
A Comparative Evaluation on Tree Visualization Methods
for Hierarchical Structures with Large Fan-outs

Hyunjoo Song1, Bohyoung Kim1, Bongshin Lee2, Jinwook Seo1

1School of Computer Science and Engineering
Seoul National University

599 Gwanak-ro, Gwanak-gu, Seoul 151-744, Korea
hjsong@hcil.snu.ac.kr,

{bhkim, jwseo}@cse.snu.ac.kr

2Microsoft Research
One Microsoft Way

Redmond, WA 98052, USA
bongshin@microsoft.com

ABSTRACT

Hierarchical structures with large fan-outs are hard to
browse and understand. In the conventional node-link tree
visualization, the screen quickly becomes overcrowded as
users open nodes that have too many child nodes to fit in
one screen. To address this problem, we propose two
extensions to the conventional node-link tree visualization:
a list view with a scrollbar and a multi-column interface.
We compared them against the conventional tree
visualization interface in a user study. Results show that
users are able to browse and understand the tree structure
faster with the multi-column interface than the other two
interfaces. Overall, they also liked the multi-column better
than others.

Author Keywords
Tree visualization, large fan-outs, multi-column layout,
evaluation, browsing, revisit, and topology.

ACM Classification Keywords
H5.2. Information Interfaces and Presentation (e.g., HCI):
User Interfaces-Evaluation/Methodology.

General Terms
Design, Human Factors

INTRODUCTION
Organizing large hierarchical information using a tree data
structure is quite common. For example, the internet
directory of the Web (e.g. the open directory project [14]) is
hierarchical and can be visualized in the tree data structure.
Another example could be ontologies used in many
research fields such as biomedical informatics, artificial
intelligence, and library science. Ontologies are graphs, but
they are often presented as trees. As the hierarchical
structure grows bigger, it becomes more and more difficult
to understand the overall structure (i.e., the topology of the
hierarchical structure) and to browse it efficiently.

One of the most troublesome problems occurring in
browsing a large hierarchical structure is that the screen
quickly becomes overcrowded when users open nodes with
a large number of child nodes. For example, a phylogenetic
tree (a tree used in biology showing the evolutionary
relationships among biological species) has many internal
nodes with several dozens of child nodes. Also the open
directory has a category structure which consists of many
nodes with more than 50 child nodes. This problem gets
worse when it is required to show additional attributes of
the node.

We can think of several remedies for this overcrowding
problem. Focus+context techniques can show many more
nodes in a screen by enlarging focused nodes and shrinking
other nodes. Their distortion of information space may
cause challenges in target acquisition [8], known as an
overshooting problem. This could hinder users' browsing
tasks [9]. Another solution is to use a list with a vertical
scrollbar to show child nodes. Users may need to scroll up
and down to select and open up a child node. The other
alternative is to show child nodes using a multi-column
layout, which requires more horizontal space than the list
interface but could show more child nodes in a single view.
Each solution has its pros and cons, but there has been no
attempt to compare such alternatives in terms of accuracy
and speed in performing tasks such as browsing and
understanding large trees of large fan-outs.

In this paper, we present a comparative evaluation on three
interfaces for showing child nodes of trees with medium
and large fan-outs; traditional (baseline), list, and multi-
column interfaces. We compared the three interfaces in
supporting three different tasks (browsing, revisit, and
understanding topology) using hierarchical datasets with
medium (around 25) and large (around 50) numbers of
child nodes at each level.

This paper is organized as follows. We first provide related
work, and then we describe in detail three interfaces for
viewing child nodes. Then we explain the design and
procedure of our study, followed by the summary of our
comparative evaluation results. We close our paper with in-
depth discussion on the study results and future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
CHI 2010, April 10–15, 2010, Atlanta, Georgia, USA.
Copyright 2010 ACM 978-1-60558-929-9/10/04....$10.00.

RELATED WORK
Over the last few decades, tree visualizations have been
extensively studied. There are two main categories of
techniques for displaying and interacting with trees: node-
link techniques (e.g., [16,22]) and space filling techniques
(e.g., Treemap [10,19] and Information Slices [1]).

Cone Trees makes the context easily visible by using a
focus+context technique [18]. To address scalability issue
of Cone Trees, Carrièrre and Kazman suggested clustering
nodes [6]. Hyperbolic Browser solves the occlusion
problem of Cone Trees by using hyperbolic space instead of
3D perspective [12]. Degree of Interest Tree displays an
overview of the tree by only showing detail for nodes with
high degree of interest (DOI) values [5]. SpaceTree
combines the node-link tree diagram with a zooming
environment that dynamically lays out branches of the tree
to best fit the available screen space [15].

While node link diagrams show topological structures well,
they make inefficient use of screen space. On the contrary,
the space filling techniques remedy the situation by making
full use of screen space and efficiently visualizing trees that
have attribute values at leaves. However, they do not
convey topological structures well, since they are focused
on containment rather than connection. Cushion Treemaps
[21] tried to tackle this problem by adding shading as an
extra cue. Elastic Hierarchies, a hybrid approach, combines
the space efficiency of Treemap with the structural clarity
of node-link diagrams [24]. Cheops compresses the tree by
overlapping child nodes represented with triangles [4].
However, in spite of a very compact overview of huge trees,
it is difficult to interpret the tree structures even with the
various visual cues.

Given many tree visualization techniques, researchers have
been trying to evaluate and compare their efficacy.
Cockburn and McKenzie reported an empirical evaluation
on the usability of the cone tree interface [7]. They found
that many participants preferred the cone tree interface to a
normal tree interface, although they were significantly
slower at locating named files with the cone tree interface.
Barlow and Neville compared four different visualizations
with respect to their ability to communicate the topology of

the tree and support comparisons of node size [3]. They
found that Treemap-style was the slowest for most tasks.
Plaisant et al. conducted a controlled experiment to
compare SpaceTree with Microsoft Explorer and
Hyperbolic browser [15]. They showed that SpaceTree
works better than the others for estimating overall tree
topology and revisiting previously visited nodes. SpaceTree
was also found more attractive than Explorer. Kobsa
conducted a controlled experiment to compare six tree
visualization techniques [11]. Wiss et al. evaluated three 3D
information visualizations with the hierarchical data [23],
using seven high level tasks chosen from the taxonomy of
tasks by Shneiderman [20]. Three visualization tools were
compared with respect to their suitability for different
datasets and their support for tasks. Risden et al. compared
a 3D hyperbolic interface with two conventional 2D
browsers by using the snap.com hierarchy contents [17].
While the study demonstrated the strengths and weaknesses
of those three interfaces, there were no significant
differences in overall user satisfaction across them. These
efforts are summarized in Table 1 for easy comparison.

Despite the extensive previous research on tree
visualizations, there has not been much effort to handle the
trees with large fan-outs, especially when reading node
labels is important. An interaction technique combined with
dynamic node link layout was proposed to help users
navigate and select a node in a large tree [2]. A multi-
column layout approach was presented in TreePlus [13]
while visualizing graphs as trees. However, the multi-
column layout in TreePlus is not persistent in that once
users open a node displayed in the multi-column TreePlus
replaces the multi-column with the conventional layout.
More importantly, the efficacy of these techniques has not
yet been evaluated. In this paper, we compare three
interfaces (traditional, list, and multi-column interfaces).

TREE VISUALIZATION INTERFACES
In this section, we describe three tree visualization
interfaces that take different approaches to show child
nodes: traditional interface (TRD), list interface (LST), and
multi-column interface (MLC) (Figure 1).

Authors Tasks Compared Trees Compared

Cockburn and McKenzie [7] Navigation Cone Tree, Normal Tree

Barlow and Neville [3] Navigation, Understanding Topology Normal Tree, Tree ring, Icicle Plot, Treemap

Plaisant et al. [15] Navigation, Understanding Topology Collapsible tree, Hyperbolic Tree, SpaceTree

Kobsa [11] Navigation, Understanding Topology
Treemap, Cushion Treemaps, BeamTrees,
Hyperbolic Tree, TreeViewer, Collapsible tree

Wiss et al. [23] Shneiderman’s 7 tasks [20]
CamTree, Information Cube, Information
Landscape

Risden et al. [17] Navigation, Understanding Topology Hyperbolic Tree, Collapsible tree

Table 1. Previous research on evaluations of tree visualizations

Traditional interface (TRD)
The traditional interface consists of nodes and edges
(Figure 1a). Each node may have multiple rows of texts: its
name and attributes of interest. When the node name is too
long to display, it is abbreviated. Users can select a node
with a mouse click. When selected, all child nodes of the
selected node are displayed on the right side (Figure 2a).
The selected node is highlighted with red background. Each
child node is connected to the (selected) parent node with
an edge and child nodes are arranged vertically in
alphabetical order. A gray arrow is shown at the right end
of a node when it has child nodes to give users a visual cue.

The traditional interface is not efficient in showing child
nodes when the fan-out is large for the parent node due to
its space inefficiency of wasting the parent side and
cluttering the child side. We came up with two new
alternative interfaces: list interface (LST), and multi-
column interface (MLC).

List interface (LST)
The list interface dynamically changes its appearance
according to the number of child nodes to show. If there are
just a small number of child nodes, LST shows the child
nodes in the same way as the traditional interface. If there
are too many child nodes to fit in the screen, it visualizes

(a) Traditional (b) List (c) Multi-Column

Figure 2. Three Tree Visualization Interfaces with a child node selected to open. TRD interface unfolds all child nodes in the
traditional way. LST interface moves the selected node to the top of the list and shows its children in a list. MLC interface

moves the selected node to the top of the multi-column view and shows the full name. In LST and MLC, a dummy node in gray
background keeps the original position of the selected node that is moved outside.

(a) Traditional (b) List (c) Multi-Column

Figure 1. Three Tree Visualization Interfaces: Traditional (TRD), List (LST), and Multi-Column (MLC). TRD interface
unfolds all child nodes in the traditional way. LST interface shows child nodes in a list with a cue node with the word, “more,”

indicating that there are more invisible ones. MLC interface shows all children in a tabular display with multiple columns.

child nodes using a custom list with background in blue
(Figure 1b). Thus, users do not have to drag up and down
the whole tree to explore the child nodes as with the
traditional interface. In addition, since it renders only one
edge from parent to the list containing child nodes, the view
is less cluttered.

The height of the list is smaller than the vertical span of the
screen by about twice the node height to give a space where
neighboring branches can also be shown in the screen.
When initially opened, the list shows the word, “more” at
the bottom to indicate that there are more child nodes below.

When users start to explore the child nodes by moving the
cursor over the list, the “more” node disappears and a
standard scrollbar appears on the right side, with which
users can scroll up and down to check previously invisible
nodes (Figure 3). Since it behaves like the standard list,
users can also scroll the list using the mouse wheel. Upon
the mouse cursor exiting it, the list view hides the scrollbar
and shows the “more” node appropriately at the top or
bottom (or both).

When users select a child node in the list by clicking on it,
the list dynamically changes its appearance again to move
the selected child node to the outside, right to the top of it
while preserving the alphabetical order among the moved-
out nodes (Figure 2b). This transformation is rendered with
a smooth animation. To avoid confusion caused by the
change of the list content, a dummy node is created in the
same position with the background in distinctive dark gray.

Users can select and close any opened node taken outside

the list by clicking on the node or the corresponding gray
dummy node. The selected node returns to the original
position in the list where its dummy node is. Again the
transition is done with a smooth animation to help users
maintain context.

Multi-column interface (MLC)
The multi-column interface also changes its appearance
dynamically according to the number of child nodes to
show. If there are a small number of child nodes, MLC
renders the child nodes in the same way as the traditional
interface. If there are too many child nodes to fit in the
screen, all of the child nodes are displayed using a multi-
column layout (Figure 1c). Thus, users do not have to scroll
up and down to explore the child nodes as with the list
interface. Users, however, need to drag left and right to see
all the child nodes if there are too many child nodes to fit in
the screen even with the multi-column view.

When the child nodes are shown using the multi-column
interface, all columns are balanced so that each of them
holds the same number of nodes except that the last column
could have a few less nodes. Balanced columns make sure
that the screen space is efficiently used with no or minimum
empty space in the multi-column view.

As in the LST, MLC also renders the background in blue
when the child nodes are shown in a multi-column view.
Columns are separated by a dark blue vertical line.

Once users find a node of interest among the child nodes
shown in the multi-column view, users can click on the
node to expand it. And then the multi-column view

Figure 3. Study session management software. A scrollbar appears dynamically only when the cursor is on the list. Users can
scroll through the list using the thumb or the mouse wheel.

dynamically changes its appearance with a smooth
animation such that the selected node moves out of the
tabular view to the top of the view with the alphabetical
order preserved among the moved-out nodes (Figure 2c). In
the same way as in the list interface, a dummy node is
created at the same position in the multi-column view with
background in dark gray. This transformation is also
rendered with a smooth animation.

In this interface, when a node is selected and moved to the
top of the multi-column view in the tabular layout, it is
given a wide enough space to show its full name unlike
traditional interface and the list interface. However, the
corresponding dummy node in the multi-column view still
remains in an abbreviated form (Figure 2c). Opening and
closing of a child node are supported by smooth animations
in the same way as in the list interface.

CONTROLLED USER STUDY
We conducted a controlled user study to compare the three
tree visualization interfaces in terms of helping users
perform with three important tasks: browsing, revisit, and
topology understanding.

Participants
We recruited 18 participants (9 males and 9 females). 5 of
them are majoring in Computer Science and Engineering,
and others are roughly equally from 8 different majors.
They are undergraduate students except for three office
workers. We screened participants so that all participants
know what the tree structure is but they had never used any
tree visualization tools similar to the three interfaces. The
participants’ average age was 26.4 (26.5 for males and 26.3
for females), ranging from 22 to 32. They received about
$10 for their participation. To increase motivation, a USB
flash memory was given to the participant with the shortest
completion time and the highest success rate.

Datasets and Tasks
Datasets used for our user study were generated from the
Open Directory categories dataset available at
http://www.dmoz.org/. To assure that no same tree dataset
was used for different interfaces, we generated three trees
with large fan-outs and three trees with medium fan-outs in
addition to an example tree for training which was different
from trees for real tasks. We partitioned the top level
categories into roughly equal-sized three groups to generate
three trees with medium fan-outs. We also generated three
different trees with large fan-outs by partitioning the top
level categories into another roughly equal-sized three
groups. To maintain the same or similar level of task
difficulties across the three interfaces, we trimmed some
branches when necessary.

The number of child nodes for trees with medium and large
fan-outs was determined by the resolution of screen and the
size of nodes. In our experimental setup where we assumed
that each node has two rows of texts (its name and a
numeric attribute), TRD can show 24 child nodes in one
screen. Participants have to pan the view by more than the

height of the screen to check all child nodes using TRD
when there are more than 50 child nodes. Thus, in each tree
with large fan-outs, there were at least three nodes with
about 50 child nodes on the path to the correct answer. In
the trees with medium fan-outs, there were at least three
nodes with about 25 child nodes on the path to the correct
answer.

Each subject was asked to perform 3 types of tasks to
measure the influence of adopting our interfaces. We chose
the following three types of tasks because they are
generally used for evaluation of hierarchical data
visualization as summarized in table (Table 1).

Browsing: First-time node finding
Participants were asked to follow the path by selecting a
node at each level that has the largest attribute value. To
minimize the effect of cognitive burden for comparing too
many numbers, we highlighted three nodes with largest
attribute values at each level by showing the attribute value
in bold. When participants selected a wrong node at a level,
we showed a popup error message. This task tested how
well people can navigate through trees.

Revisit: Visiting previously visited nodes
We asked participants to revisit the previously visited nodes
after performing the browsing task twice. If participants can
remember the approximate positions of the previously
visited nodes, they can finish this task more quickly. If not,
they have to repeat the browsing task again at each level.
This task tested how well the three interfaces can help
people remember the positions of the nodes on a previously
visited path.

Topology: Listing all the ancestors of a node
Participants were asked to list the ancestors of a given node
by clicking each node on the path from the root node to the
node. The selected node was initially shown at the center of
the view. This task tested how well people can understand
the topology of a tree using the three interfaces.

Study Design and Procedure
We ran the study as a within-subject design that each
participant performed all three types of tasks, using all three
kinds of interfaces, with tree datasets of two different fan-
outs. Each type of task is performed twice using the same
tree but with different attribute values.

We used a 3 (Interface: TRD, LST, MLC)  2 (Fan-out:
medium, large)  3 (Task Type: browsing, revisit, topology)
design for our user study. To avoid the learning effect, we
counterbalanced the order of interfaces using Latin Square
Design. Participants always performed the three tasks in the
order of browsing, revisit, and topology. For each task, they
performed it with a tree of medium fan-outs first and then
with a tree of large fan-outs.

Before beginning real tasks with an interface, we gave
participants detailed instructions and showed them how to
perform the three tasks with an example tree using the
interface. They also had a chance to perform an example

task by themselves so that they could get used to the task
and the interface. In total, we provided 6 training tasks (3
task types  2 fan-outs) for each interface. After each
session with an interface, we asked participants to fill out
questionnaires for subjective evaluation. The same
procedure was repeated with two other interfaces.
Preferences and comments were collected during debriefing.
The experiment took about 30 minutes.

Experiment Setup
Each participant worked on a quad-core PC with a 19” LCD
display running at a 12801024 pixel resolution. The
resolution of the tree view was 1264840. All results were
logged by session management software (Figure 3) running
on the computer. For each trial, task descriptions were
displayed at the bottom of the screen. After reading those
descriptions, participants were asked to click on the “Start”
button to indicate that they understood the task and they
were ready to start the task. When finished, they were asked
to click on the “Finish” button to submit an answer.

The session management software collected the task time,
correctness of the answer, and the total length of panning.
Only for the first task type (browsing), the software also
logged the number of wrong selections and the total number
of nodes at each level.

Hypotheses
We expected the traditional interface to perform poorly
when browsing trees with large fan-out values. Since child
nodes spread widely in the TRD interface, it might be
inevitable for users to do a lot of panning to check the child
nodes. We also speculated that it would be hard to follow
the path from the root to a specific node because of the
clutter made by all edges and the frequent panning activity.
However, since the TRD interface is the most common way
of showing trees, most people are used to it. Thus, we were
not sure how this would affect the experimental results
especially in terms of correctness and task time.

We also expected that the LST interface would be faster
and more accurate to browse with less panning compared to
the TRD interface because it shows all child nodes within a
small list. The LST interface would suffer less from the

cluttered edges because it renders only one edge from a
parent to the list. In addition, since people are used to lists
with scrollbars, they would be able to quickly scroll though
child nodes in the list. Thus, we thought that it might as
well be faster and more accurate than the TRD interface to
follow a path.

The MLC interface unfolds all child nodes in a compact
tabular layout, so users do not even have to scroll to check
child nodes. There is much less clutter in the MLC interface
since it draws only one edge to the tabular view of all
children just like the LST does. We expected that the MLC
interface could outperform the other two interfaces in terms
of task completion time and error rate for all the three types
of tasks. One thing that we were unsure about was the effect
of some extra horizontal panning for the larger width of the
tabular layout than the LST interface.

Statistical Analysis and Results
We analyzed five parameters from the experiment; total
elapsed time to complete the task, number of mistakes in
selecting a node while finding the answers, total length of
panning per task, correctness of each task, and time to
select one of the children for expansion. We also performed
statistical analysis of questionnaire responses.

Time to complete the task
We analyzed the task completion time with a 3 (Interface) 
2 (Fan-out)  3 (Task Type) repeated-measures analysis of
variance (RM-ANOVA) and Tukey’s HSD post-hoc test.
We excluded the data for the incorrect answers.

We found a significant main effect of Interface
(F2,282=39.80, p<.001), with post-hoc tests showing that the
effect was driven by the multi-column interface taking
significantly less task time than either of the traditional and
list interfaces (p<.001 and p<.001, respectively).

We also found significant main effects of Fan-out
(F1,282=59.46, p<.001) and Task Type (F2,282=34.09,
p<.001). It is not surprising that using a tree with large fan-
outs would take more time to complete the task. It is also
expected that the "topology” task would take more time as
more panning operations were needed.

 (a) Main effects (b) Task Type vs. Interface

Figure 4. Task completion time. There were significant main effects for all three factors. There was an interaction between
Interface and Task Type.

0

10

20

30

40

50

T
R

D

LS
T

M
LC

T
as

k
ti

m
e

(s
ec

o
n

d
s)

M
ed

iu
m

La
rg

e

B
ro

w
si

ng

R
e

vi
si

t

T
op

ol
og

y

0

10

20

30

40

50

Browsing Revisit Topology

T
as

k
ti

m
e

(s
ce

o
n

d
s)

TRD

LST

MLC

Regarding all the task types, the multi-column interface
took less task completion time than either of the traditional
and list interfaces (Figure 4b). We found an interaction
between Interface and Task type (F4,282=4.75, p=.001)
(Figure 4b). In the “browsing” task, the list interface took
more time than other interfaces. Among all the possible
explanations, it might be attributed to the fact that
participants had to examine all the nodes to perform the
“browsing” task. Thus the list interface that hides some of
the nodes at first can make the first-time node finding task
difficult. However, the list interface outperformed the
traditional interface in the “revisit” task. More interestingly,
for the more complicated task, or the “topology” task, the
task time of the traditional interface drastically increased;
however, the list exhibited a relatively moderate increase in
the task time.

Mistakes made while finding the answers
We recorded the number of mistakes in the first task type
(or, browsing) and analyzed them with 3 (Interface)  2
(Fan-out) RM-ANOVA with Tukey’s HSD post-hoc test.
We found a significant main effect of Fan-out (F1,102=12.05,
p=.001); however, we found no effect of Interface
(F2,102=2.20, p=.116). A likely reason for this might be that
participants only have to check three highlighted nodes at
each level for the browsing task. Thus, the interface might
influence the task completion time, but it was less likely
that they could make mistakes choosing one out of three
regardless of the interface type.

Total length of panning to complete the task
Length of panning in pixels was also recorded. The panning
length was measured for each task type. We performed a 3
(Interface)  2 (Fan-out)  3 (Task Type) RM-ANOVA for
the panning length.

We found a significant main effect of Interface
(F2,306=64.99 p<.001), with post-hoc tests showing that this
was driven by the traditional interface leading to
significantly greater panning length than either of the list

and multi-column interfaces (p<.001 and p<.001,
respectively) (Figure 5a). Interestingly, the multi-column
interface took significantly less task completion time than
the list interface, but the two interfaces did not show a
significant difference in the panning length. The reason
might be that the list interfaces does not need much more
panning than the multi-column interface, but instead it
requires the scrolling unlike the multi-column interface.

We also found a significant main effect of Fan-out
(F1,306=46.34, p<.001) (Figure 5a). This result was obvious
as the tree with large fan-out values required participants to
explore larger area.

We also found a significant main effect of Task Type
(F2,306=304.93, p<.001), with post-hoc tests showing that
the effect was driven by the “topology” task requiring
significantly frequent panning than either of the “browsing”
and “revisit” tasks (p<.001 and p<.001, respectively)
(Figure 5a). This can be attributed to the fact that there was
no automatic centering of the focus node in the topology
task, and participants had to manually pan the tree all the
way up to the root node and down to the selected target
node again to finish the task.

We found an interaction effect between Interface and Fan-
out (F2,306=4.22, p=.016) for the panning length (Figure 5b).
Regarding the panning length, both of the list and multi-
column interfaces were less affected by the fan-out values
than the traditional interface. The way of displaying all the
child nodes in the traditional interface might lead to drastic
increase in the panning length when moving from trees with
medium fan-outs to trees with large fan-outs. On the
contrary, the scrolling in the list interface and the compact
tabular display in the multi-column interface saved the
participants from rigorously panning the trees. Participants
might have to drag the mouse more with the multi-column
interface because the tabular view takes a wider area than
the list interface, but the difference might not be too big.

 (a) Main effects (b) Fan-out vs. Interface (c) Fan-out vs. Task Type

Figure 5. Panning length. There were main effects for all three factors. There were interactions between Fan-out and Interface,
and between Fan-out and Task Type. The error bar indicates the standard error of the mean.

0

2

4

6

8

10

12

14

T
R

D

LS
T

M
LCP
an

n
in

g
 l

en
g

th
 (

10
00

 p
ix

el
s)

M
ed

iu
m

La
rg

e

B
ro

w
si

ng

R
e

vi
si

t

T
op

ol
og

y

0

2

4

6

8

10

12

14

Medium Large

P
an

n
in

g
 l

en
g

th
 (

10
00

 p
ix

el
s)

TRD

LST

MLC

Medium Large

Browsing

Revisit

Topology

Another interaction was found between Task Type and Fan-
out (F2,306=10.59, p<.001), indicating that the “topology”
task was more sensitive to the fan-out value than either of
the other two tasks (Figure 5c). As explained before for the
main effect of Task Type, participants had to do more
manual panning for the topology task than the other two
types of tasks, and trees with larger fan-outs might require
much more manual panning.

Correctness of answers
We analyzed the number of correct answers for the “revisit”
and “topology” tasks types using a 3 (Interface)  2 (Fan-
out)  2 (Task Type) RM-ANOVA with Tukey’s HSD
post-hoc test. We found no significant effects.

Time to select one of the child nodes
Participants accomplished each task by selecting the nodes
which corresponded to the task description. For each node
selection, we recorded the number of child nodes and the
time to select one of them. We performed a 2-way ANOVA
with Interface and the number of child nodes as fixed
factors.

We found a significant main effect of Interface
(F2,1004=20.10, p<.001), with post-hoc tests indicating that
MLC was significantly different from TRD and LST. The
node selection time tended to decrease in the order of the
list, traditional, and multi-column interfaces (Figure 6). We
also found a significant main effect of the number of child

nodes (F25,1004=5.90, p<.001). It is not surprising
considering that it takes more time to select one if there are
many more choices. An interaction effect was found
between Interface and the number of child nodes
(F48,1004=1.63, p=.005).

We measured correlations between the number of child
nodes and the selection time for each interface. The
correlation coefficients of traditional, list, and multi-column
interfaces were 0.518, 0.241, and 0.055, respectively
(Figure 7). The coefficients were transformed with Fisher’s
z-transformation, and the results were compared with paired
t-test. The transformed coefficient was significantly
different only between the traditional and multi-column
interfaces (t(359)=3.01, p=.003). This indicates that using
the multi-column interface mitigated the effect of
increasing number of children on the node selection time.

Subjective data
We asked each participant to answer 7 questions to collect
subjective preferences over the three interfaces by using a 7
points Likert scale [Rating: 1=Strongly disagree;
7=Strongly agree] (Table 2).

 (a) Traditional (b) List (c) Multi-column

Figure 7. Number of child nodes vs. time to select one child for expansion. The correlations were significantly different
between TRD and MLC.

R = 0.518

0

10

20

30

40

0 20 40 60

S
el

ec
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

of child nodes

TRD

R = 0.241

0

10

20

30

40

0 20 40 60

of child nodes

LST

R = 0.055

0

10

20

30

40

0 20 40 60

of child nodes

MLC

Figure 6. Time to select one child node. The error bar
indicates the standard error of the mean.

0

1

2

3

4

5

6

7

TRD LST MLC

S
el

ec
ti

o
n

 t
im

e
(s

ec
o

n
d

s)

Question TRD LST MLC

Q1. This interface is easy to learn. 5.8 5.5 5.9

Q2. This interface is easy to use. 4.9 5.3 5.6

Q3. This interface is fun. * 4.0 4.8 4.9

Q4. It is easy to understand the
tree structure with this interface.

5.1 4.8 5.3

Q5. It is easy to follow the path
with this interface. *

4.1 4.8 5.2

Q6. Overall, I like this interface. 4.3 4.7 4.9

Q7. I would like to use this
interface again. *

4.0 4.4 4.7

Table 2. Average Likert scale ratings for the three interfaces
using the scale of 1=Strongly disagree and 7=Strongly agree.

The questions with significantly different ratings between
three interfaces were marked with an asterisk (*).

We ran Friedman Chi-Square tests for the ratings to find
significant results for the questions 3, 5 and 7 (p=.002,
p=.014, and p=.029, respectively) (Figure 8). Participants
indicated that they enjoyed using the two new interfaces
(LST and MLC) more than the traditional interface.
Between the two, they preferred the multi-column interface
to the list interface. This preference toward the multi-
column interface was also confirmed by the fact that it was
chosen to be the best interface by most people when asked
to pick the best one (Figure 9). There was a significant
difference among the three interfaces in terms of the
number of people who voted for each interface (χ²=14,
p<.001).

Participants also indicated that it was easiest to follow the
path with the multi-column interface than either of the other
two interfaces and the list interface was better than the
traditional interface. When asked if they wanted to use
again next time, participants were more likely to use the
multi-column interface again than the other two. We
attribute this to the fact that people can see all child nodes
at once without scrolling in the multi-column interface.

DISCUSSION AND FUTURE WORK
Our controlled user study results showed promising
possibilities to support our hypothesis that the multi-column
interface outperforms the other two interfaces in terms of
task completion time and subjective satisfaction. We
attribute this outcome to the fact that it can show all child
nodes in a compact view so that users do not have to pan or
scroll.

In our experimental setup, it turned out that overall, the
wide width of the multi-column view did not influence
participants’ performance. However, it was interesting that
one of the participants who majors in visual arts picked the
multi-column interface as the worst interface, complaining
that the visual design of the multi-column view was too
wide to see them all.

While we expected that the familiarity with the list and
scrolling interface might help participants performing some
tasks, it was not the case. It was surprising to see that the
list interface tended to be worse than the traditional
interface for the browsing task in terms of task completion
time. We attribute it to the fact that people are so used to
the traditional interface that even scrolling could not
significantly improve the total task time compared to the

panning. It was also interesting to learn that the list
interface did not outperform the multi-column interface in
any tasks. The most likely reason for this is that the list has
to hide many child nodes while the multi-column interface
can show all child nodes at once.

Some participants said that it was harder to understand the
tree structure with the list interface than with the traditional
interface. There are two likely reasons for this. First, the
traditional interface is more familiar form of tree
visualization, which showed up in the freeform comments.
Second, the visual cue (i.e., “more”) to indicate that there
are more to show above and below in the list interface was
not efficient compared to the visual cue (i.e., edges) in the
traditional interface. Thus, users sometimes do not notice
that there are more hidden nodes in the list until they move
the mouse over the list (and see the scrollbar).

Multi-column interface tries to resolve the issue of
excessive occupation of vertical space for trees with a large
fan-out by resorting to occupation of more horizontal space
using multiple columns. In this experiment, we controlled
the number of child nodes around 50 for the large fan-out
case. Thus, participants could see all columns at once in the
multi-column interface. When many more child nodes have
to be shown, users may have to pan horizontally to see all
the columns. Then the advantage of the multi-column
interface that it can show all child nodes at once disappears.
In that case, a focus+context technique that does not cause
an overshooting problem might offer help. Or a horizontal
scroll bar attached to the bottom of the multi-column
interface can be an alternative. Furthermore, the necessity
of horizontal scrolling increases with the trees of high depth.
Additional user studies with a factor based comparison
would be needed to generalize our results for other cases.
For example, further evaluations using trees with larger fan-
outs and with high depth would shed more light on the
benefits of these alternative Multi-column interfaces.

CONCLUSION
We presented two extensions to the conventional node-link
interface - a list view with a scrollbar and a multi-column -
to help users better browse and understand the tree
structures with large fan-outs. We conducted a controlled

Figure 9. Best and worst interfaces.

2
4

12

8
7

3

0

2

4

6

8

10

12

14

TRD LST MLC

o

f
p

eo
p

le

Best

Worst

Figure 8. Subjective rating. The error bar indicates the
standard error of the mean.

0

1

2

3

4

5

6

7

Q1 Q2 Q3 Q4 Q5 Q6 Q7

S
co

re

Question
TRD LST MLC

experiment to investigate whether they could improve users'
performance for three types of tasks; browsing, revisit, and
understanding topology. We found that users browse and
understand the tree faster with the multi-column interface,
providing a compact view of child nodes that does not
require scrolling. Overall, users also preferred the multi-
column interface to the other two interfaces.

ACKNOWLEDGMENTS
We thank Prof. Johan Lim (Department of Statistics at
Seoul National University) for his help with statistical
analyses. We also appreciate our study participants for their
time and comments. This work was supported by the
Engineering Research Center of Excellence Program of
Korea (MEST/KOSEF, R11-2008-007-01002-0), KOSEF
grant (No. 2009-0064949), and the Brain Korea 21 Project.
The ICT at Seoul National University provided research
facilities for this study.

REFERENCES
1. Andrews, K. and Heidegger, H. Information slices:

Visualising and exploring large hierarchies using
cascading, semicircular disks, Proc. InfoVis 1998,
(1998), 9-12.

2. Appert, C. and Fekete, J.-D. ControlTree: Navigating
and selecting in a large tree. UIST 2006 Conference
Supplement, (2006), 47-48.

3. Barlow, T. and Neville, P. A comparison of 2-D
visualizations of hierarchies. Proc. InfoVis 2001, (2001),
131-138.

4. Beaudoin, L., Parent, M-A, and Vroomen, L. Cheops: A
compact explorer for complex hierarchies. Proc. Vis
1996, (1996), 87-92.

5. Card, S. and Nation, D. Degree-of-Interest trees: A
component of an attention-reactive user interface. Proc.
AVI 2002, (2002), 231-245.

6. Carrièrre, J. and Kazman, R. Research report:
Interacting with huge hierarchies: Beyond cone trees.
Proc. InfoVis 1995, (1995), 74-81.

7. Cockburn, A. and McKenzie, B. An evaluation of cone
trees. People and Computers XIV: Proceedings of the
British Computer Society Conference on Human
Computer Interaction, (2000), 425-435.

8. Cockburn, A., Karlson, A., and Bederson, B.B. A
review of overview+detail, zooming, and focus+context
interfaces. ACM Comput. Surv. 41, 1 (2008), 1-31

9. Gutwin, C. Improving focus targeting in interactive
fisheye views, Proc. CHI 2002, (2002), 267-274.

10. Johnson, B. and Shneiderman, B. Treemaps: A space-
filling approach to the visualization of hierarchical
information. Proc. Vis 1991, (1991), 284-291.

11. Kobsa, A. User experiments with tree visualization
systems. Proc. InfoVis 2004, (2004), 9-16.

12. Lamping, J., Rao, R., and Pirolli, P. A focus+context
technique based on hyperbolic geometry for visualizing
large hierarchies. Proc. CHI 1995, (1995), 401-408.

13. Lee, B., Parr, C.S., Plaisant, C., Bederson, B.B.,
Veksler, V.D., Gray, W.D., and Kotfila, C. TreePlus:
Interactive exploration of networks with enhanced tree
layouts. IEEE TVCG Special Issue on Visual Analytics,
12, 6 (2006), 1414-1426.

14. Open Directory Project, http://www.dmoz.org/, last
accessed 01/07/2010

15. Plaisant, C., Grosjean, J., and Bederson, B.B.
SpaceTree: Supporting exploration in large node link
tree, design evolution and empirical evaluation. Proc.
InfoVis 2002, (2002), 57-64.

16. Reingold, E.M. and Tilford, J.S. Tidier drawings of
trees. IEEE Trans. on Software Engineering, 7, 2
(1981), 223-228.

17. Risden, K., Czerwinski, M., Munzner, T., and Cook,
D.B. An initial examination of ease of use for 2D and
3D information visualizations of web content. Internal
Journal of Human Computer Studies, 53, 5 (2000), 695-
714.

18. Robertson, G.G., Mackinlay, J.D., and Card, S.K. Cone
Trees: Animated 3D visualizations of hierarchical
information. Proc. CHI 1991, (1991), 189-194.

19. Shneiderman, B. Tree visualization with tree-maps: 2-d
spacefilling approach. ACM Trans. on Graphics, 11, 1
(1992), 92-99.

20. Shneiderman, B. The eyes have it: A task by data type
taxonomy for information visualizations. Proc. VL 1996,
(1996), 336-343.

21. van Wijk, J.J. and van de Wetering, H. Cushion
Treemaps: Visualization of hierarchical information.
Proc. InfoVis 1999, (1999), 73-78.

22. Walker, J.Q. A node-positioning algorithm for general
trees. Software-Practice and Experience, 20, 7 (1990),
685-705.

23. Wiss, U., Carr, D.A., and Jonsson, H. Evaluating three-
dimensional information visualization designs: A case
study of three designs. Proc. IV 1998, (1998), 137-144.

24. Zhao, S., McGuffin, M.J., and Chignell, M.H. Elastic
hierarchies: Combining treemaps and node-link
diagrams. Proc. InfoVis 2005, (2005), 57-64.

