
On-line Sensing Task Optimization for Shared Sensors

Arsalan Tavakoli
University of California Berkeley

Berkeley, CA, USA
arsalan@cs.berkeley.edu

Aman Kansal and Suman Nath
Microsoft Research
Redmond, WA, USA

{kansal,sumann}@microsoft.com

ABSTRACT
Shared sensing infrastructures that allow multiple applications to
share deployed sensors are emerging and Internet protocol based
access for such sensors has already been prototyped and deployed.
As a large number of applications start accessing shared sensors,
the efficiency of resource usage at the embedded nodes and in the
network infrastructure supporting them becomes a concern. To ad-
dress this, we develop methods that detect when common data and
common stream processing is requested by multiple applications,
including cases where only some of the data is shared or only in-
termediate processing steps are common. The communication and
processing is then modified to eliminate the redundancies. Specif-
ically, we use an interval-cover graph to minimize communication
redundancies and a joint data flow graph optimization to remove
computational redundancies. Both methods operate online and al-
low application requests to be dynamically added or removed. The
proposed methods are evaluated using applications on a road traffic
sensing infrastructure.

Categories and Subject Descriptors
H.3.5 [Online Information Services]: Data Sharing

General Terms
Algorithms, Design

Keywords
wireless sensor networks, multi-query optimization, computation
sharing

1. INTRODUCTION
Sensing systems now allow sensors to be shared among multiple

users and applications [21, 4, 11, 12]. Open interfaces using the
Internet protocol and web services have been prototyped to facili-
tate such shared access to sensors [10, 3, 20]. Multiple applications
can use such sensing infrastructures to provide new functionalities
using live sensor data. Also, within a single application, multi-
ple users can access different data based on their needs [15]. As
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the numbers of applications and users within applications grow, the
amount of data to be provided from the sensors and the amount of
computation performed on that data go up. This increases the load
on the sensing infrastructure, limiting the number of allowable con-
current application requests. “Hot” sensors, i.e., ones that contain
events of interest to several users, are likely to become especially
overloaded.

Consider, as an example, the road traffic sensors deployed by the
Department of Transportation on several roads, to measure the vol-
ume and average speed of traffic for the covered road segments. In
a shared system, multiple sensing applications, such as driving di-
rections computation, traffic characterization [27], congestion pre-
diction [7], cab fleet management, or urban planning tools, may
obtain data streams from these sensors. In existing systems each
application obtains data directly from sensors and performs com-
putations in isolation, which is not efficient. As an illustration of a
specific application using these sensors, consider the following. A
commuter wishes to avoid getting stuck in traffic on her way home
from work. To choose a good departure time, she wants to calcu-
late the average travel time on a route covering k road segments
every 15 minutes in a time window extending from 3pm to 7pm,
and then take the minimum over all of these, repeating for each day
of the work-week. Similar data collection and computation tasks
may also be submitted by many other commuters within the same
city. The routes specified in the tasks may contain common road
segments and have overlapping departure time windows. Clearly,
fetching data from a sensor only once for multiple tasks will help
resource constrained sensors avoid expensive communication, and
computing the route latencies for shared segments along routes will
allow the infrastructure to support a larger number of users. It is
thus important to eliminate the computational and communication
overlap among application requests, to make the system more scal-
able and to avoid excess load on hot sensors.

The problem of minimizing redundancies in the processing of
multiple data streams has been considered in multi-query optimiza-
tion for databases [22, 25]. Most such techniques statically analyze
a fixed set of queries to find a globally optimal execution plan. As
pointed out in [14], such a “compile-time” approach is prohibitively
complex for many real-world streaming scenarios and is unable to
handle dynamic arrival and departure of queries. To address these
limitations, recent works [14, 13, 18] proposed techniques that op-
timize the stream processing on-the-fly. However, in the context of
shared sensor networks, such existing techniques suffer from the
following limitations:

No Optimization for Communication Redundancy: Each task re-
quires data from one or more sensors periodically. Existing stream
based query optimization techniques are geared toward centralized
databases and do not consider the communication overheads of ob-



taining the data, but this aspect becomes important for sensor net-
works. Our methods optimize the communication cost by re-using
data collection across multiple tasks with similar, though not nec-
essarily identical, temporal requirements.

Insufficient Optimization for Computational Redundancy: Exist-
ing techniques are unable to take full advantage of commonality
in computation, especially when only intermediate computations
overlap and when computation involves a sequence of multiple ag-
gregation operations. Our system extracts such partial computation
overlaps.

We present Task-Cruncher, a system that takes advantage of the
spatio-temporal redundancy among multiple sensing tasks. Task-
Cruncher makes the following contributions:

To address the first limitation mentioned above, we abstract the
overlap between sampling requirements of different tasks as an
interval-cover graph. We show that a dominating vertex set of
the graph corresponds to an optimal sampling schedule. We also
present a novel on-line algorithm to find this optimal schedule and
show that it can be efficiently implemented on TelosB motes.

To address the second limitation, Task-Cruncher models tasks
as data flow graphs and applies a novel on-line algorithm to dy-
namically optimize the graph structure as tasks enter and leave the
system. The algorithm has a low overhead such that cost of graph
optimization does not exceed the achieved savings. The algorithm
can handle tasks with arbitrary combinations of processing primi-
tives.

Thirdly, we evaluate Task-Cruncher using a one-year long data
trace from Washington State Department of Transportation traffic
sensors, as well as an image stitching application representing ap-
plication specific computational constraints. Results show that our
techniques can reduce resource usage by up to 45% compared to
existing techniques, and achieve savings of over 70% of the theo-
retical maximum.

2. SYSTEM OVERVIEW
This section describes the key design considerations and the over-

all system architecture for Task-Cruncher.

2.1 Design Considerations
The design of Task-Cruncher must consider the specific con-

straints presented by a shared sensing substrate.
Communication. The first design consideration arises due to the

resource constraints at the sensors themselves. Many sensors may
be wireless and battery operated. Some sensors may be connected
to the Internet using low bandwidth connections or remote links.
They may be running on low-end processors. These constraints
make it crucial to minimize the communication resource usage. A
key design goal for Task-Cruncher is thus to minimize redundancy
in communication. If data requests from multiple applications have
similar temporal characteristics, the sensors should send the min-
imum amount of data that satisfies all applications. By reducing
the communication load on each sensor, the number of supported
applications can be increased.

Computation. A second design consideration is the computa-
tional resource overhead in processing the sensor streams. This
computation is likely to be performed at central servers that main-
tain an index of available sensors and make them available to ap-
plications. Even though the server may be wall-powered and have
a relatively high bandwidth connection to the Internet, the large
number of sensors and applications served imply that the server
resource usage per sensor and per task for performing online data
processing on sensor streams cannot be very high. As the number
of tasks increases, it is no longer efficient to perform the aggrega-

tion required by multiple applications in isolation. Suppose two
wireless cameras are imaging a scene and many applications re-
quest the panoramic image generated by stitching the images from
two cameras. Clearly, if the server can detect that more than one
application has requested the result of the same computation, in this
case the panoramic image generated from the images from the same
two sensors, performing the stitching once per frame update inter-
val and sending the stitched image to all requesting applications is
preferred.

However, the detection of such computational overlap is not triv-
ial. The set of sensors streams to be aggregated for one application
may have only a partial overlap with that of another. Some of the
intermediate steps required for two computations may be common,
even when the final results are different (e.g. one application may
request a sum of values, while another may request the mean, where
the sum is computed as an intermediate step towards computing the
mean). Another key design goal for Task-Cruncher is thus to mini-
mize the computational redundancy in view of the spatio-temporal
characteristics of the tasks served.

Dynamic Adaptation. As multiple independent applications use
the shared sensors, tasks may be added and removed as per chang-
ing application requirements. As a result, both communication and
computation redundancy elimination methods must adapt dynam-
ically to changing tasks being concurrently served. Also, the cost
of detecting the redundancies should not be greater than the sav-
ings achieved by exploiting the redundancies. The design of Task-
Cruncher requires methods to identify all spatio-temporal overlaps
in an on-line manner and when advantageous, optimize the pro-
cessing to share the computation for common portions of multiple
tasks.

Flexibility. Since the sensing infrastructure is shared by a vast
range of applications, many different types of computation should
be supported. Hence, we allow for arbitrary data processing and
aggregation operations to be specified by composing primitive op-
erations. However, exploiting a partial overlap between two tasks
relies on breaking down a computation into the overlapping and
non-overlapping sets. Many primitive operations used in sensing
tasks are both distributive and algebraic (such as Sum, Max, Av-
erage, etc.) where the final result can be computed from partial
results computed over disjoint partitions of input values. Break-
ing down such computations is straightforward. For other opera-
tions, breaking down of the computation may have constraints on
the ordering or set of values that may be processed together. For
instance, if the processing operation is stitching of images, only
sensor subsets with overlapping fields of view can be stitched. In
these case, the breakdown of the computation must respect the con-
straints of the computation. The methods in Task-Cruncher extract
overlap while respecting the correctness of the computation. Data
processing tasks where the computational constraints do not allow
any break down of the operations are performed without removing
redundancies.

In addition to the redundancy minimization performed in Task-
Cruncher, sensors may perform additional optimizations such as
entering sleep states or low power listening modes when there are
no application requests. Computational operations that do not de-
pend on other sensors may be pushed to the sensors [6, 9, 16]. Such
optimizations are complimentary to Task-Cruncher.

2.2 System Architecture
Task-Cruncher consists of the two key components (Figure 1)

discussed below.
The communication redundancy minimizer receives streaming

requirements for all tasks that use this sensor. It determines the
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Figure 1: Task-Cruncher system architecture

minimum common set of time instances at which samples must be
collected and uploaded to satisfy all tasks, and updates this set as
tasks are added or removed. This module is implemented at the in-
dividual sensors as it does not require information from other sen-
sors. This allows the communication overhead to be saved at the
sensor itself. As shown in Section 5 using an implementation on
TelosB motes, the overhead is extremely low. Detailed design of
this module is presented in section 3.

The computational redundancy minimizer receives all tasks sub-
mitted by applications and jointly optimizes the computation across
these tasks. This module must operate at a central point through
which all tasks pass. A natural location for this module then is an
index server that maintains a database of all available shared sen-
sors for applications, since this server would likely be contacted by
all applications to discover the sensors of interest. In SenseWeb [12]
for instance, the central server that coordinates sensor access among
applications can implement this module. This service may also be
distributed across multiple servers as discussed in section 6, but for
our system we assume a centralized server.

System Operation: The system operates as follows. An appli-
cation that needs to sense the environment submits a sensing task
specifying the spatial region to be covered, the time window for
which the data is to be streamed, the sampling period, desired spa-
tial density of sampling, the type of sensors to be used, and related
characteristics. The application also specifies the computation to
be performed on the data such as averaging over time, summation
over space, evaluating maxima, or application specific combina-
tions of operations. The task is received by the central server, and
the relevant sensors are determined based on the spatial coverage
and sensor types desired, using an index of all sensors stored at the
server. The temporal sampling requirements of each task are sent
to the relevant sensors. The sensor is thus only responsible for col-
lecting the required data and the communication redundancy mini-
mizer at the sensor uploads sufficient data to satisfy all tasks. The
computation redundancy minimizer at the central server will com-
pute the metrics requested by applications in an optimized manner,
using the sensor data streams.

3. COMMUNICATION REDUNDANCY
Communication redundancy arises when a sensor is requested to

collect data for multiple tasks. Typically, the task element local
to a sensor involves collecting samples according to the temporal
requirements of the task. Hence, the key issue in communication
redundancy reduction is managing the overlap along the tempo-
ral axis. If the temporal requirements (e.g., interval between sam-
plings) of two or more tasks are exactly the same within the over-
lapping portion of their time windows, minimizing this redundancy
is trivial. However, in practice, the temporal requirements may not
be exactly identical but have certain similarity. This similarity can
be leveraged to reduce the number of samples uploaded, resulting
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Figure 2: Sampling window sequences of three tasks

in direct resource savings at the sensor, and in the communication
network overall.

3.1 Data Acquisition in Task-Cruncher
Consider a set of tasks {Ti, i = 1 . . . n} served by a sensor. In

Task-Cruncher, each task Ti defines its periodic sampling require-
ment with three parameters: a period pi, a negative tolerance ai,
and a positive tolerance bi, all in seconds. The tolerance parame-
ters define a sampling window [t−ai, t+bi], where t is a multiple of
the period pi, within which the sensor must take a sample at least
once to satisfy the task. In practice large negative tolerances are
often acceptable because the application wants to sample at least
every pi seconds and more frequent sampling is only avoided for
efficiency reasons. Thus, as long as an application can accept
faster samples, negative tolerances exist. Large positive tolerances
are less frequent and the system may use bi = 0 (our evaluation
uses bi ≤ 0.1pi).

Figure 2 illustrates sampling windows, as shaded rectangles, for
three tasks. For each task, the above parameters define a sam-
pling window sequence, such that the sensor must sample at least
once within every sampling window. For a single task, this can be
achieved, for example, by sampling and uploading at the beginning
of each sampling window.

The parameters ai and bi reflect the flexibility that a sensor has.
If the sensor intelligently determines the sampling instances so that
a single sample can satisfy multiple tasks, data communication
overhead is reduced. For example, in Figure 2, samples collected
by the sensor at time s1 satisfies three tasks, and we say that the
sample at time s1 covers the sampling windows i11, i21, and i31.
A sampling schedule is given by a sequence of time instances that
cover all sampling windows of all active tasks. The instances s1, ..., s5
in Figure 2 show an example sampling schedule. Designing the
communication redundancy minimizer for Task-Cruncher, is equiv-
alent to solving the following problem:
Minimum sampling schedule problem: Given multiple sampling
window sequences for tasks served by a sensor, find the sampling
schedule with the minimum number of samples.

3.2 Interval-Cover Graph
We abstract the above problem with an interval-cover graphG =

(V,E) constructed as follows. Each sampling window corresponds
to a vertex in V , with the following attributes: a window [s, e],
start-time s, and end-time e. There is a directed edge (i→ j) ∈ E
if and only if the end-time of i intersects with window of j. We
call a vertex j a neighbor of a vertex i if and only if there is an
edge i → j. Figure 3 shows the interval-cover graph for the sam-
pling window sequences in Figure 2, where the vertex labeled mn
corresponds to the sampling window imn.

A dominating set of graphG = (V,E) is a set of vertex V ′ ⊆ V
such that every vertex not in V ′ is a neighbor of at least one vertex
in V ′.
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Figure 3: Interval-cover graph of the sampling window se-
quences in Figure 2. Shaded vertices constitute a minimum
dominating vertex set.

CLAIM 3.1. A dominating set of an interval-cover graph gives
a feasible sampling schedule, where the sampling instances are
given by the end-times of vertices in the dominating set.

To see the correctness of the above claim, note that when a vertex
v1 is a neighbor of a vertex v2 (i.e., there is an edge from v2 to v1),
sampling at v2’s end-time satisfies v1 as well, since by definition
the window of v1 intersects with the end-time of v2. Thus, sam-
pling at the end points of all vertices in the dominating set satisfies
the sampling requirements of all the vertices, including the ones not
in the dominating set.

CLAIM 3.2. Any feasible sampling schedule corresponds to a
dominating set in the interval-cover graph.

To show the correctness of this claim, we modify a given feasible
schedule S to an equivalent canonical schedule S′ with the same
number of samplings as follows: move every sampling instance in
S to the earliest end-time of windows containing the sampling in-
stance (thus, each sampling instance in S′ is the end-time of some
sampling window). Suppose the sampling window wi corresponds
to the vertex vi in G. Without loss of generality, consider a sam-
pling instance at the end-time of window w1 and intersecting a
set of windows W = {w2, w3, . . . , wk}. Thus, in G, there will
be edges between v1 to all vertices in {v2, v3, . . . , vk}. In other
words, v1 will dominate {v2, v3, . . . , vk}. Since S′ is a feasible
schedule, its sampling instances cover all windows, and hence the
vertices corresponding to the sampling instances dominate all the
vertices in G. Thus, S′ gives a dominating set in G.

The above two claims imply that solving the minimum sampling
schedule problem is equivalent to finding the minimum dominating
set in the interval-cover graph. The shaded nodes in Figure 3 show
a minimum dominating set.

Finding a minimum dominating set of a general graph is NP-
Hard. However, the problem can be solved in polynomial time for
many special classes of graphs, including for widely-studied inter-
val graphs [5]. Note that, an interval-cover graph is not equivalent
to an interval graph; in an interval graph, two vertices are neigh-
bors if and only if two intervals overlap with each other at any
point, while in interval-cover graph, neighborhood is determined
by the intersection of one interval and the end-time of another in-
terval. Thus, minimum dominating set of interval graphs can not
directly be used for our purpose, since it represents a set of inter-
vals, while our solution requires finding the exact time points for
sampling. For example, in Figure 2, if we abstract the intervals as
an interval graph, a minimum dominating set will be given by the
intervals {i11, i12, i23, i13} since these intervals overlap with all
other intervals. However, in our solution, a minimum dominating
set will be given by the set of 5 sampling times shown in Figure 2,
or the set of 5 shaded nodes in Figure 3.

Algorithm 1 GreedySample()
Require: Decides when the sensor needs to collect samples
Definitions:

G: an interval-cover graph
1: G← ∅
2: On arrival of a task Ti with parameters (pi, ai, bi), do
AddV ertex(G, t′ − ai.t′ + bi), where t′ is the next instance
of time which is a multiple of pi

3: On departure of a task Ti, remove the corresponding vertex
from G (and remove relevant edges)

4: if current time t == the smallest end-time of any vertex v in G
then

5: Collect sensor sample at time t
6: for each neighbor n of v do
7: Remove the vertex n from G
8: AddV ertex(G,n.t1 + p, n.t2 + p, p)

Also note that our target algorithm needs to work online with a
dynamically changing interval-cover graph, since new tasks may be
received by the sensor and old tasks may expire at any time. More-
over, since tasks are periodic, their sampling window sequences can
be very long, resulting in a very large graph for offline processing
(Figure 2 shows only parts of the sampling window sequences of
tasks; each sequence can extend arbitrarily to the left.)

3.3 An Optimal Online Algorithm
We now present an online algorithm to determine, on the fly,

the optimal minimum sampling schedule for a given set of sam-
pling window sequences. The algorithm maintains an interval-
cover graph G that has exactly one vertex for each task, repre-
senting the current or the next sampling window of the task. Each
vertex maintains the start- and the end-time of the corresponding
sampling window. After the current sampling window of a task
expires, the corresponding vertex is deleted from G and a new ver-
tex with the next sampling window is added to it. As tasks arrive
and depart, corresponding vertices are added to or deleted from G.
Thus, G evolves over time and it captures the information required
for our algorithm to make optimal online sampling decisions. Our
algorithm can be easily implemented on low power sensor nodes
using a small memory footprint as shown in section 5.

Algorithm 1 shows the pseudocode of our greedy algorithm. Given
the current instance of the interval-cover graph G, the algorithm
considers its vertices in ascending order of their end-times. Sup-
pose, at some point it considers the vertex v. Then, the algorithm
collects a sample at the end-time of v. In addition, it removes all
v’s neighbors fromG. Intuitively, the window of any neighbor n of
v contains the end-time of v, and thus taking a sample at that end-
time automatically satisfies the sampling window of n. Since we
do not need to create additional samplings for n, it can be safely re-
moved. However, since the tasks are periodic, and G contains only
the current or the next sampling window of a task, the deletion of n
must be followed by addition of a new vertex, corresponding to the
next sampling window of the task, to G. The process goes on until
all tasks depart from the system.

The following theorem shows our algorithm’s optimality:

THEOREM 3.1. The algorithmGreedySample collects the min-
imum number of samples to cover all sampling windows of all tasks.

Proof. The proof is by induction. We show that the number of
samples PC collected byGreedySample is no more than the cost



Algorithm 2 AddVertex(G, t1, t2, p)
Require: Given a sampling window [t1, t2] and its period p, add a

vertex in the interval graph G
1: Create a vertex v with start-time t1, end-time t2, window

[t1, t2], and period p
2: Add edges from v to existing vertices in G whose window

overlaps with t2
3: Add edges from existing vertices to v if their end-times overlap

with the window [t1, t2]

PC′ of any other algorithm A (i.e., A can be the optimal offline
algorithm designed by an oracle).

In the base case of induction, the graph G consists of only one
vertex, and A must take at least one sample to cover it. Therefore,
PC′(G) ≥ 1. GreedySample generates only one sampling (at
the end-time of the vertex). Thus, PC(G) = 1 ≤ PC′(G). Now
consider an arbitrary interval-cover graph G. Without loss of gen-
erality, suppose vertex X has the earliest end-time. Now partition
the graph G into G1 = (V1, E1) and G2 = (V2, E2) such that V1

includes X and all its neighbors and V2 = V − V1. According
to the induction hypothesis, GreedySample uses the minimum
number of samplings for G2. Since the interval of X is disjoint of
any interval in G2, samplings needed for G2 do not cover the ver-
tex X . Thus, A will need at least one sampling (besides the sam-
plings required forG2) to coverG1. i.e., PC′(G) ≥ 1+PC(G2).
GreedySample generates exactly one sampling for G1, and thus
PC(G) = 1+PC(G2) ≤ PC′(G). This proves the theorem.
Implementation with priority queues. The description of Al-
gorithm GreedySample explicitly maintains the current interval-
graph, which needs to be updated every time a sample is collected,
a task arrives, or a task departs. However, we observe that edges of
the graph are required only just after the samples are collected, in
order to determine the neighboring nodes of the current vertex (in
Line 6 of Algorithm 1). Thus, the maintaining all the edges of the
graph all the time is not strictly necessary.

Exploiting this observation with an efficient implementation that
requires two priority queues Q1 and Q2 of vertices. Q1 maintains
vertices such that the front vertex has the smallest start-time tQ1,
whileQ2 maintains them such that the front vertex has the smallest
end-time tQ2. The queues maintain only the vertices ofG; directed
edges between vertices are implicitly given by the order of the ver-
tices in the queues. When tasks arrive, new vertices are created
and added to Q1 and when they depart, corresponding vertices are
deleted from Q1 or Q2, depending on which queue they are in at
that time. At time t = tQ1, all vertices with start-time equals to
tQ1 are dequeued from Q1 and inserted into Q2. At time t = tQ2,
a sampling is added to the sampling schedule, and all vertices in
Q2 are dequeued, updated with their next sampling windows (by
adding their periods), and inserted to Q1. It is easy so see that at
time t = tQ2, the vertex at the front of Q2 has directed edges to all
the vertices in Q2 in G, since the windows of all the vertices in Q2

contains tQ2. In other words, Q2 essentially captures all the neigh-
bors of the front vertex of Q2 at time t = tQ2. Thus, scheduling
only one sampling at t = tQ2 covers all the vertices in Q2, and
hence can be deleted from G (i.e., removed from Q2).

In effect, the algorithm is sampling at the latest time possible for
the task with the earliest deadline. Priority queues enable efficient
book-keeping to reduce the execution overhead of the algorithm to
a small number of scalar comparisons and pointer updates.

s1 s2 s3 sn
…

S(t) = Sum(s1,…,sn)

Rmin = Mint={1,…,N}(S(t))

Figure 4: An example task in traffic sensing.

4. COMPUTATIONAL REDUNDANCY
This section describes techniques to reduce redundancy in com-

putation due to overlap (including partial overlap in intermediate
steps) among tasks.

4.1 Task Model
To formally specify the processing required by a task, we use

the following task model. Each task is represented as a directed
acyclic graph (DAG), denoted Ti(Si) where Si represents the set
of sensors used.

Consider the road traffic sensing application introduced in sec-
tion 1. The example task of finding the best departure time by com-
puting the travel times for one specified route over a desired time
window may be represented as the DAG shown in Figure 4. The
leaf nodes (labeled s1, s2, ..., sn) represent the data received from
sensors on the n road segments comprising the route. Intermediate
nodes represent computations. Each intermediate node is charac-
terized by a type, P , that specifies the computation it performs.
For example, the intermediate level node labeled S(t) represents the
computation of the total travel time and the highest layer node, R,
represents the computation of the minimum of the travel times over
multiple time instances. Such DAG’s can be used to represent com-
plicated tasks consisting of several intermediate processing steps.
The task may extend over several time instances. When a task is
received, such a task-DAG is created for it. The leaf nodes are
generated by selecting relevant sensors from an index of available
sensors, based on the region specified using a geographical poly-
gon, a travel route, or by certain properties of sensors such as all
sensors in elevators or bird-houses.

The DAGs from tasks currently served are combined into a data
flow graph, F(S), over the set S of sensors. Minimization of re-
dundancy involves dynamically optimizing the structure of this data
flow graph F(S) as tasks enter and leave the system.

Consider as a simple example, two tasks T1(S1) and T2(S2)
to be traffic application tasks similar to the task in Figure 4 but
on slightly different routes: S1 = {s1, s2, ..., s5} while S2 =
{s3, s4, ..., s7}. Writing the two task-DAG’s such that the common
sensor nodes are not repeated1 leads to the data flow graph F(S)
shown in Figure 5. Assuming temporal similarities have already
been addressed by the communication redundancy minimizer, we
only focus on computational redundancies for sensor data samples
received with a common timestamp.

In Figure 5, the S(t) nodes have a partial overlap in computation:

1Writing the duplicate nodes only once has the same effect as the
multi-query aggregation technique used in [17] that takes a union
of the regions covered by multiple queries to generate a single com-
bined query, where only tasks with the same temporal characteris-
tics were considered.
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Figure 6: Optimized data flow graph.

the calculation of the sum s3+s4+s5. To understand the procedure
used to remove such overlaps, consider first a computation:

CSum = s1 + s2 + s3 + s4 (1)

This computation may be viewed as consisting of the following
primitive operations:

s1 + s2 = c1 c1 + s3 = c2 c2 + s4 = CSum

A computation node may be split up in multiple ways, such as
s2 + s3 = c1 could be the first operation in the above example.
The key to minimizing redundancies is to split the node in such a
way that the overlapping operations are separated. For instance,
in Figure 5, the intermediate nodes may be split to avoid redun-
dant computation, leading to an optimized data flow graph shown
in Figure 6 (ignore dashed lines and nodes for now).

4.2 Reduction Algorithm
Task-Cruncher converts an unoptimized data flow graph (such

as Fig. 5), into an optimized one (Fig. 6) using the procedure
summarized in Algorithm 3, named ShareComputation().

The first step initializes F(S) to the DAG of the first task ac-
cepted. When the i-th task is added, Step 3 computes the merged
F(S) by extending the set of leaf nodes in F(S) to include any ad-
ditional sensors required by Ti. The leaf nodes send the sampling
component of the task to the sensor and receive the responses. The
subsequent steps reduce redundant computations, as follows.

Identification of Groups: The leaf nodes are referred to be at
level l = 0. At the lowest layer of F(S), an analysis set, A, of
nodes is formed, where A consists of all lowest level nodes used
by Ti(Si) and their siblings. The siblings of a set Si with respect
to a type P , denoted as set SiblingP (Si), are defined as nodes that
share at least one common parent node of type P with any node
in Si. For the example above, when T2(S2) is added, the siblings

Algorithm 3. ShareComputation()

1. Initialize F(S) = T1 where S = S1

2. Whenever new task i arrives, insert Ti as follows:

3. S = S ∪ Si

4. Level, l = 0. Type = P

(a) Analysis set, Al,P = Si ∪ SiblingP (Si)

(b) Identify: To each node sk inAl,P , assign bitmaskB =
[b1, b2, ..., bi] where bit bj = 1 iff node sk serves Tj .

(c) Group: For each unique bitmask generated, group as set
G the nodes with that bitmask. Assign a parent node, g,
of type P to each group G if computational constraints
allow computing P for G separately.

(d) Vertical Merge: For all parent nodes, g, assigned (new
or existing) above, if g has only one parent and that
parent is the same type, merge that node into its parent.
If g has only one child merge that into its child.

(e) Horizontal Merge: Any two assigned parent nodes
(new or existing) that have the exact same children are
joined into one. The vertical and horizontal merge steps
are repeated while feasible at this level.

(f) Repeat steps 4a to 4e for all types for which there were
parents in Ti at this level.

5. Level, l = l + 1. Type = P

(a) Analysis set, Al,P = nodes at level l in Ti and their
siblings w.r.t parents of type P .

(b) Repeat steps 4b to 4d for this level.

(c) Repeat above steps 5a to 5b for each type.

6. Repeat step 5 for all levels.

of set S2 w.r.t type P = Sum are sensors s1, s2 as they share a
common parent of type Sum with s3 ∈ S2.

Suppose sensors in A serve k tasks. Each leaf node in A is as-
signed a bitmask, B = [b1, b2, ..., bk] where bi represents a bit
value and has the value 1 if this leaf node services task i, and 0 oth-
erwise. For nodes that existed earlier in F(S), this step results in
updating their old bitmask. For our previous example, the bitmasks
assigned to each leaf node are shown at the bottom in Figure 5 w.r.t.
to parents of type P = Sum. The bitmask used is similar to those
in [14, 13, 18].

Splitting Calculations: Suppose N unique bitmasks are gener-
ated. At step 4c, nodes with a common bitmask are grouped to-
gether. The computation is distributed over the groups (if compu-
tational constraints allow) and for each group a parent node that
carries out the computation is assigned.

Certain groups may already have a suitable parent, g, of type P.
For others, a new intermediate parent node is generated. For cases
where a new g is required, sometimes computational constraints
may not allow separately performing a computation over set G,
(such as a panorama may not be stitched if interleaving sensor im-
ages are left out of G) and then no new g will be assigned.

The new parent nodes are now connected to feed into the older
parents of the lower layer nodes. When adding a new parent, if the
child and the new parent already share an upstream node, this may



lead to double counting of data in computations. So in this case, the
child keeps only the longest path to the upstream node. Following
the previous example, grouping the unique bitmasks shown in Fig-
ure 5 leads to the structure shown in Figure 6 where the new parent
nodes added for groups {01} and {10} are shown using dashed
lines while that for group {11} is shown with a solid line.

Merge. Next, at step 4d, all non-leaf nodes that have only one
parent of the same type as themselves, are merged into their par-
ent. For instance, the dashed S(t) nodes on the far right and left
in Figure 6 are merged with their only parent, leading to the F(S)
consisting of the nodes with solid lines only. Also at this step, all
nodes that have only one child are merged into the child. This may
happen when a single node has a unique bitmask and a new parent
is created for it. Sometimes, when a new task is added, with the
same sensor footprint as the previously running tasks, difference in
bitmasks for the new task may cause a duplicate parent node to oc-
cur. Step 4e removes such duplicates. Neither of the graph changes
at the merge steps affect the correctness of the computation.

Some tasks may have more than one type of parents at the same
level for the sensor nodes. If this is the case, step 4f specifies that
an analysis set must be considered with respect to each parent type.

Repetition at Upper Layers: Similar steps are repeated at each
higher layer. Note that the siblings forming an analysis set have a
common parent type but may themselves may not be of the same
type. In our previous example, only the right-most S(t) node (solid
lines) corresponding to T2 comprises the analysis set as it has no
siblings. In this example, repeating similar steps does not change
F(S) and Figure 6 (solid lines only) gives the optimized F(S)
after addition of task T2.

Task Entry-Exit Dynamics: In the above algorithm, only the
analysis set and the portions of F(S) affected by the analysis set
are scanned, rather than the entire F(S). This is advantageous for
dynamic insertion and deletion of tasks. Task exits are handled
simply by removing the highest node in F that is serving this task.
This recursively disables the links from child nodes and all nodes
with no upstream links drop off F(S).

Optimality: This incremental algorithm does not guarantee that
all redundancies are eliminated. To eliminate redundancy com-
pletely a scan of the entire graph F(S) may be necessary, rather
than considering one analysis set at a time. One approach would be
to take a logical AND of all possible pairs of unique bitmasks in an
extended analysis set consisting of all nodes (at the same level), se-
lect the pair with the largest match in the result of AND, and form a
new partial node for this subset. Reiterating after setting this subset
to 0 until no matching subsets remain eliminates all redundancies.
This become computationally inefficient with large system work-
loads. Evaluations of Algorithm 3 (Section 5) show that compu-
tations are reduced by over 70%. Since, reduction will always be
lower than 100% because all calculations cannot be dropped, this
suggests that the remaining margin for improvement is not very
large.

Comparison With Existing Methods: Task-Cruncher improves
upon existing methods along the following dimensions: First, ex-
isting methods for computational redundancy reduction [14, 13,
18] are designed for a single common aggregation operation. Our
method identifies partial overlaps in computation even with differ-
ent overall aggregation operations.

Second, our method works for tasks consisting of multiple steps
of processing as opposed to a single aggregation step.

Third, even for a single aggregate computation, our method is
able to reduce the redundancy by a greater amount than existing
methods. For example, consider three tasks T1(S1), T2(S2), and
T3(S3) where S1 = {1, 2}, S2 = {1, 2, 3}, and S3 = {1, 2, 3, 4}.
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Figure 7: Data Flow Graphs

The tasks {Ti}3i=1 each compute simply the sum of sensors in
sets Si respectively. Figure 7(a) shows the computation performed
by [14] after optimization for this example. There are three unique
sets of streams ( (1,2), 3, and 4), leading to the bitmasks shown.
Each set undergoes partial aggregation and then the partial aggre-
gates relevant to each task are aggregated in the final aggregation
step. A total of 4 sum operations is used (one operation for the
sum node labeled c1, another for c2 and two operations for c3).
On the other hand, Figure 7(b) demonstrates the data flow graph
formed by Task-Cruncher. Algorithm 3 achieves better re-use and
uses only 3 sum operations, fewer than needed by existing methods.

Finally, in [14], the bitmasks are computed for each data tuple
as it arrives, i.e. this computational overhead is paid at the tuple
arrival rate. In our approach, the bitmasks are computed only when
a new task is added or removed, i.e., only at the task arrival rate,
which can be significantly lower than the tuple collection rate.

4.3 Algorithm Analysis
The reduction in operations achieved by Algorithm 3 may be

analyzed as follows. Define T to be the set of currently executing
tasks, S be the set of sensors actively servicing tasks, and B as
the set of unique bitmasks currently active. Let Bfreq denote the
number of sensors with a unique bitmask B, and τB be the number
of tasks served by bitmask B. The average number of tasks served
by a node, Xavg becomes:

Xavg =
1

|S|
∑
B∈B

τB ·Bfreq (2)

Assuming each node produces one piece of data per period, this one
datum will be involved inXavg operations, and so the total number
of operations, C0, without any computation sharing becomes:

C0 = |S| ·Xavg − |T | = (
∑
B∈B

τB ·Bfreq)− |T | (3)

|T | is subtracted because there are no inter-task operations.
In Task-Cruncher, counting an operation over every two values

as one operation, the number of operations, C1, at the intermediate
layers is:

C1 = |S| − |B| (4)

since each sensor in |S| leads to one operation except the |B| sen-
sors at group boundaries. Also, the average number of tasks each
bitmask serves is:

Y =
1

|B|
∑
B∈B

τB (5)

Using Y , the number of operations, C2, in combining the interme-



diate results into final responses is:

C2 = |B| · Y − |T | = (
∑
B∈B

τB)− |T | (6)

Putting (4) and (6) together, the total number of operations, C3, is:

C3 = |S|+ (
∑
B∈B

τB)− |B| − |T | (7)

For Task-Cruncher the worst case is |B| = |S| when there is no
grouping possible (|B| can not be greater than |S|). In this case,
Bfreq = 1 ∀ B ∈ B, and C3 = C0. Intuitively, this makes sense
as it means that each node has a unique bitmask and no partial ag-
gregates can be used for sharing computation. On the other hand,
as |B| gets smaller, Bfreq grows, leading to greater savings. Thus,
as the number of tasks sharing each bitmask grows, more savings
are obtained. This analysis only considered tasks requiring a sin-
gle computation step; similar analysis can be applied to multi-step
tasks, replacing S with an analysis set made up of aggregate nodes.
Practically achieved gains with realistic workloads are shown in
section 5.

5. PERFORMANCE EVALUATION
We study the savings in computation and communication achieved

using the following real world datasets:
Sensor Deployment: We use Washington State Department of Trans-
portation’s traffic sensors in Seattle area. These sensors report av-
erage speed and traffic volume for freeway road segments. We ob-
tained the measurements from all 492 sensors in that area for a
period of 1 year.
Task Requests: We obtained data regarding which spatial regions
across the metropolitan area were accessed on Microsoft mapping
services by Internet users. This data serves as a proxy for spatial
regions of interest for sensing applications.

Additionally, since the real world sensors above are scalar sen-
sors and the common aggregation operations on these are fully dis-
tributive, we also consider a simulated deployment of image sen-
sors where the aggregation operation is image-stitching and the
overlap in fields of view of the cameras restricts the computation
sharing. This deployment uses 100 cameras, with each sensor hav-
ing an overlapping field of view only with two neighboring sen-
sors. User requests are generated from a Zipfian distribution, with
skew parameter 1.2, that models higher interest in more popular
sensors as a power law distribution, inspired by the real user re-
quests dataset that was also seen to be skewed.

For the application workloads, we consider a variety of compu-
tational tasks described along with the simulations.

Server-side Implementation: Our implementation of the data
flow graph uses hashtables extensively, sacrificing space efficiency
on the server in order to achieve speedier lookup times, meant to
enable real time processing of a large number of task streams. All
computation delays reported are for running Task-Cruncher on a
2.4GHz dual core system with 2GB RAM. We compare our sys-
tem to a base case with no redundancy reduction, as well as our
implementation of the algorithm from [14].

Sensor-side Implementation: The implementation on the sen-
sor side is developed in TinyOS on TelosB motes. While the al-
gorithm is provably optimal, it is also efficient to implement and
uses only 110 lines of nesC code (with the priority queues imple-
mented using arrays), resulting in 696 bytes of ROM footprint, and
25 bytes of RAM usage.
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Figure 8: Sensor sample upload reduction

5.1 Experiment 1
In our first set of experiments, we use the following representa-

tive varied workloads:
W1: Commuters want to find the minimum travel time for their
commutes over a given time window.
W2: An entity wants to know commuters’ average commute time
during different periods of the day.
W3: A coffee retail chain wants to determine the maximum num-
ber of vehicles on roads near its stores to figure out how many pro-
motional items to produce.
W4: A radio station wants to determine the peak number of ve-
hicles in a given area over a set time window to determine prime
scheduling.
W5: Department of Transportation wants to determine the period
when the average number of vehicles in an area is minimal, to
schedule construction.

Tasks from each workload are generated with random sampling
intervals (between 30 seconds and 5 minutes with random posi-
tive/negative tolerances ranging from 0-10%) and random aggre-
gation time windows. Sensor sets used for each task are randomly
choosen, based on a set of 4200 routes for route-oriented workloads
(W1 and W2), and 3150 geographic rectangles from the Internet
mapping service user trace for area-oriented workloads (W3, W4,
and W5). The number of concurrent tasks was varied from 5 to 60
with each workload type equally represented. We define overlap
factor to be the number of tasks each sensor node serves, averaged
across all nodes. The overlap factor indicates the level of spatial re-
dundancy among workloads. The above workloads use four differ-
ent types of computational operators (sum, minimum, maximum,
average). Each experiment was run 5 times, with the plotted data
points representing the average (error bars show standard deviation
in measured computation latency).

We begin by examining the performance of communication re-
dundancy reduction, Algorithm 1. Figure 8 plots the reduction in
the number of sensor samples uploaded. Noting that the reduction
will always be lower than 100%, the algorithm achieves a large
fraction of the achievable savings in the simulated scenario. Put
in absolute terms, this is a reduction of nearly 4000 uploads per
period (in the 60 task trial), which relieves a significant strain on
underlying sensor resources.

Figure 9 portrays computational benefits. Note that in addition
to spatial computation (i.e. computation that uses data from mut-
liple sensors) the tasks also contain temporal computation (such
as taking average/minimum over a time window of the task result
from sampling periods within that time window). Our implementa-
tion includes some of the existing techniques for reducing tempo-
ral computational overlap, in particular the paned window method
from [14].
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Figure 9: Reduction in operations and computation time for
Experiment 1.
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Figure 10: Break-even points for Experiment 1

The savings are significant: reduction in operations plateaus at
approximately 75%, while the reduction in total computation cost
reaches 70%. While the temporal computation savings are the same
as existing work (and these are the dominant savings observed at
low overlap factors) we see that Task-Cruncher performs increas-
ingly better than [14] at high overlap factors by better exploiting
the spatial computational overlaps, performing roughly only 55%
as many operations2.

Optimization Overhead: It is also interesting to observe the
magnitude of the optimization overheads. Performing the optimiza-
tions when a new task is introduced incurs a computation cost (task
removal is cheap), and this reduces the savings from reduction in
operations for executing the task. As this cost is amortized over the
lifetime of the task, the natural question is how many times should
the operations in the task be repeated to recoup this initial task in-
sertion overhead. Figure 10 depicts this breakeven point as a func-
tion of the overlap factor. At all but the lowest overlap levels, less
than 2 repetitions suffice. Since we designed the system primar-
ily for long-lived tasks repeating the computations for many time
instances, we imagine that most workloads will benefit from the
optimization process. When several short tasks are also served, the
system can compare the life of the task with the empirical break-
even times, such as shown in figure 10, and optimize F(S) only if
the task lasts longer than a threshold duration.

5.2 Experiment 2
Next we evaluate computation redundancy reduction in a work-

load without temporal computation overlap to further highlight the
difference between Task-Cruncher and existing work. We use a sin-
2The reduction in total calculation cost with [14] cannot be fairly
compared: the reduction in operations is algorithm dependent and
is reproduced correctly, but total calculation cost is hardware and
implementation dependent and we did not have access to the im-
plementation used in [14].
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Figure 11: Reduction in operations and execution time in Ex-
periment 2.

gle type of tasks - the traffic application tasks depicted in Figure 4,
with identical temporal parameters. The route for each task is se-
lected randomly from over 4200 choices and determines the sensor
set Si used by it. We vary the number of concurrent tasks from 1 to
60 and measure the overlap factor for each set of concurrent tasks
as generated. The gains at similar overlap factors are lower com-
pared to the previous experiment due to the absence of temporal
computation overlap. Figure 11 depicts the reduction in operations
and total calculation cost. The overlap factor is higher due to less
variability in workloads. Task Cruncher still outperforms existing
approaches, particularly at higher overlap.

A further observation of interest is the difference between the
total savings and the reduction in number of operations. The per-
centage reduction in total cost is computed with respect to the total
cost of the naïve approach. The costs of adding new tasks and opti-
mizing F(S) are included in the total cost for Task-Cruncher aside
from the operations themselves. The overhead incurred in optimiz-
ing F(S) reduces the savings at lower overlaps.

Surprisingly, as overlap increases, the total cost savings in Task-
Cruncher increase beyond the reduction in the number of opera-
tions. To understand this, we look at the overheads more carefully.
Part of the overhead is the addition of new nodes in F(S) and part
of it is the computation of optimizing F(S). The increase in the
number of new nodes added in the optimized F(S) is plotted in
Figure 12. A key observation from the graph is that after a high
enough overlap, very few new intermediate nodes are added as the
existing nodes are re-used more often. The naïve approach contin-
ues to add more nodes for each new task - causing the percentage
of new nodes added to decrease for the optimized graph. The total
cost saving includes not only the reduction in operations but also
the reduction in node generation overhead. When the node gener-
ation cost saving exceeds the graph optimization costs, it further
adds to the savings in operations. As a reference for the absolute
time scale, the execution time including the overhead of task graph
optimization ranged from 0.6ms to 2ms, normalized per task, on a
3MHz dual core processor, serving the workloads described.

5.3 Experiment 3
Next we evaluate computation reduction with a more complex

processing operation, image stitching, where the nature of compu-
tation constrains the groups of sensors that can be processed to-
gether. Each of the 100 image sensors simulated has a field of view
that overlaps only with neighboring two sensors and the tasks ask
for panoramas stitched over valid sets of sensors. Figure 13 shows
the results for computation redundancy reduction. The methods
from existing work do not apply to this type of computation and we
show the reduction in operations compared to a base case where no
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Figure 12: Increase in intermediate nodes for Experiment 2
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Figure 13: Reduction in operations for Experiment.

computational redundancy is removed. Again, a significant reduc-
tion in computation is observed. Here, savings do not necessarily
grow with increasing overlap factor since the computation sharing
is restricted to neighboring sensors and the differences in aggrega-
tion steps for different tasks saturate the savings at high overlap.

6. DISCUSSION
This work demonstrated several methods to minimize redundancy

in communication and computation. Here we discuss limitations
and possible extensions to these methods.

In our present design we did not force any special requirements
on the network infrastructure between the sensors and the server.
If programmable elements such as geo-distributed servers or gate-
ways for the sensors exist, then the data flow graph F(S), can be
partitioned among such servers, with each server hosting parts of
the graph relevant to its sensors. While the F(S) generated in our
method can be distributed according to sensors served by different
servers, a further research problem could consider the optimiza-
tion of F(S) by jointly taking computational overlap and network
topology into account.

Additional overlap in computation may be detected by inferring
the semantics of computations performed by different combina-
tions of primitive operations, i.e., when different DAG structures
result in the same semantic computation. Semantic equivalence
sometimes exist among data themselves. For example, Department
of Transportation traffic sensors provide both speed and volume
data. However, the physical transducer in the sensor only measures
volume, and speed is actually computed from volume data. One ap-
proach to leverage such relationships among data is to use semantic
web techniques that can automatically infer such relationships.

7. RELATED WORK
Computational overlap among streaming databases queries has

been considered before [14]. Our system differs in that it is de-
signed specifically for a sensing infrastructure, considering the cost
of communication from sensors. Another difference is in the types
of computational overlap addressed: we allow sequences of mul-
tiple aggregation primitives and optimize for partial computation
overlaps, unlike the single aggregation step assumed in prior work.

Computational overlap among multiple queries were also stud-
ied in [8]. The goal however was to distribute the computations re-
quired across multiple nodes and minimize network traffic by trans-
mitting partially aggregated results. The computation overhead of
these techniques is high. Further, as stated in [8], the optimiza-
tion only holds for a static query set and must be recomputed from
scratch each time a new task is added or removed. Our methods
reduce computational load and have a low task insertion-deletion
overheads.

Streaming sensor data has also been considered in [17, 24, 1,
26, 23] using techniques such as query rewriting and in-network
aggregation. Our work differs from these in both the optimization
objectives and techniques. A shared and heterogeneous sensor net-
work is considered in [19] but the focus is on executing tasks in a
distributed manner rather than eliminating redundancy.

Common subexpression elimination in compiler optimization [2]
is also related in principle, yet is often static, has no concept of tem-
poral variance, and has no notion of communication cost. Multi-
query optimization using directed acyclic graphs has been explored
before ([22, 25]) but relies on static analysis of execution plans for
queries, involving stateful operators such as Join. They do not con-
sider temporal parameters and communication sharing, as they are
not focused on stream processing.

8. CONCLUSIONS
We presented Task-Cruncher, a system to reduce communica-

tion and computation loads when multiple concurrent applications
use a shared sensing substrate. Our communication redundancy re-
duction methods can reduce the number of samples required even
when the temporal requirements are not exactly identical. The pro-
posed algorithm was shown to be optimal, operates online, and has
very low overhead. Further, we also minimize computational re-
dundancies, not only when multiple tasks are performing the same
aggregation operation but also when partial overlaps exist at in-
termediate steps. Task insertion-deletion is supported and savings
achieved are close to optimal. These techniques enable efficient use
of large scale sensing infrastructures by multiple applications. Our
implementation not only prototypes the proposed methods but also
combines the use of existing methods to yield a greater combined
advantage.
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