
A Strategy-Centric Approach to the
Design of End-User Debugging Tools

Valentina Grigoreanu, Margaret Burnett

Oregon State University

valeng@microsoft.com, burnett@eecs.orst.edu

George Robertson

Microsoft Research

ggr@microsoft.com

ABSTRACT

End-user programmers‟ code is notoriously buggy. This

problem is amplified by the increasing complexity of end

users‟ programs. To help end users catch errors early and

reliably, we employ a novel approach for the design of end-

user debugging tools: a focus on supporting end users‟

effective debugging strategies. This paper has two core

contributions. We first demonstrate the potential of a

strategy-centric approach to tool design by presenting

StratCel, a strategy-based tool for Excel. Second, we show

the benefits of this design approach: participants using

StratCel found twice as many bugs as participants using

standard Excel, they fixed four times as many bugs, and all

this in only a small fraction of the time. Furthermore, this

strategy-based approach helped the participants who needed

it the most: boosting novices‟ debugging performance near

experienced participants‟ improved levels. Finally, we

reveal several opportunities for future research about

strategy-based debugging tools.

Author Keywords

Debugging strategies, debugging tools, end-user software

engineering, tool design.

ACM Classification Keywords

D.2.5. Software Engineering – Testing and Debugging;

H.5.m. Information Interfaces and Presentations:

Miscellaneous.

INTRODUCTION AND RELATED WORK

End-user programmers are people who program, not as an

end in itself, but as a means to more quickly accomplish

their tasks or hobbies [20]. For example, an accountant

creating a budget spreadsheet would fit this description.

Many studies have found end-user programmers‟ code to be

rife with errors (e.g., [21]) and the negative consequences

of these errors have been reflected in numerous news

stories, many of which are recounted at the EuSpRIG site

[9]. One recent example that received media attention came

following Lehman Brothers‟ collapse. Barclays Capital

agreed to purchase some of Lehman‟s assets but, due to a

spreadsheet error resulting from hidden cells, the company

purchased assets for millions of dollars more than they had

intended [14]. A few weeks later, Barclays filed a motion in

court asking for relief due to the mistake.

The impact of end-user programming errors like the

Lehman-Barclays example is amplified by the quickly

increasing complexity of end-user programs and by the

large number of end-user programmers. The complexity of

corporations‟ spreadsheets doubles in both size and formula

content every three years [32]. In addition, there are tens of

millions more end-user programmers than there are

professional programmers [26].

In response to this problem, end-user software engineering

research has begun to emerge in the spreadsheet realm and

in many other areas. Debatably, the first step in this

direction was taken by Backus‟ team when it designed

Fortran in 1954 [2]. Other examples include teaching kids

to create programs (e.g., [7, 17]), programming for and over

the web (e.g., [16, 25]), uncovering learning barriers [18],

and even programming household appliances [24].

Of particular relevance to this paper are research

spreadsheet debugging tools. The hidden structure of

spreadsheets is an end-user debugging pain point [19] and

tools such as Davis‟ overlaid arrows [8], Shiozawa et al.‟s

dependencies in 3D [28], and Igarashi et al.‟s animated

dataflow visualizations [15] have sought to address it. Tools

which visualize broken areas (e.g., [27]) also aim to make

the spreadsheet structure more transparent. Some

debugging tools improve the automatic detection of errors

(e.g., Abraham and Erwig‟s UCheck system [1]). Others

empower the user to systematically test their spreadsheets

using the What You See Is What You Test (WYSIWYT)

testing methodology [6].

However, we believe that a critical stone has been left

unturned in the design of spreadsheet debugging tools: how

tools can be designed to directly support end-user

programmers‟ existing debugging strategies (users‟ plans of

action for accomplishing a task). Building upon a recent

comprehensive overview of Excel users‟ debugging

strategies [13], this approach led to the following main

contributions:

First Page Copyright Notice goes here.

 A novel empirically-based end-user debugging tool,

StratCel, created to support end-user programmers‟

specific debugging strategy needs.

 A positive impact on end-user debugging success: (1)

twice as many bugs found by participants using StratCel

compared to Excel alone, (2) four times as many bugs

fixed, (3) in a fraction of the time, (4) including two bugs

which both the researchers and Control group had

overlooked, and (5) a closing gap in success based on

individual differences.

 Participants‟ promising comments about StratCel‟s

usability and its applicability to their personal projects

and experiences.

 Design guidelines, based on instantiated and validated

empirically-based implications for design.

 Lastly, we argue for the generalizability of this approach

and list several opportunities for future research.

STRATCEL’S EMPIRICALLY-BASED DESIGN

In this section, we address the question of whether a

strategy-centric approach in the design of end-user

debugging tools is practical and, if so, how it can be

achieved. Toward this end, we report our experience

building StratCel: an add-in for the popular end-user

programming environment Microsoft Excel.

In the first subsection, we provide a quick overview of the

iterative approach and methods we employed in StratCel‟s

design. In the latter subsections, we then list several

candidate design guidelines from a study which reveals a

comprehensive overview of Excel users‟ debugging

strategies [13]. We also detail how we employed these

candidate guidelines in our design of StratCel to see which

would prove effective: we later evaluate these.

Each time we refer to a candidate design implication from

that earlier study, we format it as follows:

Candidate 0: This is an example implication from [13].

The implications for design revealed by the earlier study

fell under three categories (hence the three subsections),

based on the level of strategy from which they came: (1) a

strategy is the user‟s approach for the entire task, which (2)

one or more strategems can be used in combination to

achieve, and which are in turn made up of (3) clusters of

low-level moves with a purpose (i.e., tactics) [3]. For the

remainder of this paper, we will use these more specific

definitions of the four strategy levels.

Iterative Approach

As Schön points out, prototyping activities are important to

any tool-building endeavor, since they encourage reflection

on the tool‟s design [29]. We first defined the tool‟s scope

using empirical work about end-user debugging strategies, a

scenario, a storyboard, and sample real users from our

target population. The sample users were real participants

in a previous spreadsheet study [12]. For example, the most

successful female was in her twenties and had worked as an

auditor for the past two years, building large and complex

spreadsheets to check clients‟ paperwork (e.g., bank

statements and personal records). As a Business major, she

also used spreadsheets in her classes and her personal life,

and had programmed in VB.NET for one class. Continuing

with an iterative approach, we cycled dozens of times

through design, implementation, testing, integration,

maintenance, and usability evaluation. To guide our

iterations, we continued with the earlier methods and also

added walkthroughs with a paper prototype, walkthroughs

of the tool itself, and sandbox pilot sessions.

The Design Impact of Strategies and To-Do Listing

Implications for design based on the overall strategies can

help us frame the functionality of the debugging tool as a

whole, because strategies are followed by the user

throughout the entire task.

Candidate 1: Supporting both comprehensive (getting an

overall understanding of the spreadsheet by visiting cells in

a systematic order) and selective (following up on the most

Finding Evidence

To-do listing is an end-user

debugging strategem.

Used breakpoints, open-close files, paper [11] and “…checks and X’s to show me what

I’d already checked” [31].

To-do listing is poorly

supported in debugging tools.

PowerShell, Forms/3, and Excel: No explicit support for to-do listing [31, 11, 13].

Requests for to-do listing

support transcend individual

differences.

Males and females using Forms/3 [31], PowerShell [11], and even integrated

development environments want to-do listing support [30].

Danger: Relying on existing

features to be repurposed.

Misuse of the features can lead to incorrect feedback from tools [22], a loss of

formatting information, or simply be ineffective. Perhaps why no participants from [13]

employed it in Excel.

Benefit: Shows promise in

increasing debugging success.

Often used in conjunction with code inspection, a female success strategem [31, 11].

May remind comprehensive Participant SF about cells she found suspicious and

selective Participant SM about cells he had skipped over [12].

Table 1. Summary of empirical findings about the need to support to-do listing in debugging environments.

relevant clues as they come along) debugging strategies by:

- Helping comprehensive users keep track of cells they want

to return to later on.

- Highlighting which cells selective users have looked at

versus those they might have skipped.

In other words, support for the to-do listing strategem (or “a

user‟s explicit indication of the suspiciousness of code, or

lack thereof” [11]) may help reduce the cognitive load of

both comprehensive and selective users by helping them

keep track of items they need to look at in the future. Table

1 summarizes empirical findings from seven studies

encouraging support for to-do listing. Note that, since both

of these strategies needed to be supported, StratCel does not

impose an order in which to proceed through to-do items or

their related information.

Candidate 2: Provide explicit support for to-do listing.

Candidate 3: Automatically generate list of items to check.

To address these implications for design, the core

functionality of StratCel involves automatically generating

a list of to-do items and providing actions related to

managing a task list, such as setting the item‟s status and

priority (see Figure 1). Each item in the list is a range of

consistent formulas automatically consolidated into one

item. Using the tool, the user can change the status of each

to-do item. Item status can be: (1) unchecked, meaning that

the user has not yet made a decision about whether that

item was completed, (2) checked, meaning that the user has

verified that item and decided s/he does not need to return

to it, and (3) to-do, meaning that the user would like to

return to that item later on.

This explicit support for to-do listing helps guard against

users having to use costly workarounds which change the

spreadsheet‟s existing formatting. While the “automatic

generation” implication seems to suggest that users would

have less flexibility in creating their own to-do lists,

storyboards and expert walkthroughs with the prototype

backed the need for this implication.

Candidate 4: Provide relevant information in the context of

each to-do item.

StratCel also automatically reports information about each

item to help the user identify it, including: the worksheet

name, an automatically generated name (from headers), a

description pulled from cell comments, the item‟s priority,

and the item‟s spreadsheet address. Following

walkthroughs and sandbox pilots, we decided that the

priority could be encoded in a color instead of having its

own field in the list (see Figure 1c).

One important implication followed by other end-user

debugging tools has been to directly overlay or tie hidden

information about the structure of the spreadsheet to the

spreadsheet itself (e.g., [27]). Therefore, in StratCel, we

synchronized cell selection and to-do item selection:

selecting an item in the list also highlights the cells to

which that item refers, and vice-versa.

The Design Impact of Strategems

While strategies cover the entire task from start to finish,

the debugging tool has multiple smaller components which

further help make sure the task is accomplished accurately

and quickly. For example, let us say that the first to-do item

is about cell A1. Subtasks for checking off that particular

item may include: examining the formula to make sure it

matches the specification, testing different conditions and

making sure the output is right for them, getting help when

stuck, etc. These smaller components which allow users to

act upon a unit of the to-do list are based on implications

for design about end-user debugging strategems (e.g., code

inspection, specification checking, testing, and help are

strategems referred to in the previous sentence).

Candidate 5: Providing information about the nine

remaining strategems in the context of each to-do item.

Researchers have so far observed ten end-user debugging

strategems: code inspection, control flow, dataflow, error

checking, help, prior experience, spatial, specification

checking, testing, and to-do listing.

Figure 1. (a) The to-do list task pane is automatically

populated with consolidated items and their properties (e.g.,

worksheet name, a default item name). The user can mark

each item as “done” (e.g., Total Points_1), “unchecked” (e.g.,

GPA), or “to-do” (e.g., Average_8). Other basic to-do list

management capabilities include adding a comment, (b)

filtering on a status, and (c) assigning priorities to items (the

darker the yellow, the higher the priority).

We have already addressed how to-do listing can be

explicitly supported in order to facilitate the use of the

comprehensive and selective debugging strategies. And

control flow is the only strategem which StratCel does not

support. Even though Excel‟s language is declarative, there

is poor support for implementing repetition. How StratCel

can better support this remains to be determined.

The remaining eight strategems are all supported in the

context of each to-do item: each provides additional

information about the item. For example, selecting an item

in the to-do list also selects it in the spreadsheet. This

displays a representative formula in the formula bar (code

inspection) and highlights its value(s) in the spreadsheet

(testing). Also related to formulas is the following:

Candidate 6: An easy way of accessing formulas related to

the current code may help users fix more bugs through

reuse.

To access more information related to the content of a

formula, StratCel provides a “Help on Formula” feature to

search several databases for information related to it (the

help stratagem). Figure 2 shows the search result when

looking up a formula containing both the „IF‟ and

„HLOOKUP‟ functions in the Excel documentation (and

three other information sources are also available). Another

type of search which could be added to this list in the future

is a search of Excel documents in a user-defined directory.

This helps the user access the collective prior experience.

Keeping track of done versus to-do items might help

organize prior experience, while Excel‟s recently used

formulas feature may highlight relevant formulas.

Candidate 7: Perfect viewing spatial and dataflow

relationships to help users organize collected data.

Four strategems remain to be addressed: dataflow, error

checking, spatial, and specification checking. A directed

graph shows the dataflow dependencies between task items

(see Figure 3). The graph can also be used to navigate the

items; hovering over the items in the graph selects the

related item in the task list as well as the related cell(s) in

the spreadsheet. Since consistent formulas are highlighted

as the graph is navigated, this also reveals the dataflow

dependencies between spatial areas of consistent formulas.

Spatial relationships can also be deduced from status

borders: users can bring up borders around to-do items by

clicking on a button in the ribbon. Areas of unchecked

formulas are blue. To-do items are red. And items marked

as “checked” have a green border. (There is an option for

changing the colors to assist colorblind users.)

This way, inconsistent cells brought to the user‟s attention

by the feedback following support (cells which have red

borders originally), and also from the cells that get

highlighted when a task item is selected.

Finally, item specifications are automatically generated

from comments in the spreadsheet and can also be modified

by the user. They are displayed in the white box at the

bottom of the task pane (see Figure 1a) and also in tooltips

when hovering over items in the list (see Figure 1b) or in

the navigation graph (see Figure 3).

The Design Impact of Tactics and Moves

Finally, implications for design based on observed tactics

and moves are the lowest-level observations. As such, they

are most applicable to fine-tuning the features implemented

based on the stratagem implications.

For example, we mentioned a dataflow graph for navigating

the spreadsheet. The tactic of navigating dependencies in

Excel led to the following implication:

Candidate 8: Include inter-worksheet relationships.

Figure 2. (a) “Help on Formula” gives the user several options

(Excel Help, MSDN, Bing, and Google) in which to search key

terms from the formula. For example, if the formula looks

like this: , then selecting

Excel looks up “IF LOOKUP” in Excel’s documentation. The

same thing would happen with the other search engines.

Figure 3. Dependencies between to-do items (recall that their

names are automatically generated and can be modified) are

displayed in a directed graph: StratCel visualizes both within

and between worksheet transitions.

Figure 4. Users can bring up borders around to-do items by

clicking on a button in the ribbon. Areas of unchecked

formulas are blue. To-do items are red. And items marked as

“checked” have a green border. (There is an option for

changing the colors to assist colorblind users.)

Due to this implication for design, StratCel‟s dependency

graph feature displays both inter-worksheet relationships

between to-do items as well as intra-worksheet

relationships. Hovering over the nodes in the different

worksheets allows the user to navigate between those

worksheets.

Candidate 9: Allow users to easily identify areas of the

spreadsheet on which to focus their attention (e.g.,

formulas, buggy formulas, unchecked formulas).

To address this implication in StratCel, users can

superimpose the to-do status of task items onto the

spreadsheet. While we originally used a shaded circle in

each cell to display the to-do status of that cell,

walkthroughs revealed that this was overwhelming when

the status of many cells was displayed. We therefore

switched to only coloring the outside borders of spreadsheet

areas with a particular status. For example, Figure 4 depicts

an area of the spreadsheet with many unchecked formulas

(blue borders) and two cells with to-do status (red borders).

Candidate 10: Too much feedback about where possible

errors may lie is overwhelming, so only the most likely cells

to contain errors should be highlighted by default.

StratCel currently automatically highlights inconsistent

formulas by setting them as to-do items (see red items in

Figure 1 and Figure 4), since those have a high likelihood

of being incorrect. However, other Excel error checking

warnings are ignored to reduce the false-positive rate of

bugs found; sometimes, too much feedback is as bad as

none at all. This lends support to the feedback following

strategem (following the environment‟s feedback about

where an error may be [11]).

EVALUATION

To gauge the success of employing a strategy-centric

approach in the design of debugging tools, we conducted a

preliminary evaluation of StratCel. In so doing, we

wondered whether a strategy-centric approach to the design

of debugging tools would lead to an increase in debugging

success, whether StratCel was intuitive to use, and what

design guidelines we could pass on to designers.

Experimental Setup

Procedure and Tutorial

We employed the same procedure as [12]. Participants first

received a short (about 20 minutes) hands-on tutorial about

Microsoft Excel‟s auditing tools and StratCel‟s

functionality on a practice spreadsheet task. The StratCel

functionality presented included selecting to-do items from

the list, viewing information related to the item, marking

the item as “done”, “to-do”, or “unchecked”, and adding

user-defined to-do items.

Task

The task was also the same as in [12]: “Make sure the

grade-book spreadsheet is correct and if you find any bugs

fix them.” The grade-book spreadsheet contains 1718 cells,

288 of which were formula cells, and two worksheets: one

for the students‟ individual grades and one for summary

statistics for the class. The spreadsheet is also highly

formatted, containing one blue column, one yellow column,

four gray columns, 30 rows with alternating colors, three

different font colors, 46 cells with bold fonts, five

underlined fonts, many different font faces, and all borders

delimiting spreadsheet regions.

This grade-book spreadsheet is real-world. It was selected

from the EUSES Spreadsheet Corpus of real-world

spreadsheets [10], originating from a college. In addition, it

has been used successfully in other studies (e.g., [5, 12]).

While we originally thought the spreadsheet had ten nested

bugs harvested from real users, as was reported in [12] and

also based on our own experience, there were in fact 12

bugs in the spreadsheet (see the Results section for how our

participants used StratCel to find two bugs which had

previously been overlooked). These bugs were

unintentionally introduced by the professor and by

spreadsheet users from [5] when they attempted to add new

features to this spreadsheet. There were: six inconsistency

bugs (e.g., omitting some students‟ grades in calculating the

class average for an assignment), three propagated logic

errors (e.g., using the “>” operator instead of “>=”), and

three (instead of the expected one) logic bugs on individual

cells (e.g., counted lab attendance as a part of the total

points). The participants had a total of 45 minutes to find

and fix these bugs.

Unlike in [12], where participants were provided a handout

description of what different areas of the spreadsheet were

meant to do, we incorporated the descriptions directly into

the StratCel tool‟s white “specification” field (see bottom of

Figure 1a).

Participants

In this pilot study of StratCel, we used five participants of

varied backgrounds and spreadsheet experience. One male

and one female were self-described novices, one male was a

self-described intermediate, and two females were self-

described experts. Our participants were members of two

Seattle area clubs: the females came from a knitting circle

and the males from an archery club. None of them had seen

the new tool before the study. This was the group who had

the StratCel Excel add-in available to them, and we will call

them the “Treatment participants”.

We compared their success to the eight participants from

[12]. There, three males and three females were self-

described spreadsheet experts and one male and one female

described themselves as intermediates (no novices). We

will call these participants the “Control participants”.

There was no significant difference in any background

variable between the Control and Treatment groups: age

(Control median: 25, Treatment median: 25), major

(Control: 6 non-CS science, 2 non-science; Treatment: 3

non-CS science, 2 non-science), and computer science

experience (Control median: 0.5 classes, Treatment median:

0 classes). All thirteen participants had at one point edited

spreadsheet formulas for work, school, or personal reasons.

However, two of the Treatment participants (one male and

one female) did have less spreadsheet experience than was

accepted in the Control group; they were self-described

novices. We brought these two participants in for two

reasons. First, we wanted to see how they would do in

comparison to the experts from the other group. Second, we

wanted to see how they would do against the experts in

their own group.

Analysis Methodology

Since our data were not normally distributed, we employed

the Wilcoxon rank-sum test with continuity correction in

analyzing our quantitative data. This is non-parametric

alternative to the t-test.

We also report qualitative observations about the

participants‟ actions and verbalizations. These analyses

helped both triangulate our quantitative findings and further

explain the reasons behind the statistical differences.

Improving Debugging Success

The Treatment participants performed better by every

success measure: the number of bugs found, the number of

bugs fixed, the time to each bug find and bug fix, the

reduced impact of individual differences, and participants‟

verbalized satisfaction with StratCel. To further help

designers build better end-user debugging tools, we also

highlight those empirically-based guideline candidates

which had the biggest impact on our participants‟ success

by listing them as design guidelines in this subsection.

Number of Bugs Found

In general, participants who had StratCel available to them

were better at finding bugs. They found more bugs,

including two previously unnoticed bugs, faster, and with

less variability resulting from individual differences.

Specifically, Treatment group participants found

significantly more bugs (Rank-sum test: Z=-2.639,

p=0.0042) than the Control group participants. Figure 5

shows the distribution of bugs found by Control participants

(M: 4.50, SD: 2.70) and Treatment participants (M: 9.00,

SD: 0.89). This difference is striking: only one of the

participants from the Control group found nine bugs,

whereas all of the Treatment participants found at least nine

bugs. (Both Treatment novices performed at least as well as

the Control experts.)

Qualitative observations of how participants used StratCel

revealed several reasons for this sharp increase in bug

finding success. The first was Candidate 10: Too much

feedback about where errors may lurk is as bad as no

feedback at all. Since StratCel set inconsistent formulas as

to-do items by default, all five participants found those six

bugs. For example, to do this, the intermediate male

participant immediately filtered the task list to only show

items automatically set as to-do: inconsistent formulas.

Figure 1b shows his list right after filtering.

The novice Treatment male and an experienced Treatment

female employed our response to Candidate 9 to find the

inconsistent formulas: Easily find areas of the spreadsheet

on which to focus their attention. He brought the status

borders up immediately at the start of the task to view the

items which were automatically given to-do status (i.e., a

red border).

The remaining two female participants (one novice and one

expert) used a different method: they both walked through

the list one item at a time, starting at the top, and only took

on inconsistency items once they reached them in the to-do

list. One mentioned she was also able to tell where

inconsistencies laid based on the address of each to-do item

being shown. For example, if an item covered the range

from “A1:A3, A5” that is what showed up in the “address

column” of that to-do item. This allowed her to quickly

notice A4 was missing, which therefore must have been an

inconsistent formula:

“This was really helpful because it has a way to say

these are all your formulas… These are the ones you

need to go look at. And I like this part [the address

field] which shows me where I can find all of the

formulas, so I can see them. For example, on this one, I

could see there was a gap for E16 and I could go back

and look specifically at that cell, because I expect it to

be the same, and see what's going on.”

Overwhelmed by the number of false-positive bug warnings

(Excel green triangles in cell corners), most of the Control

group participants were unable to find these inconsistencies.

Our Treatment participants, however, found inconsistencies

in the spreadsheet much more easily (all five participants

found and fixed all six inconsistency errors) and in a variety

of ways. Thus, we would like to reiterate three of the

Control Treatment

Group

0

2

4

6

8

10

T
ot
al
F
ou
nd

Figure 5. Participants in the Treatment group (right) found

significantly more bugs than the Control group participants

(left).

empirically-based candidate guidelines mentioned earlier

but, this time, as validated design guidelines for end-user

debugging tools:

Design Guideline 1: With automatic error detection

tools, it is critical to value quality (low number of false-

positives) over quantity (detecting more possible types

of errors). Only cells containing likely errors should be

highlighted by default.

Design Guideline 2: As most tools currently already

do, important information about cells (e.g., to-do

status) should be overlaid onto the spreadsheet to give

the user a quick overview of the to-do status of both

individual cells and of the overall spreadsheet.

Design Guideline 3: Some users prefer to get a

comprehensive understanding of the spreadsheet before

fixing bugs (e.g., the novice female), whereas others

will start by trying to fix apparent bugs right away

(e.g., the intermediate male). Since both approaches

have advantages and disadvantages, both should be

supported.

All participants found at least nine bugs. Other than the six

inconsistency bugs, there were four other bugs which the

researchers had inserted [12] and two more which were not

observed by either the researchers or the Control

participants, but which were found and fixed by the users in

this study! These unnoticed bugs, while fairly easy to fix

once spotted, were well-hidden: one individual cell was in

the upper-right corner of the spreadsheet, and the second

was hidden in the middle of the second worksheet.

These two previously evasive bugs were the crowning glory

of the usefulness of StratCel in bug finding: some hidden

bugs can evade the eyes of many experts and novices alike.

However, the to-do list enabled participants to give an equal

amount of attention to each item: even items in the top-left

corner of the first worksheet and cells in the middle of the

second worksheet.

Design Guideline 4: Strategy-based tools should

provide explicit support for to-do listing.

Design Guideline 5: To improve debugging of end-user

programs, it helps to automatically generate a list of

items to check so that all areas of the code are given

equal attention.

Number of Bugs Fixed

Just as with the number of bugs found, Treatment

participants also fixed significantly more bugs (Rank-sum

test: Z=-2.8905, p=0.0019) than the Control group

participants. Figure 6 shows the distribution of bugs fixed

by Control participants (M: 2.00, SD: 2.3299) and

Treatment participants (M: 8.00, SD: 1.3038). Thus, while

Treatment participants found twice as many bugs on

average than Control participants, the difference in bugs

fixed is even more striking: Treatment participants fixed

four times more errors on average! (This time, the male and

female Treatment novices performed better than even the

most successful Control participant.)

What caused the striking difference in the number of bugs

fixed? A major contributor was that Treatment participants

had found more bugs, therefore also having the opportunity

to fix more. Furthermore, the six inconsistency bugs were

trivial fixes once the users had found them. Had the

Treatment group participants only fixed the inconsistencies,

they would have already fixed three times more bugs than

the Control participants on average.

The two to five additional bug fixes varied by participant,

but the methods by which they were fixed always involved

the additional information given in the context of an item.

For example, the intermediate male used Excel‟s “Recently

Used” function library to find a formula used in a different

spreadsheet (the tutorial spreadsheet) which could have

been used to fix one of the most complicated bugs in the

spreadsheet. All of the participants employed the

descriptions provided for each item. These helped them fix

two bugs consistently: two bugs on individual cells which

were easy to overlook without StratCel pointing them out,

but straightforward to fix once there (two cells incorrectly

took into account labs as a part of the total grade): none of

the Control participants found or fixed either of those bugs,

and the researchers only knew about one of the two. Each

of the features available in StratCel was used by at least one

participant, backing the importance of showing related

information in the context of each to-do item.

Design Guideline 6: Information about the remaining

strategems should be provided in the context of each to-

do item to provide more information on which to base a

bug fix.

Design Guideline 7: Viewing formulas related to an

item (e.g., the consistent formulas in an inconsistency

Control Treatment

Group

0

2

4

6

8

10

T
o
ta
lF
ix
e
d

Figure 6. Treatment participants (right) fixed significantly

more bugs than Control participants (left).

case, recently used formulas, or formulas used in files

in a certain directory) might be particularly useful for

improving debugging success.

Time to Each Bug Find and Fix

Spreadsheet debugging is often a time-sensitive activity,

whether a trained accountant does it [23] or a young clerk

as was the case in the Lehman-Barclays mix-up. Thus,

another important measure of debugging success in addition

to the number of bugs found and fixed is how long it took

participants to find and fix those bugs.

On average, Treatment participants found and fixed each

bug consistently faster than the Control participants. The

Wilcoxon rank-sum test allows us to measure statistical

difference in bugs found and fixed based on order, without

worrying about missing data such as those of participants

who never found or fixed a bug.

The advantage of Treatment participants was clear from the

very beginning of the task. Treatment participants found the

first bug significantly faster (Rank-sum test: Z=2.62,

p=0.0044) and fixed it significantly faster (Rank-sum test:

Z=2.8663, p=0.0021) than the Control participants.

Treatment participants also found and fixed all of the

remaining bugs significantly faster than Control participants

(up to the tenth bug found, after which there was not

enough data to prove significance, with only one Treatment

participant finding and fixing eleven bugs total).

Thus, when time is short, StratCel users should be able to

more quickly pinpoint errors and their solutions from the

very start and keep that advantage throughout the task. It

also appears that the more complex the spreadsheet is, the

more useful StratCel will become, though this remains to be

tested in future studies.

Closing Gaps Based on Experience and Gender

Another surprising discovery was that the Treatment

participants performed very similar to one another, despite

their individual differences. In previous studies on end-user

debugging, both gender (e.g., [4]) and experience (e.g.,

[11]) have impacted end-user debugging success.

Also, recall that even the novices from the Treatment group

performed at least as well as the most experienced and

successful Control participants. When comparing Treatment

novices to Treatment experts, there was little variation

between the Treatment particiants, despite their very

different backgrounds: the SD was twice as great for the

Control group than the Treatment group. Treatment novices

did not do much worse than Treatment intermediates and

experts. In particular, for the Control group, bugs found

ranged from 1-9 and bugs fixed from 0-6. In the Treatment

group, bugs found ranged from 9-11 and bugs fixed from 8-

11. Since there is a much less pronounced difference

between the less experienced and the more experienced

participants in the Treatment group, it appears that StratCel

helps everyone, and especially less experienced users. The

following quote comes from the novice Treatment female:

"I feel like it would be extra useful for someone like me

who, well, I can use Excel and I can figure it out, but,

like, I'm definitely not an expert at Excel. […] I think

the only problems I had were with the Excel functions I

hadn't learned. This is like a really good way of helping

me keep track of what I've done and not get lost."

In terms of gender, comparing the median number of bugs

found (CF: 4.5, TF: 9.0, CM: 5.0, TM: 9.0) and fixed (CF:

3.5, TF: 9, CM: 2.5, TM: 8.5) by females and males in the

Control and Treatment groups, we noticed that there were

few gender differences between them. Even so, Treatment

participants were a little closer to each other than Control

participants in terms of success: meaning that StratCel

helped both males and females.

Overall Experience: StratCel’s Usability

While we did not ask our participants for feedback beyond

their verbalizations during the task, the participants were

nevertheless anxious to give it.

Several comments revealed possible iterative improvements

to the tool. For example, participants had a feature available

to add to-do items to the automatically generated list. The

most successful Treatment female used it as a way to add

two comments for the next person who will look at the

spreadsheet: one about how little she trusts the spreadsheet

and a second about a change she would have liked to have

made to one of the formulas in the future. The most

successful male also added a custom to-do item, but he did

so by mistake. Their feature request was to add the

functionality of removing items from the to-do list.

Another improvement requested by the two experienced

females was the capability to sort the to-do list by clicking

on the field headers. One of the potentially most critical

problems with the to-do functionality is that it is too easy to

check off items as done, to never be returned to again. One

of the experienced females put it this way:

"The only thing that I was thinking about is that it's

really easy to say 'Oh, I've looked at this.' and just

check it off. And I don't know if there could be a way to

make sure that that's what they meant. […] So, I

actually had something… Where I went through, and I

think I'm on one line but I'm actually on another when I

check off the task being done. But I think that's just... A

user has to be smart enough to know not to do that.

There's only just so much that you can help a user

avoid."

One possibility for making sure that the user really meant to

check something off would be to list each of the “strategem

tool components” (e.g., the specification) as individual

subtasks for each task. This way, users would have to check

off several subtasks in order to achieve an overall “check”

for the item. Further research is needed to what the best

method is for doing this.

Overall, however, the participants‟ unrequested comments

were very positive, and most immediately thought of ways

to apply StratCel to their own day-to-day tasks. Here are

selected few of the quotes:

 "So, can I use your tool? You should sell this and make a

million dollars!”

 “I think this would be useful for my complex accounting

spreadsheets. If you would like to share the tool, I would

love to try it on those.”

 "Looking at [StratCel], I was thinking I have to have a

way of tracking my [knitting] patterns. So things that…

Ok. I have a pattern and I have steps I have to go

through. And I need a way to track them.”

 "And this is straight-forward and makes a lot of sense.

When you look at it, you know what it is. There are lots of

tools, where you can tell that people said, 'well… there's

just a workaround and you can just do it this way'. But

this one, it just seemed very straightforward and it builds

on everything from Excel.”

CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that a strategy-based

approach alone can be effectively applied in the design of

debugging and troubleshooting tools to improve the

correctness of end-user programmers‟ code.

As a part of this effort, we instantiated our approach in

StratCel: a new strategy-based add-in for one of today‟s

most widely used end-user programming environments,

Excel. StratCel addresses implications for design at four

strategy levels.

Our results showed that tools can be built to support a

comprehensive understanding of strategies directly. We

employed implications derived from higher strategy levels

(strategems and strategies) to frame the functionality of the

tool as a whole, while implications based on lower levels of

strategy (moves and tactics) helped us fine-tune individual

features. For example, support for the to-do listing

strategem provided a way to reduce end-user programmers‟

cognitive load, by helping comprehensive participants

better keep track of to-do items to revisit and by helping

selective participants see which formulas they had skipped.

The remaining nine strategems defined the core activities

which needed to be supported within the context of each to-

do list item (e.g., specifications, help about the formula as a

whole, etc.) in our instantiation. Finally, the implications

from the lower strategy levels (moves and tactics) helped us

fine-tune the features supporting each strategem: for

example, making sure that the dataflow dependencies

showed inter-worksheet relationships and facilitated

navigating between items on different worksheets.

Even for an environment as mature as Excel, the addition of

a strategy-based tool did improve end-user programmers‟

debugging success using many measures:

 Participants who had StratCel available to them found

twice as many bugs, fixed four times as many bugs, and

in only a fraction of the time.

 While StratCel helped everyone, it was particularly

helpful to less experienced users. StratCel also helped

males and females equally.

 Participants found StratCel intuitive to use and

immediately thought of ways in which the tool applied to

their day-to-day work.

This approach to end-user debugging tool building has

raised many questions, opening the door to opportunities

for future research.

 The current instantiation of StratCel centers on the to-do

listing strategem, supporting the other strategems within

the context of each to-do item. A future goal might be to

create a new tool which centers around one of the other

strategems (say code inspection or testing) and which

supports all other nine strategems within the context of

either a formula or of an output value, in those two cases

respectively. Would the addition of another strategy-

centered tool improve users‟ success even further?

 Even within its current instantiation of the implications

for design, each of StratCel‟s components can be

improved with further research. For example, StratCel

currently only highlights inconsistency errors, but both

Excel and other tools provide many other automatically

generated warnings. An ordered list of the available

automatic spreadsheet error detection algorithms and

their false-positive rates, would be required to further

improve the error checking component, in order to know

which algorithms to turn on by default.

 Finally, related empirical work has drawn parallels across

programming populations and environments: from

spreadsheets, to scripting environments, and integrated

development environments (recall Table 1). Can

StratCel‟s core functionality be transferred to one of these

other environments? If so, will it also lead to increased

debugging success there? Do these concepts change when

users are not able to manipulate the code directly and

have to work at a higher level of abstraction (e.g., when

troubleshooting a printer failure)?

In summary, we have shown that a strategy-based approach

to building debugging tools is both achievable and

beneficial. Powerful but disconnected features may be the

approach of the past, and be replaced by features which

work together to support users‟ effective debugging and

troubleshooting strategies.

ACKNOWLEDGMENTS

We would like to thank Roland Fernandez for his

thoughtful input on this paper‟s write-up. And we are also

thankful to the participants of our study. This work was

supported in part by the EUSES Consortium under NSF

0325273 and by NSF 0917366.

REFERENCES
1. Abraham, R. and Erwig, M. UCheck: A spreadsheet unit

checker for end users. Journal of Visual Languages and

Computing 18, 1 (2007), 71-95.

2. Backus, J. The History of Fortran I, II, and III. IEEE Annals of

the History of Computing 20, 4 (1998), 68-78.

3. Bates, M. Where should the person stop and the information

search interface start? Information Processing and

Management 26, 5 (1990), 575–591.

4. Beckwith, L., Burnett, M., Wiedenbeck, S., Cook, C., Sorte,

S., and Hastings, M. (2005) Effectiveness of end-user

debugging software features: Are there gender issues? In Proc

CHI 2005, ACM Press (2005), 869-878.

5. Beckwith, L., Inman, D., Rector, K., and Burnett, M. On to the

real world: Gender and self-efficacy in Excel, In Proc.

VL/HCC 2007, IEEE Press (2007), 119-126.

6. Burnett, M., Cook, C., and Rothermel, G. End-user software

engineering. Communications of the ACM 47, 9 (2004), 53-58.

7. Cypher, A. and Smith, D. KidSim: End-user programming of

simulations. In Proc. CHI 1995, ACM Press (1995), 27-34.

8. Davis, J.S., Tools for spreadsheet auditing, International

Journal of Human-Computer Studies 45 (1996), 429-442.

9. EUSPRIG 2009. Spreadsheet mistakes news stories, European

Spreadsheet Risks Interests Group site,

http://www.eusprig.org/stories.htm.

10. Fisher II, M. and Rothermel, G. The EUSES Spreadsheet

Corpus: a shared resource for supporting experimentation with

spreadsheet dependability mechanism. In Proc. 1st Workshop

on End-User Software Engineering (2005), 47-51.

11. Grigoreanu, V., Brundage, J., Bahna, E., Burnett, M., ElRif,

P., and Snover, J. Males‟ and females‟ script debugging

strategies. In Proc. Second International Symposium on End-

User Development, Springer-Verlag (2009), 205-224.

12. Grigoreanu, V., Burnett, M., Wiedenbeck, S., Cao, J., and

Rector, K. Females‟ and males‟ end-user debugging strategies:

A sensemaking perspective. Technical Report:

http://hdl.handle.net/1957/12074 (2009). (Under Review)

13. Grigoreanu, V., Burnett, M., and Robertson, G. (2009) Design

implications for end-user debugging tools: A strategy-based

view. Technical Report: http://hdl.handle.net/1957/12443

(2009). (Under Review)

14. Hayes, F. Rules for Users.

http://www.pcworld.com/businesscenter/article/152509/rules_f

or_users.html, 2008.

15. Igarashi, T., Mackinlay, J., Chang, B. W., and Zellweger, P.

Fluid visualization of spreadsheet structures, In Proc.

Symposium on Visual Languages 1998, IEEE Press (1998),

118-125.

16. Kandogan, E., Haber, E., Barrett, R., Cypher, A., Maglio, P.,

and Zhao, H. A1: end-user programming for web-based

system administration. In Proc. UIST 2005, ACM Press

(2005), 211-220.

17. Kelleher, C., Pausch, R., and Kiesler, S. Storytelling alice

motivates middle school girls to learn computer programming.

In Proc CHI 2007, ACM Press (2007), 1455-1464.

18. Ko, A., Myers, B., and Aung, H. Six learning barriers in end-

user programming systems. In Proc. VL/HCC 2004, IEEE

Computer Society (2004), 199-206.

19. Nardi, B. and Miller, J. The spreadsheet interface: a basis for

end user computing. In Proc. INTERACT 1990, Elsevier

(1990), 977 – 983.

20. Nardi, B. A small matter of programming: Perspectives on

end-user computing. MIT Press, 1993.

21. Panko, R. and Orday, N. Sarbanes-Oxley: What about all the

spreadsheets? European Spreadsheet Risks Interest Group, 45

pages, 2005.

22. Phalgune, A., Kissinger, C., Burnett, M., Cook, C., Beckwith,

L., and Ruthruff, J. Garbage in, garbage out? An empirical

look at oracle mistakes by end-user programmers, In Proc.

VL/HCC 2005, IEEE Press (2005), 45-52.

23. Powell, S., Baker, K., Lawson, B. An Auditing Protocol for

Spreadsheet Models, Information and Management 45, 5

(2008), 312-320.

24. Rode, J., Toye, E., and Blackwell, A. The fuzzy felt

ethnography - understanding the programming patterns of

domestic appliances. Personal and Ubiquitous Computing 8,

(2004), 161-176.

25. Rosson, M., Sinha, H., Bhattacharya, M., and Zhao, D. Design

planning in end-user web development. In Proc. VL/HCC

2007, IEEE Computer Society (2007), 189-196.

26. Scaffidi, C., Shaw, M., and Myers, B. Estimating the number

of end users and end-user programmers. In Proc. VL/HCC

2005, IEEE Computer Society (2005), 207-214.

27. Sajaniemi, J. Modeling spreadsheet audit: A rigorous approach

to automatic visualization. Journal on Visual Languages and

Computing 11, 1 (2000), 49-82.

28. Shiozawa, H., Okada, K., and Matsushita, Y. 3D interactive

visualization for inter-cell dependencies of spreadsheets. In

Proc. InfoVis 1999, IEEE Press (1999), 79-82.

29. Schön, D. The Reflective Practitioner: How Professionals

Think in Action. New York: Basic Books, 1983.

30. Storey, M., Ryall, A., Bull, R., Myers, D., and Singer, J.

TODO or to bug: Exploring how task annotations play a role

in the work practices of software developers. In Proc. Software

Engineering 2008, 251-260.

31. Subrahmaniyan, N., Beckwith, L., Grigoreanu, V., Burnett,

M., Wiedenbeck, S., Narayanan, V., Bucht, K., Drummond,

R., and Fern, X. Testing vs. code inspection vs. what else?

Male and female end users‟ debugging strategies, In Proc. CHI

2008, ACM Press (2008), 617-626.

32. Whittaker, D. Spreadsheet errors and techniques for finding

them. Management Accounting 77, 9 (1999), 50–51.

http://www.academicpress.com/jvlc
http://www.academicpress.com/jvlc
http://www.pcworld.com/businesscenter/article/152509/rules_for_users.html
http://www.pcworld.com/businesscenter/article/152509/rules_for_users.html

