
Searching for a Needle in a Haystack:
Predicting Security Vulnerabilities for Windows Vista

Thomas Zimmermann 1
tzimmer@microsoft.com

Nachiappan Nagappan 1
nachin@microsoft.com

Laurie Williams 2
williams@csc.ncsu.edu

1 Microsoft Research, Redmond, WA, USA

2 Department of Computer Science, North Carolina State University, Raleigh, NC, USA

Abstract—Many factors are believed to increase the
vulnerability of software system; for example, the more widely
deployed or popular is a software system the more likely it is to
be attacked. Early identification of defects has been a widely
investigated topic in software engineering research. Early
identification of software vulnerabilities can help mitigate
these attacks to a large degree by focusing better security
verification efforts in these components. Predicting
vulnerabilities is complicated by the fact that vulnerabilities
are, most often, few in number and introduce significant bias
by creating a sparse dataset in the population. As a result,
vulnerability prediction can be thought of us preverbally
“searching for a needle in a haystack.” In this paper, we
present a large-scale empirical study on Windows Vista, where
we empirically evaluate the efficacy of classical metrics like
complexity, churn, coverage, dependency measures, and
organizational structure of the company to predict
vulnerabilities and assess how well these software measures
correlate with vulnerabilities. We observed in our experiments
that classical software measures predict vulnerabilities with a
high precision but low recall values. The actual dependencies,
however, predict vulnerabilities with a lower precision but
substantially higher recall.

Keywords—Vulnerabilities, Prediction, Metrics, Complexity,
Churn, Coverage, Dependencies, Organizational Structure

I. INTRODUCTION

Software security is a critical part of the software
development process. While there is a significant body of
work on predicting defects, unfortunately little is known
about the field of vulnerability prediction. Some recent work
focused on this topic in the open source domain [9][15][22].
In this paper, we focus on vulnerability prediction for a
proprietary commercial product (Windows Vista). We define
a component to be vulnerable if it has been changed as part
of a security update after it was released publically.

Software security and reliability are two crucial aspects
of software engineering research. Software security research
spans several domains ranging from better programming
language design suited for security to the use of processes
like penetration testing, design and use of robust access
control policies [10]. For example, a software systems can be

reliable (i.e., works as expected) but not secure or a software
system can be secure (e.g., adopting threat modeling
effectively, eliminating buffer overflows programmatically,
etc.) but not reliable (does not work as expected). To better
address both security and reliability, it is essential to
understand differences and similarities between these two
fields.

Towards that end, we leverage existing metrics that have
been used in prior research for defect prediction
[17][18][19][20] to understand and investigate the efficacy
of these metrics for vulnerability prediction. More formally,
our research hypothesis is to investigate and report on the
ability of classical defect prediction metrics to be used as
predictors for vulnerability prediction. For this purpose,
we study Windows Vista, which is a large and widely-used
commercial operating system from Microsoft Corporation. A
statistical challenge in our study is motivated by the fact that
vulnerabilities are few and widely distributed in the dataset
akin to searching for a needle in a haystack. In our study for
example, only 66 advisories have been recorded for Vista
(40 Million plus lines of code) in the National Vulnerability
Database (NVD) [21], and only few of the Windows binaries
are affected by security updates.

This statistical challenge involves identifying which of
the classical metrics related to code quality can predict
vulnerabilities. We extract complexity, churn, coverage,
dependency metrics for Vista and used them to predict the
vulnerabilities that are found and fixed in Vista as dependent
variable. Our results are as follows:
 Metrics correlate with vulnerabilities; however the

effect is only small (Section IV).
 Most metrics can predict vulnerabilities with an

average to good precision; however the recall is very
low (Section V.B).

 Alternative techniques such as using the actual
dependencies of a binary to predict vulnerabilities have
better recall values (Section V.C).

The paper is organized as follows. Section II describes
the metrics that we collected and used in our experiment.
Section III characterizes our vulnerabilities based on public
data available in the NVD database. Section IV discusses the
correlation results between the collected metrics and

2010 Third International Conference on Software Testing, Verification and Validation

978-0-7695-3990-4/10 $26.00 © 2010 IEEE

DOI 10.1109/ICST.2010.32

421

vulnerabilities in Windows Vista. Section V presents the
results of our experiment on predicting vulnerabilities in
Windows Vista. Section VI presents threats to validity of our
study. Section VII discusses related work in the context of
our experiment and Section VIII concludes with future work.

II. DATA COLLECTION

In this section, we discuss the various metrics that we
used in our experiment to predict vulnerabilities. The
discussed measures have been used for predicting defects in
prior research both within and outside of Microsoft. The
measures can be broadly classified into five categories.
Throughout the paper, we will refer to the metrics in
subsections (i)-(v) as “classical metrics”.

(i) Code Churn Measures [17]:
a. Total Churn: The total added, modified, and deleted

lines of code of a binary during the development of
Vista. For our experiments on Windows Vista the churn
is measured relative to Windows Server 2003, the
release before Vista.

b. Frequency: The number of times that a binary was
edited during its development cycle. The implication is
the greater the number of edits, the greater the risk of
vulnerabilities.

c. Repeat Frequency: The number of consecutive edits that
are performed on a binary. A consecutive edit is when a
binary is edited between builds N and N+1 and then
again between builds N+1 and N+2. This is a measure of
the instability of the binary during its development. The
greater the repeat frequency, the greater the instability of
the binary during its development.

(ii) Code Complexity Measures [19]:
a. (Max)(Total) Cyclomatic complexity [13] measures the

number of linearly-independent paths through a program
module.

b. (Max)(Total) Fan-In: number of functions calling a
function.

c. (Max)(Total) Fan-Out: number of functions called by a
function.

d. (Max)(Total) Lines of Code (LOC).
e. (Max)(Total) Weighted methods per class (if any).
f. (Max)(Total) Depth of Inheritance (if any).
g. (Max)(Total) Coupling between objects (if any).
h. (Max)(Total) Number of sub classes (if any).
i. Total Global variables.

For each of the code complexity metrics, we collect two
measures (Max) and (Total) across the entire system (metrics
are computed on binary level). Max is the maximum value of
the metric across all components (or files) in the system, and
Total is the total value of the metric across the entire system.

(iii) Dependency Measures [18]:
For dependencies we compute both data dependencies and
call dependencies at the function level, including caller-

callee dependencies, imports, exports, RPC, COM, Registry
access. The dependencies are rolled up to the binary level.
For each binary, we compute the following dependency
metrics.

a. Incoming direct: The number of incoming direct

dependencies to a binary.
b. Incoming closure: The number of incoming indirect

dependencies to a binary.
c. Outgoing direct: The number of outgoing direct

dependencies from a binary.
d. Outgoing closure: The number of outgoing indirect

dependencies from a binary.
e. Layer information: The distance of a binary from the

system hardware (CPU), i.e., the Kernel, in the
architectural layering of Windows.

(iv) Code coverage Measure:
For each binary within Windows Vista, we compute the total
block and arc coverage measures.
a. Block coverage: A (basic) block is a set of contiguous

instructions (code) in the physical layout of a binary that
has exactly one entry point and one exit point. Calls,
jumps, and branches mark the end of a block. A block
typically consists of multiple machine-code instructions.
The number of blocks covered during testing constitutes
the block coverage measure.

b. Arc coverage: Arcs between blocks represent the
transfer of control between basic blocks due to
conditional and unconditional jumps, as well as due to
control falling through from one block to another.
Similar to block coverage the proportion of arcs covered
in a binary constitute the arc coverage. Arc coverage can
also be called branch coverage.

(v) Organizational Measures [20]:
a. Number of Engineers (NOE): This is the absolute

number of unique engineers who have touched a binary
and are still employed by the company.

b. Number of Ex-Engineers (NOEE): This is the total
number of unique engineers who have touched a binary
and have left the company as of the release date of the
software system.

c. Edit Frequency (EF): This is the total number of times
the source code that makes up the binary was edited. An
edit is when an engineer checks out code from the
version control system, alters it, and checks it in again.
This is independent of the number of lines of code
altered during the edit.

d. Depth of Master Ownership (DMO): This metric
determines the level of ownership of the binary
depending on the number of edits done. The
organization level of the person whose reporting
engineers perform more than 75% of the rolled up edits
is considered as the DMO. This metric determines the
binary owner based on activity on that binary. Our
choice of 75% is based on prior historical information
on Windows to quantify ownership.

422

e. Percentage of Org contributing to development (PO):
The ratio of the number of people directly reporting at
the DMO level relative to the total org size at the DMO
level.

f. Level of Organizational Code Ownership (OCO): The
percent of edits from the organization that contains the
binary owner (or if there is no owner the percent of edits
from the organization that made the majority of the edits
to that binary).

g. Overall Organization Ownership (OOW): This is the
ratio of the people at the DMO level making edits to a
binary relative to total engineers editing the binary. A
high value is good.

h. Organization Intersection Factor (OIF): The number of
different organizations that contribute more than 10% of
edits, as measured at the level of the overall org owners.

(vi) Actual Dependencies [26][28]:
We use dependency relationships among the binaries of
Vista to predict vulnerabilities. The dependencies of a binary
are an implicit description of its problem domain. For
example, applications that access the Internet will share
similar dependencies and also have a similar vulnerability
profile.

The use of dependencies is motivated by an earlier study
by Schröter et al. [26] who showed that import dependencies
can predict defects for Eclipse. We replicated the study for
arbitrary dependencies on Windows Vista and found similar
result for defects [28]. Neuhaus et al. showed that for Firefox
dependencies can also predict vulnerabilities [22].

III. CHARACTERIZING VULNERABILITIES IN VISTA

To characterize the vulnerabilities in Windows Vista we
used data from the National Vulnerability Database (NVD)
[21]. The NVD database contains over 35,000 publicly
known security vulnerabilities. For Vista 66 vulnerabilities
were reported as of April 2009.

Each entry in the NVD database comes with values for
Common Vulnerability Scoring System (CVSS) metrics [14]
that capture the characteristics of the vulnerability in terms
of access and impact. In this Section, we summarize the
CVSS metrics for the 66 Vista vulnerabilities.

The CVSS metrics Access Vector, Access Complexity,
and Authentication describe how the vulnerability can be
accessed and what conditions are required to exploit it.
 Access Vector. This metric indicates from where an

attacker can exploit the vulnerability. Of the Vista
vulnerabilities, 19 can be exploited only with physical
access to the machine, one can be exploited through an
adjacent network (e.g., IP subnet or Bluetooth), and 46
can be exploited remotely.

 Access Complexity. This metric measures the
complexity of attacks exploiting the vulnerability. A
vulnerability with low complexity can be for example a
buffer overflow in a web server, the vulnerability can
be exploited at will. In contrast a vulnerability in an
email client can be of high complexity, if the user has

to perform several suspicious steps before the
vulnerability is accessed. For Vista, the access
complexity is low for 32 vulnerabilities, medium for 31
vulnerabilities, and high for three vulnerabilities.

 Authentication. This metric counts how often an
attacker must authenticate before the vulnerability can
be exploited. For 62 vulnerabilities in Vista,
authentication was not required to exploit the
vulnerability; only four vulnerabilities required the
attacker to be logged onto the system.

The CVSS impact metrics measure how much the
vulnerability will affect a user, once it is exploited, with
respect to confidentiality, integrity, and availability.
 Confidentiality Impact. Of the vulnerabilities in

Vista, 17 had no impact to the confidentiality of the
system, 7 had partial information disclosure, and 42
had total information disclosure, which means that an
attacker is able to read all of the system’s files.

 Integrity Impact. Of the vulnerabilities in Vista, 15
had no impact on the integrity of the system, for 10
vulnerabilities the attacker is able to modify some files,
and for 42 the attacker is able to modify all files.

 Availability Impact. For 10 vulnerabilities, there was
no impact on the availability of the system, for 8 there
was reduced performance and for 48 the attacker is
able to shut down the system completely.

The values for the above metrics can be combined into a
single CVSS base score which takes values from 0 (low
severity) to 10 (highest severity). For the 66 Vista
vulnerabilities the CVSS base scores range from 1.9 to 10,
with an average of 7.5 and median of 7.2.

IV. CORRELATION ANALYSIS

In a first analysis we computed the correlations between
the metrics described in Section II.(i)-(v) and the number of
vulnerabilities per binary. We used the Spearman rank
correlation, which is a robust technique that can be applied
even when the association between values is non-linear [6].
The closer the value of a correlation is to –1 or +1, the higher
two measures are correlated—positively for +1 and
negatively for –1. A value of 0 indicates that two measures
are independent. We also computed the statistical
significance of each correlation to ensure that our results are
not random. All correlations were significant at p<0.0001,
except for Layer information and Outgoing closure from the
dependency measures and Percentage of Org, Overall
Organization Ownership, and Organization Intersection
Factor from the organizational measures.

Table I shows the metrics for which we found significant
correlations. Values greater than 0.10 can be considered a
small effect size; values greater than 0.30 can be considered
a medium effect size [4]. All our correlations are positive,
which means that for an increase in the metric, the number of
vulnerabilities increases as well. However, we note that all
effects are small.

We can observe the highest correlation values for metrics
related to edits (Edit Frequency, Frequency, Repeat

423

Frequency, Editing Ex-Engineers) and size and complexity
of binaries (Total Lines of Code, Total Complexity). This
observation suggests that binaries with frequent changes by a
large number of engineers are more prone to vulnerabilities.
Meneely and Williams found a similar phenomenon in a
study of Red Hat Linux [15]. Our study indicates an
accentuated effect of vulnerabilities in binaries with frequent
changes by engineers who have left the company. A
possible explanation for this is that when engineers leave,
knowledge about the structure and dependencies of the
component is lost. Similarly, binaries with many lines of
code and high complexity are more prone to vulnerabilities.

Classical metrics correlate with the number of
vulnerabilities; however the effect is only small.

V. PREDICTING SECURITY VULNERABILITIES

In this section, we describe an analysis to provide a
predicted classification of which binaries in Windows Vista
will have vulnerabilities. Every binary is either predicted to
have no vulnerabilities or to have one or more
vulnerabilities. We first describe our general experimental
setup which consists of 100 random splits (Section 5.1).
Next, we discuss the results for logistic regression and
metrics (Section 5.2) and for support vector machines on
dependency relations (Section 5.3).

A. Experimental Setup.

To evaluate the predictive power of our models, we use a
standard evaluation technique: data splitting [16]. That is, we
randomly pick two-thirds of all binaries (training set) to
build a prediction model and use the remaining one-third
(testing set) to measure the efficacy of the built model. For
every experiment, we performed 100 random splits to ensure
the stability and repeatability of our results. Whenever
possible, we reused the random splits to facilitate
comparison of results.

Because the percentage of vulnerable binaries was very
low (needle in the haystack), we use stratified sampling for
choosing the training and testing sets. This ensures that there
are always a sufficient number of vulnerable binaries in the
training set to learn from (in contrast, when choosing
binaries entirely randomly with naïve sampling, the training
set might have zero vulnerable binaries, leading to a trivial
model that classifies everything the same). In addition,
stratified sampling ensures that the ratio of vulnerable
binaries in the training and testing sets remains constant
across the random splits.

To assess the quality of the prediction models, we
computed precision and recall. To explain these two
measures, we use the following contingency table.

Observed

Vulnerable

Non-
Vulnerable

Predicted Vulnerable A B
Non-
Vulnerable

C D

The recall A/(A+C) measures the percentage of binaries

observed as vulnerable that were classified correctly. The
fewer false negatives (missed binaries), the closer the recall
is to 1.

The precision A/(A+B) measures the percentage of
binaries percentage of binaries predicted as vulnerable that
were classified correctly. The fewer false positives
(incorrectly predicted as vulnerable), the closer the precision
is to 1.

Both precision and recall should be as close to the value
1 as possible (=no false negatives and no false positives).
However, such values are difficult to realize since precision
and recall counteract each other.

TABLE I. SPEARMAN CORRELATION VALUES WITH
NUMBER OF VULNERABILITIES.

Metric rho
Edit Frequency (EF) 0.292
Total Lines of Code 0.281
Frequency 0.279
Total Complexity 0.276
Repeat Frequency 0.273
Number of Ex-Engineers (NOEE) 0.270
TotalFanIn 0.263
TotalFanOut 0.262
Number of Engineers (NOE) 0.261
Total Global Variables 0.255
Total Churn 0.254
Max FanIn 0.224
Max Complexity 0.207
Max FanOut 0.196
Max Lines of Code 0.194
Outgoing direct 0.168
Total ClassMethods 0.167
Max ClassMethods 0.164
Total InheritanceDepth 0.161
Total BlockCoverage 0.157
Incoming direct 0.156
Tota ClassCoupling 0.154
Total ArcCoverage 0.152
Incoming closure 0.148
Total SubClasses 0.141
Max InheritanceDepth 0.137
Max ClassCoupling 0.137
Max SubClasses 0.124
Level of Org. Code Ownership (OCO) 0.123
Depth of Master Ownership (DMO): 0.101

All correlations values are significant at p<0.0001.

424

B. Predicting with Classical Metrics

To predict vulnerabilities with the classical metrics from
Section II.(i)-(v), we used binary logistic regression. Logistic
regression predicts likelihoods between 0 and 1. In our case,
the likelihoods can be interpreted as the “vulnerableness”,
i.e., how likely a binary contains at least one vulnerability.

For classification, we used a threshold of 0.50, i.e., all
binaries with a vulnerableness of less than 0.50 were
predicted as free of vulnerabilities, while binaries with a
vulnerableness of at least 0.50 were predicted as vulnerable.

We ran six different experiments (recall that a single
experiment consists of 100 random splits). We did one
experiment for each of the five groups of metrics in Section
II: Churn, Complexity (Cplx), Coverage (Cov), Dependency
Measures (Dep), and Organizational Structure (Org). For the
sixth experiment, we used the metrics of all groups
combined (All).

The results of the experiments are summarized in Figure
1 as box plots. Each experiment is represented by two box
plots, one for precision and one for recall. A box plot shows
the minimum value (lowest horizontal line), the maximum
value (highest horizontal line), the lower quartiles (lower
vertical line of the box), the upper quartile (upper vertical
line of the box), and the median (thick vertical line dividing
the box). For example, in Figure 1 the box plot for Precision
and Churn shows that in the 100 random splits, the minimum
precision was 0.167, and reached up to 1.000. The median
precision was 0.667 (thick line).

Sometimes prediction models classify everything the
same, which would result in either a precision of 1 (and a
recall of 0) or a recall of 1 (and a very low precision).
However, in practice such trivial models are useless because

they cannot support any decision making. From a modeling
perspective, such cases indicate that there is not enough
information available to make predictions. For the box plots
in Figure 1, we ignored such cases, which except for the
Coverage experiment occurred very rarely (in seven out of
500 splits). For Coverage, all 100 random splits yielded
trivial models, which is why we cannot show any meaningful
box plots in Figure 1.

The highest median precision in our experiments was
0.667 for Churn, Dependency Measures (Dep), and
Organizational Structure (Org). In other words, two out of
three binaries predicted as vulnerable, are actually
vulnerable. However, it has to be noted that in our
experiments the precision widely varied across splits,
especially for Churn and Depends Measures.

The recall values are disappointing. The highest median
recall was roughly 0.2 for the combined model (All), which
means that on average only one out of five vulnerabilities
can be identified. In some splits, the recall improved to 0.4
(two out of five), which is still not a very high value.
Organization Structure had slightly lower, but comparable
recall values to the combined model.

We also looked at top binaries predicted as most
vulnerable by each model. For this, we predicted for each
binary in the testing set the vulnerableness, and then ranked
by the vulnerableness (high-to-low). The results of this
experiment are in Figure 2, for Top-1 to Top-20. For this
experiment, we ignore the models built from Coverage
metrics (because as mentioned above they turned out to be
trivial models).

When ranking binaries, the top-most binary is vulnerable
between 63% (Complexity) and 84% (Org), for the Top-10
binaries the hit rate is still between 42% and 62%. This
observation shows that metrics can effectively rank
vulnerable binaries to the top. Rather than inspecting binaries

Figure 1. Precision and recall for predicting binaries as
vulnerable. [* The coverage models classified all binaries
the same, which results either in precision or recall of 1]

Figure 2. Hitrate for the Top-20 binaries.

425

without any order, the binaries should be inspected in order
of decreasing predicted vulnerableness.

Most metrics predict vulnerabilities with an average to good
precision; however the recall is very low.

C. Predicting with Dependencies

We also built prediction models that use the targets of the
dependencies of a binary as input. For example, for a binary
that depends on Foo.exe, Bar.dll, and Qux.dll, we used
Foo.exe, Bar.dll and Qux.dll to make a prediction. More
formally, the input for our model is a high-dimensional bit
vector, with one bit for every possible dependency target. In
the example above, we would set the bits for Foo.exe,
Bar.dll, and Qux.dll. The output is again a classification of
whether the binary would contain vulnerability or not. Using
just the dependency relationships is inspired by a study of
Schröter et al. for software defects [26], which was
replicated by Neuhaus et al. for vulnerabilities [22].

Because of the high dimensionality of the input data
(every possible dependency target is considered as one
dimension), classical regression models would be doomed to
overfit the data. Instead we rely on Support Vector Machines
(SVMs) [2][25]. They have been used on similar datasets
[26], and achieved better results than linear regression,
regression trees, and ridge regression, possibly because
SVMs are less prone to overfitting.

To make a prediction for a binary from the test set, we
compute its dependencies and represent them as a bit vector.
The bit vector then serves as the input to the SVM built from
the training data. The SVM then classifies the test binary as
vulnerable or not vulnerable.

The results of SVMs for predicting vulnerable binaries
are shown in Figure 3 in a precision recall diagram. For each
random split we create one point with the precision value on
the x axis and the recall value on the y axis. The median
precision of all experiments is 0.6 which is comparable to the
results for the metrics in the previous section. However, for
dependency relations the recall increases substantially. In the
experiments recall values ranged between 0.2 and 0.6. The
median is now 0.40 (compared to 0.2 for metrics).

The dependencies of a binary predict vulnerabilities with
better recall values than classical metrics.

D. Discussion

A possible explanation for the increase in recall is that

the dependencies of a binary describe its problem domain.
Some domains are simply more likely to face vulnerabilities.
For example binaries that connect to the Internet will share
certain dependencies and a more likely to have
vulnerabilities. For an effective prediction of vulnerabilities
the domain and functionality of a binary has to be taken into
account, which is impossible by just using software metrics.

Other relevant factors that should be included for
prediction are the complexity of an attack based on a
vulnerability. For example, for some binaries it will be very
hard for attackers to exploit a vulnerability, maybe because
the attacker needs local access to the machine, several
passwords, and the user needs to perform suspicious actions.
These binaries are less likely to have critical vulnerabilities
that matter. The importance of vulnerabilities is hard to
capture with existing software metrics. However, finding
latent vulnerabilities is still useful because they might be
exploited at a later point in time.

In short our results show that predicting security
vulnerabilities is possible. However the results can still be
improved. We believe that the key for doing this is by (1)
developing new prediction techniques that deal with the
“needle in the haystack” problem; and (2) finding new
metrics that deal with the unique characteristics of
vulnerabilities and attacks.

VI. THREATS TO VALIDITY

As stated by Basili et al. [1], drawing general conclusions
from empirical studies in software engineering is difficult
because any process depends on a potentially large number
of relevant context variables. For this reason, we cannot
assume a priori that the results of our study generalize
beyond the specific environment in which it was conducted.

Since this study was performed on the Windows Vista
operating system and the size of the code base and
development organization is at a much larger scale than
many commercial products, it is possible that the specific
models built for Windows would not apply to other products,
or newer versions of Windows.

Figure 3. Precision and recall for actual dependencies.

426

VII. RELATED WORK

To the best of our knowledge, only few empirical studies
exist for software vulnerabilities. There exists a large body of
work on defect prediction for which we refer to a survey by
Catal and Diri [3].

Shin and Williams [27] correlated several complexity
measures with the number of security problems, for the
JavaScript Engine of Mozilla, but found only a weak
correlation. This result indicates that there are further factors
that influence vulnerabilities, and that there is a need for new
metrics for prediction of vulnerabilities.

Gegick et al. used code-level metrics such as lines of
code, code churn, and number of static tool alerts [8] as well
as past non-security faults [7] to predict security faults. In the
most recent work, Gegick et al. achieved a precision of 0.52
and a recall of 0.57. Gegick et al. created a vulnerability
prediction model using security-related static analysis alerts,
code churn, size and inspection faults. The model was used
to rank the components of a large Cisco system based upon
the likelihood the component contained a vulnerability. The
model predicted that 75.6% of the vulnerabilities could be
found in the top 18.6% of the components [9].

Neuhaus et al. [22] investigated the Mozilla project and
found a correlation between vulnerabilities and imports (that
is, the include directives in source files). They used the
imports to predict vulnerabilities with SVMs. We replicated
their study as part of Section 5.3. Our median precision of
0.60 and recall of 0.40 is roughly comparable to the study by
Neuhaus et al. who reported average precision of 0.70 and
recall of 0.45.

Neuhaus and Zimmermann [23] analyzed RedHat
packages and their dependencies and build a model to predict
packages with vulnerabilities. While the goal is similar to our
study, the level of analysis is completely different. They
focus on application level, while our study focused on
component level within one single application.

Ozment at al. [24] and Li et al. [11] studied how the
number of defects and security issues evolve over time. Di
Penta et al. [5] tracked vulnerabilities across versions in
order to investigate how different kinds of vulnerabilities
evolve and decay over time.

Meneely and Williams [15] performed an empirical case
study by examining correlations between the known security
vulnerabilities in the open source Red Hat Enterprise Linux 4
kernel and developer activity metrics. Files developed by
otherwise- independent developer groups were more likely to
have a vulnerability. However, files with changes from nine
or more developers were 16 times more likely to have a
vulnerability than files changed by fewer than nine
developers, indicating that many developers changing code
may have a detrimental effect on the system’s security.

VIII. CONCLUSION AND CONSEQUENCES

In this paper, we present the results of an empirical case
study on the ability of classical metrics that have been used
for defect prediction for vulnerability prediction. To the best
of our knowledge this is the first large scale study carried out

on a widely-deployed commercial OS like Windows wherein
we explore the ability of a significant variety of measures
ranging from code churn, complexity, dependencies to
organization structure of the company building the software
system.

Our results indicate that there is no one universal set of
metrics that work efficiently for predicting vulnerabilities.
Churn, complexity, coverage predict vulnerabilities with
high precision but low recall values. Alternatively code
dependencies predict vulnerabilities with low precision and
high recall. Hence is possible to use a combination of metrics
to obtain reasonable precision and recall while predicting
defects.

Our results motivate future work in three areas:
(i) Vulnerabilities are not as simple to predict as defects.

The “needle in the haystack” problem challenges
standard statistical prediction methods. This to some
degree explains that the precision and recall values for
predicting vulnerabilities is not in the comparable range
for predicting defects. Further, the risk of vulnerabilities
depends also on usage and domain of the components.

(ii) To better predict vulnerabilities we therefore need new
measures that capture domain and usage, (for
example attack surface measurement [12] and better
statistical techniques to deal with sparse data. As
pointed out earlier for example Vista has 66 advisories
have been recorded in the NVD database, and only few
of the Windows binaries are affected by security
updates.

(iii) We plan to leverage specific metrics related to software
security like buffer overflows, integer overruns,
arithmetic errors, spoofing attack bugs, repudiation
bugs, denial of service attack bugs found during
software development as a predictor of post-release
vulnerabilities.

IX. ACKNOWLEDGEMENTS

Laurie Williams was a visiting researcher in Microsoft
Research (MSR) Redmond when this work was performed.
We would like to thank the Windows team at Microsoft and
Brendan Murphy of MSR Cambridge for his help in under-
standing the data sources. We would also like to thank the
anonymous ICST reviewers for valuable feedback on an
earlier revision of this paper.

X. REFERENCES
[1] V. R. Basili, F. Shull, and F. Lanubile, Building Knowledge Through

Families of Experiments, IEEE Transactions on Software
Engineering, vol. 25, pp. 456-473, 1999.

[2] B. E. Boser, I. Guyon, and V. Vapnik. A Training Algorithm for
Optimal Margin Classifiers. In Proceedings of the Fifth Annual ACM
Conference on Computational Learning Theory. COLT ’92. 144-152.

[3] C. Catal and B. Diri. A systematic review of software fault prediction
studies. Expert Systems With Applications, 2008.

[4] J. Cohen, Statistical Power Analysis for the Behavioral Sciences,
second ed. Lawrence Erlbaum Assoc., 1988.

427

[5] M. Di Penta, L. Cerulo, and L. Aversano. The evolution and decay of
statically detected source code vulnerabilities. In Proc. Int'l. Working
Conf. on Source Code Analysis and Manipulation (SCAM), 2008.

[6] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach: Brooks/Cole, 1998.

[7] M. Gegick, P. Rotella, and L. Williams. Toward non-security failures
as a predictor of security faults and failures. In Proc. Int'l. Symposium
on Engineering Secure Software and Systems (ESSoS), 2009.

[8] M. Gegick, L. Williams, J. Osborne, and M. Vouk. Prioritizing
software security fortification throughcode-level metrics. In QoP '08:
Proc. of the 4th ACM workshop on Quality of protection, pages 31–
38. 2008.

[9] M. Gegick, P. Rotella, and L. Williams. Predicting Attack-Prone
Components, In International Conference on Software Testing,
Verification, and Validation (ICST) 2009, Denver, CO, pp. 181-190.

[10] Michael Howard and David LeBlanc. Writing Secure Code, Second
Edition. 2002.

[11] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have things
changed now? An empirical study of bug characteristics in modern
open source software. In Proc. Workshop on Architectural and
System Support for Improving Software Dependability 2006, pages
25–33, October 2006.

[12] P. K. Manadhata, J. M. Wing, M. Flynn, and M. McQueen:
Measuring the attack surfaces of two FTP daemons. Proceedings of
the 2nd ACM Workshop on Quality of Protection, QoP 2006. 3-10

[13] T. J. McCabe: A Complexity Measure. IEEE Trans. Software Eng.
2(4): 308-320 (1976)

[14] P. Mell, K. Scarfone, and S. Romanosky. CVSS. A Complete Guide
to the Common Vulnerability Scoring System. Version 2.0.
http://www.first.org/cvss/cvss-guide.html

[15] A. Meneely and L. Williams. Secure Open Source Collaboration: An
Empirical Study of Linus' Law, ACM Computers and
Communication Security (CCS), 2009.

[16] J. Munson and T. Khoshgoftaar. The Detection of Fault-Prone
Programs, IEEE Transactions on Software Engineering, vol. 18, pp.
423-433, 1992.

[17] N. Nagappan and T. Ball. Use of relative code churn measures to
predict system defect density. In Proceedings of the 27th
International Conference on Software Engineering, ICSE '05. 284-
292.

[18] N. Nagappan and T. Ball. Using Software Dependencies and Churn
Metrics to Predict Field Failures: An Empirical Case Study. In
Proceedings of the First International Symposium on Empirical
Software Engineering and Measurement, ESEM ‘07. 364-373

[19] N. Nagappan, T. Ball, and A. Zeller. Mining metrics to predict
component failures. In Proceedings of the 28th International
Conference on Software Engineering, ICSE '06. 452-461.

[20] N. Nagappan, B. Murphy, and V. Basili. The influence of
organizational structure on software quality: an empirical case study.
In Proceedings of the 30th International Conference on Software
Engineering, ICSE '08. 521-530.

[21] National Vulnerability Database. http://nvd.nist.gov/

[22] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller. Predicting
vulnerable software components. In Proceedings of the 14th ACM
Conference on Computer and Communications Security, CCS '07.
529-540.

[23] S. Neuhaus, T. Zimmermann. The Beauty and the Beast:
Vulnerabilities in Red Hat's Packages. In Proceedings of the 2009
USENIX Annual Technical Conference (USENIX ATC), June 2009.

[24] A. Ozment and S. E. Schechter. Milk or wine: Does software security
improve with age? In Proc. 15th Usenix Security Symposium, August
2006.

[25] J. C. Platt, Fast Training of Support Vector Machines using
Sequential Minimal Optimization. In Advances in Kernel Methods -
Support Vector Learning, B. Schölkopf, C. J. C. Burges, and A. J.
Smola, Eds.: MIT Press, 1998, pp. 185-208.

[26] A. Schröter, T. Zimmermann, and A. Zeller. Predicting component
failures at design time. In Proceedings of the 2006 ACM/IEEE
international Symposium on Empirical Software Engineering, ISESE
'06. 18-27.

[27] Y. Shin and L. Williams. Is complexity really the enemy of software
security? In QoP '08: Proc. 4th ACM workshop on Quality of
protection, pages 31–38. ACM, 2008.

[28] T. Zimmermann and N. Nagappan. Predicting Defects with Program
Dependencies (Short Paper). In Proceedings of the Third
International Symposium on Empirical Software Engineering and
Measurement, ESEM ‘09.

428

