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ABSTRACT 

Hierarchical structures with large fan-outs are hard to 
browse and understand. In the conventional node-link tree 
visualization, the screen quickly becomes overcrowded as 
users open nodes that have too many child nodes to fit in 
one screen. To address this problem, we propose two 
extensions to the conventional node-link tree visualization: 
a list view with a scrollbar and a multi-column interface. 
We compared them against the conventional tree 
visualization interface in a user study. Results show that 
users are able to browse and understand the tree structure 
faster with the multi-column interface than the other two 
interfaces. Overall, they also liked the multi-column better 
than others.  

Author Keywords 
Tree visualization, large fan-outs, multi-column layout, 
evaluation, browsing, revisit, and topology.  

ACM Classification Keywords 
H5.2. Information Interfaces and Presentation (e.g., HCI): 
User Interfaces-Evaluation/Methodology.  

General Terms 
Design, Human Factors 

INTRODUCTION 
Organizing large hierarchical information using a tree data 
structure is quite common. For example, the internet 
directory of the Web (e.g. the open directory project [14]) is 
hierarchical and can be visualized in the tree data structure. 
Another example could be ontologies used in many 
research fields such as biomedical informatics, artificial 
intelligence, and library science. Ontologies are graphs, but 
they are often presented as trees. As the hierarchical 
structure grows bigger, it becomes more and more difficult 
to understand the overall structure (i.e., the topology of the 
hierarchical structure) and to browse it efficiently. 

One of the most troublesome problems occurring in 
browsing a large hierarchical structure is that the screen 
quickly becomes overcrowded when users open nodes with 
a large number of child nodes. For example, a phylogenetic 
tree (a tree used in biology showing the evolutionary 
relationships among biological species) has many internal 
nodes with several dozens of child nodes. Also the open 
directory has a category structure which consists of many 
nodes with more than 50 child nodes. This problem gets 
worse when it is required to show additional attributes of 
the node. 

We can think of several remedies for this overcrowding 
problem. Focus+context techniques can show many more 
nodes in a screen by enlarging focused nodes and shrinking 
other nodes. Their distortion of information space may 
cause challenges in target acquisition [8], known as an 
overshooting problem. This could hinder users' browsing 
tasks [9]. Another solution is to use a list with a vertical 
scrollbar to show child nodes. Users may need to scroll up 
and down to select and open up a child node. The other 
alternative is to show child nodes using a multi-column 
layout, which requires more horizontal space than the list 
interface but could show more child nodes in a single view. 
Each solution has its pros and cons, but there has been no 
attempt to compare such alternatives in terms of accuracy 
and speed in performing tasks such as browsing and 
understanding large trees of large fan-outs. 

In this paper, we present a comparative evaluation on three 
interfaces for showing child nodes of trees with medium 
and large fan-outs; traditional (baseline), list, and multi-
column interfaces. We compared the three interfaces in 
supporting three different tasks (browsing, revisit, and 
understanding topology) using hierarchical datasets with 
medium (around 25) and large (around 50) numbers of 
child nodes at each level. 

This paper is organized as follows. We first provide related 
work, and then we describe in detail three interfaces for 
viewing child nodes. Then we explain the design and 
procedure of our study, followed by the summary of our 
comparative evaluation results. We close our paper with in-
depth discussion on the study results and future work. 
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RELATED WORK 
Over the last few decades, tree visualizations have been 
extensively studied. There are two main categories of 
techniques for displaying and interacting with trees: node-
link techniques (e.g., [16,22]) and space filling techniques 
(e.g., Treemap [10,19] and Information Slices [1]).  

Cone Trees makes the context easily visible by using a 
focus+context technique [18]. To address scalability issue 
of Cone Trees, Carrièrre and Kazman suggested clustering 
nodes [6]. Hyperbolic Browser solves the occlusion 
problem of Cone Trees by using hyperbolic space instead of 
3D perspective [12]. Degree of Interest Tree displays an 
overview of the tree by only showing detail for nodes with 
high degree of interest (DOI) values [5]. SpaceTree 
combines the node-link tree diagram with a zooming 
environment that dynamically lays out branches of the tree 
to best fit the available screen space [15].  

While node link diagrams show topological structures well, 
they make inefficient use of screen space. On the contrary, 
the space filling techniques remedy the situation by making 
full use of screen space and efficiently visualizing trees that 
have attribute values at leaves. However, they do not 
convey topological structures well, since they are focused 
on containment rather than connection. Cushion Treemaps 
[21] tried to tackle this problem by adding shading as an 
extra cue. Elastic Hierarchies, a hybrid approach, combines 
the space efficiency of Treemap with the structural clarity 
of node-link diagrams [24]. Cheops compresses the tree by 
overlapping child nodes represented with triangles [4]. 
However, in spite of a very compact overview of huge trees, 
it is difficult to interpret the tree structures even with the 
various visual cues.  

Given many tree visualization techniques, researchers have 
been trying to evaluate and compare their efficacy. 
Cockburn and McKenzie reported an empirical evaluation 
on the usability of the cone tree interface [7]. They found 
that many participants preferred the cone tree interface to a 
normal tree interface, although they were significantly 
slower at locating named files with the cone tree interface. 
Barlow and Neville compared four different visualizations 
with respect to their ability to communicate the topology of 

the tree and support comparisons of node size [3]. They 
found that Treemap-style was the slowest for most tasks. 
Plaisant et al. conducted a controlled experiment to 
compare SpaceTree with Microsoft Explorer and 
Hyperbolic browser [15]. They showed that SpaceTree 
works better than the others for estimating overall tree 
topology and revisiting previously visited nodes. SpaceTree 
was also found more attractive than Explorer. Kobsa 
conducted a controlled experiment to compare six tree 
visualization techniques [11]. Wiss et al. evaluated three 3D 
information visualizations with the hierarchical data [23], 
using seven high level tasks chosen from the taxonomy of 
tasks by Shneiderman [20]. Three visualization tools were 
compared with respect to their suitability for different 
datasets and their support for tasks. Risden et al. compared 
a 3D hyperbolic interface with two conventional 2D 
browsers by using the snap.com hierarchy contents [17]. 
While the study demonstrated the strengths and weaknesses 
of those three interfaces, there were no significant 
differences in overall user satisfaction across them. These 
efforts are summarized in Table 1 for easy comparison. 

Despite the extensive previous research on tree 
visualizations, there has not been much effort to handle the 
trees with large fan-outs, especially when reading node 
labels is important. An interaction technique combined with 
dynamic node link layout was proposed to help users 
navigate and select a node in a large tree [2]. A multi-
column layout approach was presented in TreePlus [13] 
while visualizing graphs as trees. However, the multi-
column layout in TreePlus is not persistent in that once 
users open a node displayed in the multi-column TreePlus 
replaces the multi-column with the conventional layout. 
More importantly, the efficacy of these techniques has not 
yet been evaluated. In this paper, we compare three 
interfaces (traditional, list, and multi-column interfaces). 

TREE VISUALIZATION INTERFACES 
In this section, we describe three tree visualization 
interfaces that take different approaches to show child 
nodes: traditional interface (TRD), list interface (LST), and 
multi-column interface (MLC) (Figure 1).  

Authors Tasks Compared Trees Compared 

Cockburn and McKenzie [7] Navigation Cone Tree, Normal Tree 

Barlow and Neville [3] Navigation, Understanding Topology Normal Tree, Tree ring, Icicle Plot, Treemap 

Plaisant et al. [15] Navigation, Understanding Topology Collapsible tree, Hyperbolic Tree, SpaceTree 

Kobsa [11] Navigation, Understanding Topology
Treemap, Cushion Treemaps, BeamTrees, 
Hyperbolic Tree, TreeViewer, Collapsible tree 

Wiss et al. [23] Shneiderman’s 7 tasks [20] 
CamTree, Information Cube, Information 
Landscape 

Risden et al. [17] Navigation, Understanding Topology Hyperbolic Tree, Collapsible tree 

Table 1. Previous research on evaluations of tree visualizations 



Traditional interface (TRD) 
The traditional interface consists of nodes and edges 
(Figure 1a). Each node may have multiple rows of texts: its 
name and attributes of interest. When the node name is too 
long to display, it is abbreviated. Users can select a node 
with a mouse click. When selected, all child nodes of the 
selected node are displayed on the right side (Figure 2a). 
The selected node is highlighted with red background. Each 
child node is connected to the (selected) parent node with 
an edge and child nodes are arranged vertically in 
alphabetical order. A gray arrow is shown at the right end 
of a node when it has child nodes to give users a visual cue. 

The traditional interface is not efficient in showing child 
nodes when the fan-out is large for the parent node due to 
its space inefficiency of wasting the parent side and 
cluttering the child side. We came up with two new 
alternative interfaces: list interface (LST), and multi-
column interface (MLC). 

List interface (LST) 
The list interface dynamically changes its appearance 
according to the number of child nodes to show. If there are 
just a small number of child nodes, LST shows the child 
nodes in the same way as the traditional interface. If there 
are too many child nodes to fit in the screen, it visualizes 

      

(a) Traditional                                (b) List                                             (c) Multi-Column 

Figure 2. Three Tree Visualization Interfaces with a child node selected to open.  TRD interface unfolds all child nodes in the 
traditional way. LST interface moves the selected node to the top of the list and shows its children in a list. MLC interface 

moves the selected node to the top of the multi-column view and shows the full name. In LST and MLC, a dummy node in gray 
background keeps the original position of the selected node that is moved outside. 

                                        

(a) Traditional                                        (b) List                                                   (c) Multi-Column 

Figure 1. Three Tree Visualization Interfaces: Traditional (TRD), List (LST), and Multi-Column (MLC).  TRD interface 
unfolds all child nodes in the traditional way. LST interface shows child nodes in a list with a cue node with the word, “more,” 

indicating that there are more invisible ones. MLC interface shows all children in a tabular display with multiple columns. 



 

child nodes using a custom list with background in blue 
(Figure 1b). Thus, users do not have to drag up and down 
the whole tree to explore the child nodes as with the 
traditional interface. In addition, since it renders only one 
edge from parent to the list containing child nodes, the view 
is less cluttered. 

The height of the list is smaller than the vertical span of the 
screen by about twice the node height to give a space where 
neighboring branches can also be shown in the screen. 
When initially opened, the list shows the word, “more” at 
the bottom to indicate that there are more child nodes below. 

When users start to explore the child nodes by moving the 
cursor over the list, the “more” node disappears and a 
standard scrollbar appears on the right side, with which 
users can scroll up and down to check previously invisible 
nodes (Figure 3). Since it behaves like the standard list, 
users can also scroll the list using the mouse wheel. Upon 
the mouse cursor exiting it, the list view hides the scrollbar 
and shows the “more” node appropriately at the top or 
bottom (or both). 

When users select a child node in the list by clicking on it, 
the list dynamically changes its appearance again to move 
the selected child node to the outside, right to the top of it 
while preserving the alphabetical order among the moved-
out nodes (Figure 2b). This transformation is rendered with 
a smooth animation. To avoid confusion caused by the 
change of the list content, a dummy node is created in the 
same position with the background in distinctive dark gray. 

Users can select and close any opened node taken outside 

the list by clicking on the node or the corresponding gray 
dummy node. The selected node returns to the original 
position in the list where its dummy node is. Again the 
transition is done with a smooth animation to help users 
maintain context.  

Multi-column interface (MLC) 
The multi-column interface also changes its appearance 
dynamically according to the number of child nodes to 
show. If there are a small number of child nodes, MLC 
renders the child nodes in the same way as the traditional 
interface. If there are too many child nodes to fit in the 
screen, all of the child nodes are displayed using a multi-
column layout (Figure 1c). Thus, users do not have to scroll 
up and down to explore the child nodes as with the list 
interface. Users, however, need to drag left and right to see 
all the child nodes if there are too many child nodes to fit in 
the screen even with the multi-column view.  

When the child nodes are shown using the multi-column 
interface, all columns are balanced so that each of them 
holds the same number of nodes except that the last column 
could have a few less nodes. Balanced columns make sure 
that the screen space is efficiently used with no or minimum 
empty space in the multi-column view.  

As in the LST, MLC also renders the background in blue 
when the child nodes are shown in a multi-column view. 
Columns are separated by a dark blue vertical line. 

Once users find a node of interest among the child nodes 
shown in the multi-column view, users can click on the 
node to expand it. And then the multi-column view 

 

Figure 3. Study session management software. A scrollbar appears dynamically only when the cursor is on the list. Users can 
scroll through the list using the thumb or the mouse wheel. 



dynamically changes its appearance with a smooth 
animation such that the selected node moves out of the 
tabular view to the top of the view with the alphabetical 
order preserved among the moved-out nodes (Figure 2c). In 
the same way as in the list interface, a dummy node is 
created at the same position in the multi-column view with 
background in dark gray. This transformation is also 
rendered with a smooth animation. 

In this interface, when a node is selected and moved to the 
top of the multi-column view in the tabular layout, it is 
given a wide enough space to show its full name unlike 
traditional interface and the list interface. However, the 
corresponding dummy node in the multi-column view still 
remains in an abbreviated form (Figure 2c). Opening and 
closing of a child node are supported by smooth animations 
in the same way as in the list interface. 

CONTROLLED USER STUDY 
We conducted a controlled user study to compare the three 
tree visualization interfaces in terms of helping users 
perform with three important tasks: browsing, revisit, and 
topology understanding.  

Participants 
We recruited 18 participants (9 males and 9 females). 5 of 
them are majoring in Computer Science and Engineering, 
and others are roughly equally from 8 different majors. 
They are undergraduate students except for three office 
workers. We screened participants so that all participants 
know what the tree structure is but they had never used any 
tree visualization tools similar to the three interfaces. The 
participants’ average age was 26.4 (26.5 for males and 26.3 
for females), ranging from 22 to 32. They received about 
$10 for their participation. To increase motivation, a USB 
flash memory was given to the participant with the shortest 
completion time and the highest success rate. 

Datasets and Tasks 
Datasets used for our user study were generated from the 
Open Directory categories dataset available at 
http://www.dmoz.org/. To assure that no same tree dataset 
was used for different interfaces, we generated three trees 
with large fan-outs and three trees with medium fan-outs in 
addition to an example tree for training which was different 
from trees for real tasks. We partitioned the top level 
categories into roughly equal-sized three groups to generate 
three trees with medium fan-outs. We also generated three 
different trees with large fan-outs by partitioning the top 
level categories into another roughly equal-sized three 
groups. To maintain the same or similar level of task 
difficulties across the three interfaces, we trimmed some 
branches when necessary.  

The number of child nodes for trees with medium and large 
fan-outs was determined by the resolution of screen and the 
size of nodes. In our experimental setup where we assumed 
that each node has two rows of texts (its name and a 
numeric attribute), TRD can show 24 child nodes in one 
screen. Participants have to pan the view by more than the 

height of the screen to check all child nodes using TRD 
when there are more than 50 child nodes. Thus, in each tree 
with large fan-outs, there were at least three nodes with 
about 50 child nodes on the path to the correct answer. In 
the trees with medium fan-outs, there were at least three 
nodes with about 25 child nodes on the path to the correct 
answer. 

Each subject was asked to perform 3 types of tasks to 
measure the influence of adopting our interfaces. We chose 
the following three types of tasks because they are 
generally used for evaluation of hierarchical data 
visualization as summarized in table (Table 1).  

Browsing: First-time node finding 
Participants were asked to follow the path by selecting a 
node at each level that has the largest attribute value. To 
minimize the effect of cognitive burden for comparing too 
many numbers, we highlighted three nodes with largest 
attribute values at each level by showing the attribute value 
in bold. When participants selected a wrong node at a level, 
we showed a popup error message. This task tested how 
well people can navigate through trees. 

Revisit: Visiting previously visited nodes 
We asked participants to revisit the previously visited nodes 
after performing the browsing task twice. If participants can 
remember the approximate positions of the previously 
visited nodes, they can finish this task more quickly. If not, 
they have to repeat the browsing task again at each level. 
This task tested how well the three interfaces can help 
people remember the positions of the nodes on a previously 
visited path. 

Topology: Listing all the ancestors of a node 
Participants were asked to list the ancestors of a given node 
by clicking each node on the path from the root node to the 
node. The selected node was initially shown at the center of 
the view. This task tested how well people can understand 
the topology of a tree using the three interfaces. 

Study Design and Procedure 
We ran the study as a within-subject design that each 
participant performed all three types of tasks, using all three 
kinds of interfaces, with tree datasets of two different fan-
outs. Each type of task is performed twice using the same 
tree but with different attribute values.  

We used a 3 (Interface: TRD, LST, MLC)  2 (Fan-out: 
medium, large)  3 (Task Type: browsing, revisit, topology) 
design for our user study. To avoid the learning effect, we 
counterbalanced the order of interfaces using Latin Square 
Design. Participants always performed the three tasks in the 
order of browsing, revisit, and topology. For each task, they 
performed it with a tree of medium fan-outs first and then 
with a tree of large fan-outs. 

Before beginning real tasks with an interface, we gave 
participants detailed instructions and showed them how to 
perform the three tasks with an example tree using the 
interface. They also had a chance to perform an example 



 

task by themselves so that they could get used to the task 
and the interface. In total, we provided 6 training tasks (3 
task types  2 fan-outs) for each interface. After each 
session with an interface, we asked participants to fill out 
questionnaires for subjective evaluation. The same 
procedure was repeated with two other interfaces. 
Preferences and comments were collected during debriefing.  
The experiment took about 30 minutes. 

Experiment Setup 
Each participant worked on a quad-core PC with a 19” LCD 
display running at a 12801024 pixel resolution. The 
resolution of the tree view was 1264840. All results were 
logged by session management software (Figure 3) running 
on the computer. For each trial, task descriptions were 
displayed at the bottom of the screen. After reading those 
descriptions, participants were asked to click on the “Start” 
button to indicate that they understood the task and they 
were ready to start the task. When finished, they were asked 
to click on the “Finish” button to submit an answer. 

The session management software collected the task time, 
correctness of the answer, and the total length of panning. 
Only for the first task type (browsing), the software also 
logged the number of wrong selections and the total number 
of nodes at each level. 

Hypotheses 
We expected the traditional interface to perform poorly 
when browsing trees with large fan-out values. Since child 
nodes spread widely in the TRD interface, it might be 
inevitable for users to do a lot of panning to check the child 
nodes. We also speculated that it would be hard to follow 
the path from the root to a specific node because of the 
clutter made by all edges and the frequent panning activity. 
However, since the TRD interface is the most common way 
of showing trees, most people are used to it. Thus, we were 
not sure how this would affect the experimental results 
especially in terms of correctness and task time.  

We also expected that the LST interface would be faster 
and more accurate to browse with less panning compared to 
the TRD interface because it shows all child nodes within a 
small list. The LST interface would suffer less from the 

cluttered edges because it renders only one edge from a 
parent to the list. In addition, since people are used to lists 
with scrollbars, they would be able to quickly scroll though 
child nodes in the list. Thus, we thought that it might as 
well be faster and more accurate than the TRD interface to 
follow a path.  

The MLC interface unfolds all child nodes in a compact 
tabular layout, so users do not even have to scroll to check 
child nodes. There is much less clutter in the MLC interface 
since it draws only one edge to the tabular view of all 
children just like the LST does. We expected that the MLC 
interface could outperform the other two interfaces in terms 
of task completion time and error rate for all the three types 
of tasks. One thing that we were unsure about was the effect 
of some extra horizontal panning for the larger width of the 
tabular layout than the LST interface. 

Statistical Analysis and Results 
We analyzed five parameters from the experiment; total 
elapsed time to complete the task, number of mistakes in 
selecting a node while finding the answers, total length of 
panning per task, correctness of each task, and time to 
select one of the children for expansion. We also performed 
statistical analysis of questionnaire responses. 

Time to complete the task 
We analyzed the task completion time with a 3 (Interface)  
2 (Fan-out)  3 (Task Type) repeated-measures analysis of 
variance (RM-ANOVA) and Tukey’s HSD post-hoc test. 
We excluded the data for the incorrect answers. 

We found a significant main effect of Interface 
(F2,282=39.80, p<.001), with post-hoc tests showing that the 
effect was driven by the multi-column interface taking 
significantly less task time than either of the traditional and 
list interfaces (p<.001 and p<.001, respectively). 

We also found significant main effects of Fan-out 
(F1,282=59.46, p<.001) and Task Type (F2,282=34.09, 
p<.001). It is not surprising that using a tree with large fan-
outs would take more time to complete the task. It is also 
expected that the "topology” task would take more time as 
more panning operations were needed. 

           

   (a) Main effects                                                          (b) Task Type vs. Interface 

Figure 4. Task completion time. There were significant main effects for all three factors. There was an interaction between 
Interface and Task Type. 
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Regarding all the task types, the multi-column interface 
took less task completion time than either of the traditional 
and list interfaces (Figure 4b). We found an interaction 
between Interface and Task type (F4,282=4.75, p=.001) 
(Figure 4b). In the “browsing” task, the list interface took 
more time than other interfaces. Among all the possible 
explanations, it might be attributed to the fact that 
participants had to examine all the nodes to perform the 
“browsing” task. Thus the list interface that hides some of 
the nodes at first can make the first-time node finding task 
difficult. However, the list interface outperformed the 
traditional interface in the “revisit” task. More interestingly, 
for the more complicated task, or the “topology” task, the 
task time of the traditional interface drastically increased; 
however, the list exhibited a relatively moderate increase in 
the task time. 

Mistakes made while finding the answers 
We recorded the number of mistakes in the first task type 
(or, browsing) and analyzed them with 3 (Interface)  2 
(Fan-out) RM-ANOVA with Tukey’s HSD post-hoc test. 
We found a significant main effect of Fan-out (F1,102=12.05, 
p=.001); however, we found no effect of Interface 
(F2,102=2.20, p=.116). A likely reason for this might be that 
participants only have to check three highlighted nodes at 
each level for the browsing task. Thus, the interface might 
influence the task completion time, but it was less likely 
that they could make mistakes choosing one out of three 
regardless of the interface type. 

Total length of panning to complete the task 
Length of panning in pixels was also recorded. The panning 
length was measured for each task type. We performed a 3 
(Interface)  2 (Fan-out)  3 (Task Type) RM-ANOVA for 
the panning length. 

We found a significant main effect of Interface 
(F2,306=64.99 p<.001), with post-hoc tests showing that this 
was driven by the traditional interface leading to 
significantly greater panning length than either of the list 

and multi-column interfaces (p<.001 and p<.001, 
respectively) (Figure 5a). Interestingly, the multi-column 
interface took significantly less task completion time than 
the list interface, but the two interfaces did not show a 
significant difference in the panning length. The reason 
might be that the list interfaces does not need much more 
panning than the multi-column interface, but instead it 
requires the scrolling unlike the multi-column interface.  

We also found a significant main effect of Fan-out 
(F1,306=46.34, p<.001) (Figure 5a). This result was obvious 
as the tree with large fan-out values required participants to 
explore larger area. 

We also found a significant main effect of Task Type 
(F2,306=304.93, p<.001), with post-hoc tests showing that 
the effect was driven by the “topology” task requiring 
significantly frequent panning than either of the “browsing” 
and “revisit” tasks (p<.001 and p<.001, respectively) 
(Figure 5a). This can be attributed to the fact that there was 
no automatic centering of the focus node in the topology 
task, and participants had to manually pan the tree all the 
way up to the root node and down to the selected target 
node again to finish the task. 

We found an interaction effect between Interface and Fan-
out (F2,306=4.22, p=.016) for the panning length (Figure 5b). 
Regarding the panning length, both of the list and multi-
column interfaces were less affected by the fan-out values 
than the traditional interface. The way of displaying all the 
child nodes in the traditional interface might lead to drastic 
increase in the panning length when moving from trees with 
medium fan-outs to trees with large fan-outs. On the 
contrary, the scrolling in the list interface and the compact 
tabular display in the multi-column interface saved the 
participants from rigorously panning the trees. Participants 
might have to drag the mouse more with the multi-column 
interface because the tabular view takes a wider area than 
the list interface, but the difference might not be too big. 

      

                               (a) Main effects                                          (b) Fan-out vs. Interface                (c) Fan-out vs. Task Type 

Figure 5. Panning length. There were main effects for all three factors. There were interactions between Fan-out and Interface, 
and between Fan-out and Task Type. The error bar indicates the standard error of the mean. 
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Another interaction was found between Task Type and Fan-
out (F2,306=10.59, p<.001), indicating that the “topology” 
task was more sensitive to the fan-out value than either of 
the other two tasks (Figure 5c). As explained before for the 
main effect of Task Type, participants had to do more 
manual panning for the topology task than the other two 
types of tasks, and trees with larger fan-outs might require 
much more manual panning. 

Correctness of answers 
We analyzed the number of correct answers for the “revisit” 
and “topology” tasks types using a 3 (Interface)  2 (Fan-
out)  2 (Task Type) RM-ANOVA with Tukey’s HSD 
post-hoc test. We found no significant effects.  

Time to select one of the child nodes 
Participants accomplished each task by selecting the nodes 
which corresponded to the task description. For each node 
selection, we recorded the number of child nodes and the 
time to select one of them. We performed a 2-way ANOVA 
with Interface and the number of child nodes as fixed 
factors. 

We found a significant main effect of Interface 
(F2,1004=20.10, p<.001), with post-hoc tests indicating that 
MLC was significantly different from TRD and LST. The 
node selection time tended to decrease in the order of the 
list, traditional, and multi-column interfaces (Figure 6). We 
also found a significant main effect of the number of child 

nodes (F25,1004=5.90, p<.001). It is not surprising 
considering that it takes more time to select one if there are 
many more choices. An interaction effect was found 
between Interface and the number of child nodes 
(F48,1004=1.63, p=.005). 

We measured correlations between the number of child 
nodes and the selection time for each interface. The 
correlation coefficients of traditional, list, and multi-column 
interfaces were 0.518, 0.241, and 0.055, respectively 
(Figure 7). The coefficients were transformed with Fisher’s 
z-transformation, and the results were compared with paired 
t-test. The transformed coefficient was significantly 
different only between the traditional and multi-column 
interfaces (t(359)=3.01, p=.003). This indicates that using 
the multi-column interface mitigated the effect of 
increasing number of children on the node selection time. 

Subjective data 
We asked each participant to answer 7 questions to collect 
subjective preferences over the three interfaces by using a 7 
points Likert scale [Rating: 1=Strongly disagree; 
7=Strongly agree] (Table 2).  

 
           (a) Traditional                                              (b) List                                             (c) Multi-column 

Figure 7.  Number of child nodes vs. time to select one child for expansion. The correlations were significantly different 
between TRD and MLC.
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Figure 6. Time to select one child node. The error bar 
indicates the standard error of the mean. 
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Question TRD LST MLC

Q1. This interface is easy to learn. 5.8 5.5 5.9

Q2. This interface is easy to use. 4.9 5.3 5.6

Q3. This interface is fun. * 4.0 4.8 4.9

Q4. It is easy to understand the 
tree structure with this interface. 

5.1 4.8 5.3

Q5. It is easy to follow the path 
with this interface. * 

4.1 4.8 5.2

Q6. Overall, I like this interface. 4.3 4.7 4.9

Q7. I would like to use this 
interface again. * 

4.0 4.4 4.7

Table 2. Average Likert scale ratings for the three interfaces 
using the scale of 1=Strongly disagree and 7=Strongly agree. 

The questions with significantly different ratings between 
three interfaces were marked with an asterisk (*). 



We ran Friedman Chi-Square tests for the ratings to find 
significant results for the questions 3, 5 and 7 (p=.002, 
p=.014, and p=.029, respectively) (Figure 8). Participants 
indicated that they enjoyed using the two new interfaces 
(LST and MLC) more than the traditional interface. 
Between the two, they preferred the multi-column interface  
to the list interface. This preference toward the multi-
column interface was also confirmed by the fact that it was 
chosen to be the best interface by most people when asked 
to pick the best one (Figure 9). There was a significant 
difference among the three interfaces in terms of the 
number of people who voted for each interface (χ²=14, 
p<.001).  

Participants also indicated that it was easiest to follow the 
path with the multi-column interface than either of the other 
two interfaces and the list interface was better than the 
traditional interface. When asked if they wanted to use 
again next time, participants were more likely to use the 
multi-column interface again than the other two. We 
attribute this to the fact that people can see all child nodes 
at once without scrolling in the multi-column interface. 

DISCUSSION AND FUTURE WORK 
Our controlled user study results showed promising 
possibilities to support our hypothesis that the multi-column 
interface outperforms the other two interfaces in terms of 
task completion time and subjective satisfaction. We 
attribute this outcome to the fact that it can show all child 
nodes in a compact view so that users do not have to pan or 
scroll. 

In our experimental setup, it turned out that overall, the 
wide width of the multi-column view did not influence 
participants’ performance. However, it was interesting that 
one of the participants who majors in visual arts picked the 
multi-column interface as the worst interface, complaining 
that the visual design of the multi-column view was too 
wide to see them all. 

While we expected that the familiarity with the list and 
scrolling interface might help participants performing some 
tasks, it was not the case. It was surprising to see that the 
list interface tended to be worse than the traditional 
interface for the browsing task in terms of task completion 
time. We attribute it to the fact that people are so used to 
the traditional interface that even scrolling could not 
significantly improve the total task time compared to the 

panning. It was also interesting to learn that the list 
interface did not outperform the multi-column interface in 
any tasks. The most likely reason for this is that the list has 
to hide many child nodes while the multi-column interface 
can show all child nodes at once.  

Some participants said that it was harder to understand the 
tree structure with the list interface than with the traditional 
interface. There are two likely reasons for this. First, the 
traditional interface is more familiar form of tree 
visualization, which showed up in the freeform comments. 
Second, the visual cue (i.e., “more”) to indicate that there 
are more to show above and below in the list interface was 
not efficient compared to the visual cue (i.e., edges) in the 
traditional interface. Thus, users sometimes do not notice 
that there are more hidden nodes in the list until they move 
the mouse over the list (and see the scrollbar).  

Multi-column interface tries to resolve the issue of 
excessive occupation of vertical space for trees with a large 
fan-out by resorting to occupation of more horizontal space 
using multiple columns. In this experiment, we controlled 
the number of child nodes around 50 for the large fan-out 
case. Thus, participants could see all columns at once in the 
multi-column interface. When many more child nodes have 
to be shown, users may have to pan horizontally to see all 
the columns. Then the advantage of the multi-column 
interface that it can show all child nodes at once disappears. 
In that case, a focus+context technique that does not cause 
an overshooting problem might offer help. Or a horizontal 
scroll bar attached to the bottom of the multi-column 
interface can be an alternative. Furthermore, the necessity 
of horizontal scrolling increases with the trees of high depth. 
Additional user studies with a factor based comparison 
would be needed to generalize our results for other cases. 
For example, further evaluations using trees with larger fan-
outs and with high depth would shed more light on the 
benefits of these alternative Multi-column interfaces.  

CONCLUSION 
We presented two extensions to the conventional node-link 
interface - a list view with a scrollbar and a multi-column -
to help users better browse and understand the tree 
structures with large fan-outs. We conducted a controlled 

 

Figure 9. Best and worst interfaces. 
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Figure 8. Subjective rating. The error bar indicates the 
standard error of the mean. 
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experiment to investigate whether they could improve users' 
performance for three types of tasks; browsing, revisit, and 
understanding topology. We found that users browse and 
understand the tree faster with the multi-column interface, 
providing a compact view of child nodes that does not 
require scrolling. Overall, users also preferred the multi-
column interface to the other two interfaces. 
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