548

Note that for two graphs without one-to-one correspondence, find-549

ing graph difference is equivalent to subgraph isomorphism and550

is proven to be NP-complete [Cook 1971]. While in our case,551

nodes share consistent labels (operation ID provided by the oper-552

ation recorder), the algorithm thus becomes straightforward.553

Node cache Each DAG node stores relevant information for the554

corresponding operation, including its parameters and region mask.555

To facilitate non-linear exploration, we allow the storage of multi-556

ple sets of parameters (e.g. different brush colors) with respect to557

each DAG node. Our system also allows partial or complete stor-558

age of image data at user selected revision-tree or DAG nodes to559

accelerate history navigation.560

6 Results and Evaluations561

In this section, we demonstrate more examples and evaluations of562

our system, for both editing an existing image or digital paint-563

ing/sketching from scratch. In addition to the basic revision con-564

trol, we also demonstrate potential usage of our system for nonlin-565

ear replay and exploration. Finally, we compare the speed/storage566

performance of our system against other existing mechanisms, and567

perform a user study with the collaborating artist and users.568

7



Online Submission ID: papers 0048

(a) source

source

copy

paste

translate

color_balance copy

paste

translate

(b) trunk DAG (c) trunk revision

source

hue_saturation hue_saturation copy

paste

translate

(d) branch DAG (e) branch revision

(f) merged result

source

copy

paste

translate

color_balance copy

paste

translate

hue_saturation hue_saturation

(g) merged DAG

Figure 9: A merge example. (c) and (e) are
two parallel revisions. In (c), colors and ar-
rangements of cans on second and third rows
are modified. In (e), the label colors and cans
arrangement on first and second row are mod-
ified. (f) shows the merged result with trunk
option. Note the independent paths between
DAGs are merged automatically.

(a) input

source

gamma

copy add_layer

paste

translate perspctive adjust_opacity

(b) create reflection (c) intermediate

source

gamma

copy

add_layer

paste

translate perspctive adjust_opacity

add_mask

brush

sharpen

(d) layer mask & sharpen (e) final

Figure 10: An example of creative art with layer composition and masking. The achieved effects include the creation of cat shadow on the window (c) with
desired occlusion order (e). Note that paste node is connected to both copy node and add layer node because it is copied from original source and pasted into
the newly created layer.

Image editing Here we show a parallel editing example and its569

merge result (Figure 9). Starting from source image (Figure 9a), we570

have two parallel editing revisions. In Figure 9c, the user perform571

two clone operations (coke on third row and tea cans on second572

row) and one color adjustment operation (central milk can on third573

row). The corresponding DAG is shown in Figure 9b. In branch574

Figure 9e, the user modify the label color from red to blue on first575

and second rows, perform a clone operation on the tea can on sec-576

ond row. In this example, we choose the trunk option for merge577

and obtain the final merge result (Figure 9f). With our merge algo-578

rithm, the independent operations are automatically merged. Note579

that we show DAG here for illustration purpose, users can perform580

the merge operation without the knowledge of underlying DAG.581

Figure 10 is an image composition example. We created a fake582

reflection of cat on the window to enhance the richness of the pho-583

tograph. First, gamma adjustment is applied, then we copy the cat584

into another layer with proper transformation and opacity adjust-585

ment (Figure 10c). Finally, we use a layer mask to mark the correct586

occlusion relationship between reflection and window then apply a587

sharpen mask on the cat (Figure 10e).588

Digital sketching Figure 11 & 12 are digital sketching exam-589

ples recorded from professional artists using our system. In Fig-590

ure 11, the artist first sketched the figure (Figure 11a). He then pre-591

pared a color palette (those colorful dots beside the images) to paint592

the figure in the order of face, eyes, arms, hair, legs, and cloth. The593

final result is Figure 11b with the corresponding annotated DAG in594

Figure 11c and Figure 11d. Figure 12 is another example of the595

digital sketching and non-linear play-back.596

Nonlinear replay and exploration An additional bonus fea-597

ture of our system beyond the basic revision control is non-linear598

replay and exploration. With our system, it is possible to review599

or change the parameters of the operations and replay them non-600

linearly to explore the design space as shown in Figure 11f and601

Figure 12f. Explored paths are visualized as nodes with red color602

in the DAGs. Unlike normal image processing techniques that di-603

rectly modify the final image, with recorded user operations, our604

system allows a richer space for experimentation and exploration605

and received some positive comments from our initial user study.606

Performance The storage consumption of our system is partic-607

ularly small compared to other image editing and revision control608

systems, such as GIMP (native .xcf file), GIT and SVN (Subver-609

sion), as shown in Table 2. For all figures, we divide the whole610

editing process into four revisions, and commit them to the revision611

control server. The storage overhead of our system mainly comes612

from the cached thumbnail image. The overhead of internal data613

8



Online Submission ID: papers 0048

(a) sketch (b) final image

source

add_layer

layer_mode

palette

face

add_layer

layer_mode

eyes

arms hair

hair_shade

hairband earphone

cloth_shadestrip legs

badge

(c) text-based DAG

source

add_layer

layer_mode

add_layer

layer_mode

(d) iamge-based DAG

source

add_layer

layer_mode

palette

face

add_layer

layer_mode

eyes

arms hair

hair_shade

hairband earphone

cloth_shadestrip legs

badge

(e) explored nodes (f) nonlinear replay

Figure 11: A digital sketching example. With semi-automatic aggrega-
tion method and artist’s annotation, the final DAGs in (c) and (d) provide
clear and meaningful information about the structure of the image and the
sequence of operations. The result in (f) is produced by non-linear explo-
ration on nodes visualized with red border color in (e).

structures for GIT and SVN are not precisely calculated here, but614

our advantage on storage size is clear.615

Regarding computation speed, our system is very efficient and runs616

at interactive speed, and users of our system have not found any617

slow down compared to the original GIMP or other revision control618

systems.619

input # op GIMP SVN GIT our
Figure 1 502 11 2.7K 2.1K 2.0K 640
Figure 6 246 4 818 588 632 360
Figure 7 276 10 972 1.2k 1.2k 420
Figure 8 1.6 672 267 224 180 73
Figure 9 238 12 900 1K 1K 415

Figure 10 945 11 3.5K 3.7K 3.6K 1.3k
Figure 11 377 649 2.3K 2.4K 2.5K 652
Figure 12 425 1391 2.5K 2.7 2.7K 775

Table 2: Storage size compaison. All sizes are expressed in K-bytes.

User study We perform some initial user study with one profes-620

sional illustrator and two CS graduate students, who possessed less621

experience on photo retouching but are both familiar with software622

revision control system (SVN and CVS).623

Unlike the CS major students, we found that the participating artist624

had a difficult time with the concept of nonlinear revision history.625

(a) sketch (b) final image

source

add_layer

layer_mode

palette

face

add_layer

layer_mode

eyes

add_layer

layer_mode

hair_shade

hair scarf

hairband cloth

(c) text-based DAG

source

add_layer

layer_mode

add_layer

layer_mode

add_layer

layer_mode

(d) image-based DAG

source

add_layer

layer_mode

palette

face

add_layer

layer_mode

eyes

add_layer

layer_mode

hair_shade

hair scarf

hairband cloth

(e) nonlinearly explored nodes (f) nonlinear replay

Figure 12: A more complex digital sketching example. The artist first per-
forms a digital sketch (a), and paints colors through a sequence of operations
(c) with the final result in (b). After that, the artist could nonlinearly explore
the design space. As marked in (e), the user lightens the hair shading a little
bit, and changes the color of hair band, scarf and cloth. The nonlinearly
explored result is shown in (f).

For he rarely performs parallel editing with others on one painting626

and is used to save the versions as files with different names.627

In our early design, we directly expose the recorded command logs628

and the generated text-based DAG to the users. However, the partic-629

ipants commented that it is difficult for them to establish the con-630

nection between the DAG and the image intuitively. And it leads631

to our current design of image-based DAG representation and the632

design principle to minimize the user’s direct interaction with the633

fine-grained DAG, e.g by showing only the high-level reversion tree634

for primary revision control tasks and DAG node selection from the635

image.636

Our collaborating artist is especially interested in the stroke-by-637

stroke replay and non-linear playback functions. For the former, he638

commented that it is generally difficult to deduce the correct color639

overlay from the final flattened image, and with our system, one640

can truly appreciate other artists’ technique and more importantly641

one’s own drawing logic. For the later, he commented that it can642

save him lots of time to explore the possible color style candidates643

in his mind. Typically, he would paint some rough color blocks for644

9



Online Submission ID: papers 0048

experimentation and look for possible color combinations while in645

the end find out that the details are not satisfying. With in our sys-646

tem, he could more boldly paint without fear since he knows that647

he can easily switch to different color scheme and look for the best648

outcome afterward.649

7 Limitations and Future Work650

The main limitation of our current implementation is that it is in-651

tegrated into a single tool (GIMP) instead of a general mechanism652

that can work with an arbitrary collection of image editing software.653

It is possible to extend our system for supporting multiple tool sets654

by incorporating the tool/software id/version into each operation655

node. Beyond this, however, we might still need to manually in-656

tegrate our system with each tool, a potentially tedious process. A657

potential future work is to design a universal revision control inter-658

face (or hookup) to facilitate the automatic integration of our system659

with different tools.660

Due to resource constraints we have recruited only one professional661

artist and two CS grad students for our user study. We plan to put662

our source code in the public domain after the publication of our663

paper. Doing so would allow us to gather more feedbacks from the664

community to further refine our UI and system designs.665

Within the scope of this paper we have focused mainly on images,666

but we believe similar principles might be applicable to other binary667

graphics assets, such as videos, meshes, or animation data. Extend-668

ing revision control to these data types could be another potential669

future work direction.670

References671

ABRAM, G. D., AND WHITTED, T. 1990. Building block shaders. In672

SIGGRAPH ’90 Papers, 283–288.673

AVID TECHOLOGY, 2009. Alienbrain. http://www.alienbrain.674

com/.675

BAVOIL, L., CALLAHAN, S. P., SCHEIDEGGER, C. E., VO, H. T.,676

CROSSNO, P. J., SILVA, C. T., AND FREIRE, J. 2005. Vistrails:677

Enabling interactive multiple-view visualizations. Visualization Confer-678

ence, IEEE 0, 18.679

BERLAGE, T. 1994. A selective undo mechanism for graphical user inter-680

faces based on command objects. ACM Trans. Comput.-Hum. Interact.681

1, 3, 269–294.682

CONVARD, T., AND BOURDOT, P. 2004. History based reactive objects for683

immersive cad. In SM ’04: Symposium on Solid modeling and applica-684

tions, 291–296.685

COOK, S. A. 1971. The complexity of theorem-proving procedures. In686

STOC ’71: Symposium on Theory of computing, 151–158.687

COOK, R. L. 1984. Shade trees. In SIGGRAPH ’84 Papers, 223–231.688

EDWARDS, W. K., AND MYNATT, E. D. 1997. Timewarp: techniques for689

autonomous collaboration. In CHI ’97, 218–225.690

EDWARDS, W. K., IGARASHI, T., LAMARCA, A., AND MYNATT, E. D.691

2000. A temporal model for multi-level undo and redo. In UIST ’00,692

31–40.693

ESTUBLIER, J., LEBLANG, D., HOEK, A. V. D., CONRADI, R., CLEMM,694

G., TICHY, W., AND WIBORG-WEBER, D. 2005. Impact of software695

engineering research on the practice of software configuration manage-696

ment. ACM Trans. Softw. Eng. Methodol. 14, 4, 383–430.697

GRABLER, F., AGRAWALA, M., LI, W., DONTCHEVA, M., AND698

IGARASHI, T. 2009. Generating photo manipulation tutorials by demon-699

stration. ACM Trans. Graph. 28, 3, 1–9.700

HARTMANN, B., YU, L., ALLISON, A., YANG, Y., AND KLEMMER,701

S. R. 2008. Design as exploration: creating interface alternatives702

through parallel authoring and runtime tuning. In UIST ’08, 91–100.703

HEER, J., MACKINLAY, J., STOLTE, C., AND AGRAWALA, M. 2008.704

Graphical histories for visualization: Supporting analysis, communica-705

tion, and evaluation. IEEE Transactions on Visualization and Computer706

Graphics 14, 6, 1189–1196.707

HUNT, J. W., AND SZYMANSKI, T. G. 1977. A fast algorithm for comput-708

ing longest common subsequences. Commun. ACM 20, 5, 350–353.709

HUNT, J. J., VO, K.-P., AND TICHY, W. F. 1998. Delta algorithms: an710

empirical analysis. ACM Trans. Softw. Eng. Methodol. 7, 2, 192–214.711

JACKSON, D., AND LADD, D. A. 1994. Semantic diff: A tool for sum-712

marizing the effects of modifications. In ICSM ’94: Proceedings of the713

International Conference on Software Maintenance, 243–252.714

JACOBSEN, J., SCHLENKER, T., AND EDWARDS, L. 2005. Implementing715

a Digital Asset Management System: For Animation, Computer Games,716

and Web Development. Focal Press.717

KELBY, S. 2005. The Photoshop CS2 Book for Digital Photographers.718

New Riders Press.719

KLEMMER, S. R., THOMSEN, M., PHELPS-GOODMAN, E., LEE, R.,720

AND LANDAY, J. A. 2002. Where do web sites come from?: captur-721

ing and interacting with design history. In CHI ’02, 1–8.722

KONSTANTINIDES, K., AND RASURE, J. 1994. The Khoros software723

development environment for image and signal processing. IEEE Trans-724

actions on Image Processing 3, 3, 243–252.725

KURIHARA, K., VRONAY, D., AND IGARASHI, T. 2005. Flexible timeline726

user interface using constraints. In CHI ’05: CHI ’05 extended abstracts727

on Human factors in computing systems, 1581–1584.728

KURLANDER, D., AND FEINER, S. 1991. Editable graphical histories: the729

video. In CHI ’91, 451–452.730

KURLANDER, D. 1993. Chimera: example-based graphical editing. In731

Watch what I do: programming by demonstration, 271–290.732

LEVOY, M. 1994. Spreadsheets for images. In SIGGRAPH ’94 Papers,733

139–146.734

MENG, C., YASUE, M., IMAMIYA, A., AND MAO, X. 1998. Visualizing735

histories for selective undo and redo. In APCHI ’98: Proceedings of the736

Third Asian Pacific Computer and Human Interaction, 459.737

MYERS, B. A., AND KOSBIE, D. S. 1996. Reusable hierarchical command738

objects. In CHI ’96, 260–267.739

MYERS, B. A., MCDANIEL, R. G., MILLER, R. C., FERRENCY, A. S.,740

FAULRING, A., KYLE, B. D., MICKISH, A., KLIMOVITSKI, A., AND741

DOANE, P. 1997. The amulet environment: New models for effective742

user interface software development. IEEE Transactions on Software743

Engineering 23, 347–365.744

NAKAMURA, T., AND IGARASHI, T. 2008. An application-independent745

system for visualizing user operation history. In UIST ’08, 23–32.746

PARKER, S. G., AND JOHNSON, C. R. 1995. Scirun: a scientific program-747

ming environment for computational steering. In Supercomputing ’95,748

52.749

SCHROEDER, W., MARTIN, K., AND LORENSEN, B. 1997. The Visual-750

ization Toolkit, Third Edition. Kitware Inc.751

SEITZ, S. M., AND BAKER, S. 2009. Filter flow. In ICCV ’09.752

SU, S. L., PARIS, S., ALIAGA, F., SCULL, C., JOHNSON, S., AND DU-753

RAND, F. 2009. Interactive visual histories for vector graphics. Tech.754

Rep. MIT-CSAIL-TR-2009-031, Massachusetts Institute of Technology,755

Computer Science and Artificial Intelligence Laboratory, June.756

SU, S. L. 2007. Visualizing, editing, and inferring structure in 2d graphics.757

In Adjunct Proceedings of the 20th ACM Symposium on User Interface758

Software and Technology, 29–32.759

TERRY, M., AND MYNATT, E. D. 2002. Recognizing creative needs in760

user interface design. In C&C ’02: Proceedings of the 4th conference on761

Creativity & cognition, 38–44.762

TERRY, M., MYNATT, E. D., NAKAKOJI, K., AND YAMAMOTO, Y. 2004.763

Variation in element and action: supporting simultaneous development764

of alternative solutions. In CHI ’04, 711–718.765

THE GIMP TEAM, 2009. Gimp: Gnu image manipulation program.766

http://www.gimp.org/.767

10


