
Mini-Me: A Min-Repro System for Database
Software

Nicolas Bruno#1, Rimma Nehme∗2

#Microsoft Research
Redmond, WA 98052 USA

1nicolasb@microsoft.com
∗Microsoft Jim Gray Systems Lab

Madison, WI 53703 USA
2rimman@microsoft.com

Abstract— Testing and debugging database software is often
challenging and time consuming. A very arduous task for DB
testers is finding a min-repro – the “simplest possible setup”
that reproduces the original problem. Currently, a great deal
of searching for min-repros is carried out manually using non-
database-specific tools, which is both slow and error-prone. We
propose to demonstrate a system, calledMini-Me1, designed to
ease and speed-up the task of finding min-repros in database-
related products. Mini-Me employs several effective tools, in-
cluding: the novel simplification transformations, the high-level
language for creating search scripts and automation, the “record-
and-replay” functionality, and the visualization of the search
space and results. In addition to the standardapplication mode,
the system can be interacted with in thegame mode. The latter
can provide an intrinsically motivating environment for develop-
ing successful search strategies by DB testers, which can bedata-
mined and recorded as patterns and used as recommendations
for DB testers in the future. Potentially, a system likeMini-Me
can save hours of time (for both customers and testers to isolate a
problem), which could result in faster fixes and large cost savings
to organizations.

I. I NTRODUCTION

Database software is complex along many dimensions, as
it is comprised of a large number of features and execution
components. An implicit assumption is that the underlying
DBMS services are well-tested, reliable and correct.

Filling the Gap: Testing vs. Debugging

To ensure the absence of bugs in database software, testing
and debugging are the two processes that are used hand in
hand together. Testing can demonstrate the presence of a
“bug,” and debugging is used to identify what caused it and
how to fix it. Too often, the starting point for the debugging
process is a very large setup with a lot of irrelevant inputs
and variables. This is a consequence of either randomized
automatic test generators or real-world application scenarios.
Of course, the shorter and more concise the setup to reproduce
a problem is, the more likely the root cause of the problem
is understood and is effectively fixed. Conceptually, we try
to obtain amin-repro – the “simplest possible” version of
the input variables that still reproduce the original problem.

1Mini-Me, a character in theAustin Powersmovies, was the clone ofDr. Evil (the
villain) and was identical to him in every way but was “one-eighth his size”.

X
X

X
...

.exe Output

1.

2.

3.

4.

5.

n.

DBMS
component

Input 
Configuration

Problem

In
pu

ts

X X X

2. 3. 5.

Min Repro

alternatively

I

Fig. 1. Conceptual idea of amin repro.

Further removing or simplifying any input in a min-repro
would stop the reproduceability of the problem.

Figure 1 illustrates the conceptual idea of a min-repro. Here
an input configurationI on the left hand-side consists of a set
of inputs{1...n}. A DBMS component shown in the middle
takes this set of inputs and produces an output, considered by
the DB tester a “problem”. The configurationI may contain a
lot of inputs that are irrelevant to the problem cause, i.e.,their
presence (or lack of presence) will not make any difference in
whether the problem will appear or not. Hence, the DB tester
needs to see only those inputs that are relevant to reproducethe
problem (inputs 2, 3 and 5 in the figure). Furthermore, since
inputs themselves can be complex (e.g., long SQL queries with
nested sub-queries), it may be beneficial to find the simplest
possible versions of the inputs both in the number and in their
individual complexity.

Our Contributions

The contributions of ourMini-Me system are as follows:

1) Repro Model. We employ a general repro model that
can capture different types of inputs, various database
executables and a wide range of problem definitions.

2) Transformations. We design a set of novel simplifi-
cation transformations in the database context that can
incrementally simplify input configurations.

3) High-Level Language. We introduce a high-level lan-
guage that can be used for creating customized min-
repro scripts to re-use certain logic and to automate
search sub-tasks.



4) Record-and-Replay. We present the “record-and-
replay” functionality, where a sequence of actions can
be recorded and then generalized into a min-repro search
pattern that can be reused in the future (possibly in
different contexts).

5) Execution. We describe how the search for a min-repro
in Mini-Me can be performed in both theapplication
and thegamemodes using the system’s intuitive UI.

II. T ECHNICAL DETAILS

A. System Overview

Figure 2 gives an overview ofMini-Me execution. First, a
DB tester initializes theRepro Function(or shortRF ) – the
abstraction that models the original repro comprised of a set of
inputs, the database execution components2 and the description
of what the user views as the “problem” [1]. The min-repro
system takes theRF object as its input (Step 1 in the figure),
executes the min-repro search algorithm by interacting with
the DBMS executable(s) (Step 2), prompts the DB tester for
feedback (if applicable) to adapt its min-repro search strategy
(Step 3), and at the end, returns a min-repro as a result (Step
4).

Repro
Function

Min-Repro 
System

Mini-Me

1

4

DBMS2

User
RF (I inputs, E exe, P problem)

Min-Repro

3

Fig. 2. Overview ofMini-Me execution.

In our work, we focus on two database-specific input types,
namely, theDML statements(e.g., SQL queries) and the
physical structures(e.g., indexes). However, extensions to
support other input types can be added easily.

B. Modeling a Repro

The initial (large) repro and the problem description inMini-
Me is modeled using aRepro Functionabstraction which
is symbolically represented asRF (I,E,P ). RF provides a
complete facility for users to specify their repro information
and has the following three main parts: (1) a set of inputs
I (e.g., a complex query workload and a set of available
indexes), (2) a set of database executablesE that consumeI
as inputs, and typically represent the database software where
the problem originates, and (3) a set of rulesP that describe
the problem for which the min-repro is needed.

C. Simplifying Transformations

The minimization of a repro is carried out by executing
simplifying transformationson the set of inputsI. We dis-
tinguish between two types of tranformations, namely the
inter-transformationsthat are applicable to a set of inputs and
the intra-transformationsthat are applicable to the “internal”
content of an input.

2These are typically database executables.

1) Inter-Transformations: Table I shows the inter-
transformations used in Mini-Me system. These
transformations are defined as macros and can be applied
to any input in a repro regardless of its type. The coarse-
granularity of inter-transformations gives them an advantage
of being able to quickly reduce the size of a repro in a few
steps, which can be beneficial if the starting configuration
contains many inputs. However, inter-transformations might
not be as effective for repros with few but complex inputs [1]
– the case where the intra-transformations are most helpful.

TABLE I

INTER-TRANSFORMATIONS

Input-Independent Inter-Transformations

Macros

Remove 1. Removes inputs
(Un)Lock 2. Makes inputs (im)mutable
Partition (w/ Choose) 3. Partitions inputs into subsets

- manually - defined by DB tester
- by n - into n subsets
- randomly - randomly
- by similarity - by input similarity
- by rank - by input rank

2) Intra-Transformations: Compared to the inter-
transformations, the simplifying intra-transformationsare
more fine-grained and are input-specific. They are designed
to operate on the internal contents of the repro inputs. For
example, query inputs and index inputs have their own
(tailored to their syntax and semantics) intra-tranformations
as depicted in Table II.

TABLE II

INTRA-TRANSFORMATIONS

Input-Specific Intra-Transformations
Query intra-transformations

Macros

1. SELECT simplification
2. FROM simplification
3. WHERE removal
4. WHERE simplification
5. GROUP BY simplification
6. GROUP BY removal
7. ORDER BY simplification
8. ORDER BY removal
9. Sub-query simplification
10. Sub-query removal

Custom 11. SQL parse-tree based
Index intra-transformations

Macros
1. Column removal
2. Column order change
3. Column conversion (key↔ include)
4. Column value change

D. Min-Repro Search Strategy

The general strategy for a min-repro search inMini-Me can
be described using the following key steps:

1) Simplify : This step executes a simplifying transforma-
tion(s) and returns a set of simpler input configurations
(possibly containing only one set, if the partition inter-
transformation was not used).

2) Choose-to-Test: In this step, some or possibly all of the
simpler input configurations (from Step 1) are tested for
problem reproduceability.

3) Choose-to-Continue: Among the simpler configurations
that reproduce the problem (from Step 2), this step picks
a configuration to continue with and goes to Step 1.



4) Backtrack: If nothing (from Step 2) reproduces the
problem, the search backtracks to a prior input configu-
ration, and then continues (with it) to Step 1.

E. High-Level Language

Mini-Me is equipped with a high-level language, called
TLDB (short forTest Language for Databases), which allows
users to create custom scripts and to re-use them in the future.
TLDB uses XML as its primary syntax and is similar in
spirit to the XEXPR [2] language with several extensions
(functions and keywords) specific to database domain. Scripts
encapsulate a general logic that can be then employed in
the search for a min-repro in different scenarios. Existing
debugging algorithms, e.g.,delta debugging[3] and others can
be easily implemented in TLDB.

F. Record-And-Replay Functionality

An intuitive way of debugging is when a user has tried
a number of steps over time and they have reproduced
the wanted results.Mini-Me features the “record-and-replay”
functionality, which records user actions3, generalizes them
into a pattern, which is then available forreplay, in either a
manual min repro search or as a part of a script.

G. Visualization of Search Space and Results

Simply knowing which repro is reproducing a problem is
one thing, but presenting it in an intuitive and understandable
manner (especially in complex scenarios) is another.Mini-
Me provides a simple visualization of the search space and
results, which can help a DB tester in understanding what
and why might have caused a problem. Visualization can also
facilitate in providing a better feedback by the users to the
search strategy, thus creating a better “dialogue” betweena
tester and the min-repro search system, which can help find
min-repros faster.

H. Execution Modes

1) Application Mode: Mini-Merunning in the application
mode executes as a normal application. Users specify a re-
pro and then using the available in the system tools search
for a min-repro.Mini-Me uses the concept of asessionto
distinguish among different attempts to find a min-repro. The
session id can be used to reload a session (whenever needed)
to continue the search. Sessions can also make the comparison
of different runs/search strategies (for the sameRF ) possible.

2) Game Mode:An alternative mode of execution is the
“game mode”, where the search for a min-repro is presented
in the form of a game. Games intrinsically motivate users to
actively solve a problem. In [1], we’ve highlighted several
essential elements of a “min-repro game” and how they are
addressed in our system’s game mode, e.g., customizable
challenges, point system, etc. While in the game mode,Mini-
Me can track and (in the background) data-mine for successful
game strategies and generalize them into re-usable min-repro
search patterns which can be used to provide recommenda-
tions, in the case a DB tester gets “stuck”.

3The system also has a “pause” button, which allows to skip user actions if needed.

Pattern Recorder

Feedback Toolbar

Inputs in repro

Feedback Drop Window

Result

WYSIWYE Window
(partially shown)

Fig. 3. Search space visualization inMini-Me.

III. O UR DEMONSTRATION

A. Demonstration Scenarios

We will demonstrateMini-Me using Microsoft SQL Server
2005 and 2008 and the following scenarios.
Scenario 1: Query Processor Cost Changes. This scenario
depicts a situation when a DBMS vendor wants to determine
a simple workload for which the cost estimates produced by
the current and the previous versions of the query optimizer
differ by more than a specified percent thresholdδ (e.g.,
δ = 10%). This may indicate potential problems (variations)
in the codebase of the newer optimizer4.
Scenario 2: Physical Design Tuning Tools. The second sce-
nario is in the context of physical design tuning. Given
two different ways to performwhat-if calls (specifically, the
existing what-if API described in [4] and a new alternative
described in [5]), we will show how a min-repro can be found
for the case when the difference in the output is larger than a
given tolerance, thus potentially indicating problems (orbugs)
in the alternative approach.

B. User Interaction With Our System

The attendees of our demonstration will be able to interact
with Mini-Me as follows:
Specifying a repro: Users will be able to create aMini-Me
repro session through either a GUI form or an SQL statement.
This will demonstrate how the system models a repro.
Manual search: Users will be able to search for a min-
repro manually by providing their feedback to the system.
Specifically, users will be able to perform the following
actions: (1)transform– execute a simplification transformation
on a repro, (2)“record-and-replay” functionality – record and
then apply a search pattern, (3)backtrack– instruct the search
to backtrack to a particular repro in the search space, (4)
execute script– execute a script on a current repro.
Semi-automated search: To highlight the power for min-repro
by running scripts created in our high-level language. We will
also showcase the pattern “recording” example, that will be
used for immediate “playback” in the search.
Visualization of search space results: Using the visualization
tools in Mini-Me, we will graphically illustrate the search

4Similarly, it may be useful to determine queries for which the execution time differs
by more thanδ percent.



SQL 
Parse 
Tree

Input side-by-side comparison (in SQL) 
before and after transformation

List of transformations 
performed on the input

Fig. 4. Input transformations inMini-Me.

“Draggable” script elements

Script diagram

Script element 
property window

Fig. 5. Test script diagram inMini-Me.

space, preview transformation changes, and show results of
the search execution.
Execution in the game mode: Users will be able to interact
with Mini-Me in the game mode (Figure 6). Using the points
system we will describe how it increases users’ motivation:for
every transformation that successfully minimizes a repro auser
will be given points. If a simplifying transformation caused the
problem to be no longer reproduceable, some points will be
deducted. A score summary following each “game session”
also provides the users with their performance feedback, thus,
facilitating progress assessment.

We will exploit the GUI tools for this demonstration5.

Search space diagram: This window (Figure 3) illustrates the
search space for a problem and has two uses: (1) the user feed-
back drop and (2) the “WYSIWYE” interface (“WYSIWYE”
stands for “What You See Is What You Execute”. The former
is used by users to “drop” their feedback to guide the search,
and the latter previews the changes to the selected repro.

5Due to space constraints, we only list a subset ofMini-Me GUI tools here.

Time 
Challenge

Customizable 
Challenges User Score

Search space

Fig. 6. Mini-Me in the game mode.

Input transformations : These windows enable the execution
of transformations. Figure 4 shows an example of a query
transformation and a side-by-side comparison of the query
before and after the transformation.
Script diagram: This window (Figure 5) allows users to
create diagrams of their test methods by simply dropping
and connecting script elements to create an execution logic.
Based on the diagram, the script code (in TLDB language) is
generated. This interface allows users to create a sophisticated
search logic very easily.
Execution component results viewer: This window (not
shown) depicts the actual results returned by the execution
component(s). Viewing these results can help users make a
better judgement regarding how the search should proceed and
what kind of feedback they should provide to the system.

IV. CONCLUSION

A great deal of current min-repro search is carried out man-
ually using non-database-specific tools. An important aspect
of reliable database services is the development of tools and
techniques that can simplify the reproduceability of problems
detected during testing to be fixed in debugging. Our min-
repro systemMini-Me is precisely such a system, bridging
the current gap between DB testing and debugging.Mini-Me
is designed with both experienced and novice DB testers in
mind. As a part of our system, we have suggested a game
approach, inspired in part by the fact that humans enjoy “fun”
applications. The game mode can enable less experienced DB
testers to explore, learn and develop good min-repro repro
search strategies.

REFERENCES

[1] N. Bruno, R. Nehme, “Finding min-repros in database software,” in
DBTest, 2009.

[2] http://www.w3.org/TR/xexpr/.
[3] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing

input,” IEEE Transactions on Software Engineering, vol. 28, no. 2, pp.
183–200, 2002.

[4] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Narasayya, and
M. Syamala, “Database tuning advisor for Microsoft SQL Server 2005,”
in VLDB, 2004, pp. 1110–1121.

[5] N. Bruno and R. Nehme, “Configuration-parametric query optimization
for physical design tuning,” inSIGMOD, 2008, pp. 941–952.


