Mini-Me: A Min-Repro System for Database
Software

Nicolas Bruno#', Rimma Nehme?

#Microsoft Research
Redmond, WA 98052 USA
'ni col asb@ri crosoft. com
*Microsoft Jim Gray Systems Lab
Madison, WI 53703 USA
2ri mman@ri cr osoft. com

Abstract— Testing and debugging database software is often Input DBMS

challenging and time consuming. A very arduous task for DB Configuration component Problem
testers is finding a min-repro — the “simplest possible setup”

that reproduces the original problem. Currently, a great deal

of searching for min-repros is carried out manually using na- o)

database-specific tools, which is both slow and error-proneWe 3 —> .exe —» | Output
propose to demonstrate a system, calletini-Me', designed to =

ease and speed-up the task of finding min-repros in database-

related products. Mini-Me employs several effective tools, in- ‘ allemavely

cluding: the novel simplification transformations, the high-level <[]

language for creating search scripts and automation, the “ecord- ! N

and-replay” functionality, and the visualization of the search Min Repro

space and results. In addition to the standardapplication mode, Fig. 1. Conceptual idea of min repra

the system can be interacted with in thegame mode. The latter) . o)))
can provide an intrinsically motivating environment for develop- Further removing or simplifying any input in a min-repro
ing successful search strategies by DB testers, which can Bata- would stop the reproduceability of the problem.

mined and recorded as patterns and used as recommendations Figure 1 illustrates the conceptual idea of a min-reproeHer
for DB testers in the future. Potentially, a system likeMini-Me 5 ino ¢ configuration on the left hand-side consists of a set
can save hours of time (for both customers and testers to isate a . . .
problem), which could result in faster fixes and large cost sangs ©f iNputs {1...2}. A DBMS component shown in the middle
to organizations. takes this set of inputs and produces an output, considgred b
the DB tester a “problem”. The configuratibmay contain a
|. INTRODUCTION lot of inputs that are irrelevant to the problem cause, fheir
Database software is complex along many dimensions, piesence (or lack of presence) will not make any difference i
it is comprised of a large number of features and executigrhether the problem will appear or not. Hence, the DB tester
components. An implicit assumption is that the underlyingeeds to see only those inputs that are relevant to repradece
DBMS services are well-tested, reliable and correct. problem (inputs 2, 3 and 5 in the figure). Furthermore, since
-] . inputs themselves can be complex (e.g., long SQL querids wit
Filling the Gap: Testing vs. Debugging nested sub-queries), it may be beneficial to find the simplest
To ensure the absence of bugs in database software, tesfingsible versions of the inputs both in the number and irr thei
and debugging are the two processes that are used hanéhélividual complexity.
hand together. Testing can demonstrate the presence of a
“bug,” and debugging is used to identify what caused it affgur Contributions
how to fix it. Too often, the starting point for the debugging The contributions of ouMini-Me system are as follows:
process is a very.lar.ge setup with a lot of irrelevant inpgts(}) Repro Model. We employ a general repro model that
and varl_ables. This is a consequence of e_|the_r ran_domlze can capture different types of inputs, various database
automatic test generators or real-world application sdesa executables and a wide range of problem definitions.
Of course, the shorter and more concise the setup to remoducz) Transformations. We design a set of novel simplifi-

a problem is, the more Ilke!y the root cause of the problem * c4iion transformations in the database context that can
is understood and is effectively fixed. Conceptually, we try incrementally simplify input configurations

to obtain amin-repro — the “simplest possible” version of 3) High-Level Language We introduce a high-level lan-

the input variables that still reproduce the original pesbl

IMini-Me, a character in théustin Powersmovies, was the clone dbr. Evil (the
villain) and was identical to him in every way but was “onefeh his size”.

guage that can be used for creating customized min-
repro scripts to re-use certain logic and to automate
search sub-tasks.

4) Record-and-Replay We present the “record-and- 1) Inter-Transformations: Table | shows the inter-
replay” functionality, where a sequence of actions camansformations used in Mini-Me system. These
be recorded and then generalized into a min-repro seatcéinsformations are defined as macros and can be applied
pattern that can be reused in the future (possibly o any input in a repro regardless of its type. The coarse-
different contexts). granularity of inter-transformations gives them an adagat

5) Execution. We describe how the search for a min-reprof being able to quickly reduce the size of a repro in a few
in Mini-Me can be performed in both thapplication steps, which can be beneficial if the starting configuration
and thegamemodes using the system’s intuitive Ul. contains many inputs. However, inter-transformations hmig

not be as effective for repros with few but complex inputs [1]

IIl. TECHNICAL DETAILS — the case where the intra-transformations are most helpful

A. System Overview

TABLE |

Figure 2 gives an overview dflini-Me execution. First, a INTER-TRANSFORMATIONS
DB tester initializes thEReprO FUnCtiOF(Of ShOftRF) — the Input-Independent Inter-Transformations
abstraction that models the original repro comprised ot afse Remove 1. Removes inputs
. . .. (Un)Lock 2. Makes inputs (im)mutable
inputs, the database execution comporfeats the description Partition (w/ Choosg 3. Partitions inputs into subsets
of what the user views as the “problem” [1]. The min-reprp macros :Bﬂanually :_tiﬁgneds bgslzg tester
system takes th& F' object as its input (Step 1 in the figure) - rgni}om.y - 'rand’émf;
executes the min-repro search algorithm by interactindp wit - by similarity - by input similarity
the DBMS executable(s) (Step 2), prompts the DB tester fot by rank - by Input rank

feedback (if applicable) to adapt its min-repro searchtetya

(Step 3), and at the end, returns a min-repro as a result (St%{g) Intra—Transformanqns: . C,Tomp.ared to the . Inter-
4) transformations, the simplifying intra-transformatiorzse

more fine-grained and are input-specific. They are designed
to operate on the internal contents of the repro inputs. For
example, query inputs andindex inputs have their own
(tailored to their syntax and semantics) intra-tranfoioret

RF (I inputs, E exe, P problem)

Repro
Function

User

Min-Repro
System -e-

Pipiuisiaiin 5(E) Mviviniiyivivin Mini-Me as depicted in Table 1.
TABLE Il
o INTRA-TRANSFORMATIONS
Fig. 2. Overview ofMini-Me execution. Input-Specific Intra-Transformations

Query intra-transformations

In our work, we focus on two database-specific input types, ; ?EIC-JI\E/ICT simplification
. . simplification
namely, theDML statements(e.g., SQL queries) and the 3. VHERE removal
; ; ; 4. \\HERE simplification
physical struc_tures(e.g., indexes). However., extensions to | Macros 5. GROUP BY simplification
support other input types can be added easily. 6. GROUP BY removal
7. ORDER BY simplification
B. Modeling a Repro 8. ORDER BY removal
9. Sub-query simplification
The initial (large) repro and the problem descriptioMimi- 10. Sub-query removal
Me i deled using &Repro Functionabstraction which custom L1 SQL parsetree hased
. els mo_ g p . Index intra-transformations
is symbolically represented aBF(I,E,P). RF provides a 1. Column removal
oH ; : ; : Macros 2. Column order change
complete facility for. users to spegfy their repro mformﬂt 3. Column conversiorkéy <> include
and has the following three main parts: (1) a set of inputs 4. Column value change

I (e.g., a complex query workload and a set of available

indexes), (2) a set of database executallethat consumd D. Min-Repro Search Strategy

as inputs, and typically represent the database softwaeeevh 11 general strategy for a min-repro searciMimi-Me can
the problem originates, and (3) a set of ruleshat describe o yescribed using the following key steps:

the problem for which the min-repro is needed. 1) Simplify: This step executes a simplifying transforma-

C. Simplifying Transformations tion(s) and returns a set of simpler input configurations
The minimization of a repro is carried out by executing (POSSibly containing only one set, if the partition inter-
simplifying transformationon the set of inputd. We dis- transformation was not used).

tinguish between two types of tranformations, namely the 2) Choose-to-TestIn this step, some or possibly all of the
inter-transformationghat are applicable to a set of inputs and ~ Simpler input configurations (from Step 1) are tested for

the intra-transformationghat are applicable to the “internal” problem reproduceability. . . _
content of an input. 3) Choose-to-Continue Among the simpler configurations

that reproduce the problem (from Step 2), this step picks
2These are typically database executables. a configuration to continue with and goes to Step 1.

. WYSIWYE Wind
4) Backtrack: If nothing (from Step 2) reproduces the Feedback Drop Window (prtaly shour)

problem, the search backtracks to a prior input confige
ration, and then continues (with it) to Step 1.

E. High-Level Language : 4 :

Mini-Me is equipped with a high-level language, calle(|. B BRERRE B omaEaE
TLDB (short for Test Language for Databagesvhich allows |77
users to create custom scripts and to re-use them in theefutt
TLDB uses XML as its primary syntax and is similar in[_ =
spirit to the XEXPR [2] language with several extension[f
(functions and keywords) specific to database domain. Scrif | [«
encapsulate a general logic that can be then employed in
the search for a min-repro in different scenarios. Existing

Inputs in repro

Feedback Toolbar

@ Pattern Recorder

m il g |

Fig. 3. Search space visualization Nini-Me.

debugging algorithms, e.glelta debugging3] and others can I1l. OUR DEMONSTRATION
be easily implemented in TLDB. A. Demonstration Scenarios
F. Record-And-Replay Functionality We will demonstrateMini-Me using Microsoft SQL Server

An intuitive way of debugging is when a user has trie@005 and 2008 and the following scenarios.
a number of steps over time and they have reproduc8denario 1: Query Processor Cost Chang&is scenario
the wanted resultdMini-Me features the record-and-replay depicts a situation when a DBMS vendor wants to determine
functionality, which records user actiohsgeneralizes them a simple workload for which the cost estimates produced by
into a pattern which is then available foreplay, in either a the current and the previous versions of the query optimizer
manual min repro search or as a part of a script. differ by more than a specified percent threshélde.g.,
d = 10%). This may indicate potential problems (variations)
in the codebase of the newer optimizer

Simply knowing which repro is reproducing a problem i&cenario 2: Physical Design Tuning ToolEhe second sce-
one thing, but presenting it in an intuitive and understét&a 510 is in the context of physical design tuning. Given
manner (especially in complex scenarios) is anotMini- o different ways to perfornwhat-if calls (specifically, the
Me provides a simple visualization of the search space apdisting what-if API described in [4] and a new alternative
results, which can help a DB tester in understanding wh@éscribed in [5]), we will show how a min-repro can be found
and why might have caused a problem. Visualization can algg the case when the difference in the output is larger than a

search strategy, thus creating a better “dialogue” betweeeny, the alternative approach.

tester and the min-repro search system, which can help find
min-repros faster. B. User Interaction With Our System

G. Visualization of Search Space and Results

H. Execution Modes The attendees of our demonstration will be able to interact

1) Application Mode: Mini-Merunning in the application with Mini-Me as follows:

mode executes as a normal application. Users specify a §é)_eC|fy|ng_a re;]proz L;]se_ri will gzlafle to Creatse ITnl-Me
pro and then using the available in the system tools seaf@pro session through either a orm or an SQL statement.

for a min-repro.Mini-Me uses the concept of sessionto This will demonstrate how the system models a repro.

distinguish among different attempts to find a min-reproeTHvIanual searclzlh l;Jsers V\(’j'" beha_bli todbseakrch f%r a min-
session id can be used to reload a session (whenever nee&%’&r)o manually by providing their feedback 1o the system.

to continue the search. Sessions can also make the corrrpar%B_ec'f"?a”y’ users will be able to perform the following

of different runs/search strategies (for the saR€) possible. actions: (1transform— execute a3|mpI|f_|cat|(?n transformation
2) Game Mode:An alternative mode of execution is the@n @ repro, (2)record-and-replay” functionality — record and

n apply a search pattern, (®cktrack— instruct the search

“game mode”, where the search for a min-repro is presen : ’
in the form of a game. Games intrinsically motivate users 8 Packtrack to a particular repro in the search space, (4)

actively solve a problem. In [1], we've highlighted severafXeCUte SCript- execute a script on a current repro.

essential elements of a “min-repro game” and how they apgMmi-automated searchTo highlight the power for min-repro

addressed in our system's game mode, e.g., customizalyeg'unning scripts created in our high-level language. Wé wi
challenges, point system, etc. While in the game madiai- also showcase the pattern “recording” example, that will be

Me can track and (in the background) data-mine for successfifiéd for immediate “playback” in the search.
game strategies and generalize them into re-usable m-m_regll;uallzatlon of search space resultsUsing the visualization
search patterns which can be used to provide recommentf@!s in Mini-Me, we will graphically illustrate the search

tions, in the case a DB tester gets “stuck”. P , , A o
Similarly, it may be useful to determine queries for whicle #xecution time differs
3The system also has a “pause” button, which allows to skip asgons if needed. by more thanj percent.

ans! =loix|

s &
Conment cpeial

T et tomizable

- . Challenges User Score

SQL . .
Q List of transformations Tragek
@ Parse == - - ,
performed on the input ol 1 Time
Tree haliEnge?] Frdsrvwowites [00:03:00 Challenge
o vomeseacve e T e T e T
B S
e wmn
Query BEFORE (1nsamaion 0 Query AFTER B OODOOED
ey TR SRR A S
e 3 B .
2L count.nen

s L_SHIPDATE <= dateadd(dd, -111, '1998/12/01') 15 L_SHIPDATE <= dateadd(dd, -111, '1998/12/01')

1 oo B

17 z Search space

i J i
. . ¢ . . Qame oo, PR
Input side-by-side comparison (in SQL)
before and after transformation Fig 6. Mini-Me in the game mode

Fig. 4. Input transformations iMini-Me.
Input transformations : These windows enable the execution

Script diagram . .
of transformations. Figure 4 shows an example of a query
@), Test Script Diagrammer e
CoHeé 3RRCOE ’ transformation and a side-by-side comparison of the query
S = 4 before and after the transformation.
Smif?lil:iﬁﬁ” Script diagram: This window (Figure 5) allows users to
s create diagrams of their test methods by simply dropping
- Script: Body

and connecting script elements to create an execution.logic
Based on the diagram, the script code (in TLDB language) is
generated. This interface allows users to create a sogstesti
search logic very easily.
Execution component results viewer This window (not
shown) depicts the actual results returned by the execution
component(s). Viewing these results can help users make a
better judgement regarding how the search should procekd an
what kind of feedback they should provide to the system.

IV. CONCLUSION

Wihile:
L
.. Bse
Variable
Update.
- Script: Domain-Specific Functions

SpltByN

Splt By Similanty

SpitRandomly

SpitByRank

[Other Scripts
. Inter Scripts.
Inter Script: DettaDebuggingWith S|
Inter Script: SpitByRank xml
Inter Script: SpitBy Smilarty xari Inter Script: Del ing xrml
= Intra Scripts.

Intra Seript: Gl
Intra Script: Oxoaml
Intra Script: Wacml
Intra Seript: WaOx i

Seript Structure (drag elements into appropriate areas)

- ~ SCHIPT_END ~ o ~~ Scriptelement -
“Draggable” script elements o property window . . .
‘ . A great deal of current min-repro search is carried out man-
ox9 fxa . e .
ually using non-database-specific tools. An important etspe
Fig. 5. Test script diagram iMini-Me. of reliable database services is the development of toals an

steocfhniques that can simplify the reproduceability of peoirs
detected during testing to be fixed in debugging. Our min-
repro systemMini-Me is precisely such a system, bridging
g1e current gap between DB testing and debuggdiiigi-Me
Is designed with both experienced and novice DB testers in
mind. As a part of our system, we have suggested a game
approach, inspired in part by the fact that humans enjoy™fun
B\gplications. The game mode can enable less experienced DB
sters to explore, learn and develop good min-repro repro
search strategies.

space, preview transformation changes, and show result
the search execution.

Execution in the game mode Users will be able to interact
with Mini-Me in the game mode (Figure 6). Using the point
system we will describe how it increases users’ motivation:
every transformation that successfully minimizes a repusex
will be given points. If a simplifying transformation caukthe
problem to be no longer reproduceable, some points will
deducted. A score summary following each “game sessio
also provides the users with their performance feedbadis, th

facilitating progress assessment. REFERENCES

. . . . 1] N. Bruno, R. Nehme, “Finding min-repros in database \gafe,” in
We will exploit the GUI tools for this demonstratian t DBTesf 2009. 9 P

. [2] http:/iwww.w3.0rg/TR/xexpr/.
Search space d'agramTh'S window (F'gure 3) illustrates the [3] A. Zeller and R. Hildebrandt, “Simplifying and isolagirfailure-inducing

search space for a problem and has two uses: (1) the user feedinput,” IEEE Transactions on Software Engineeringl. 28, no. 2, pp.

back drop and (2) the “WYSIWYE” interface WYSIWYE” 183-200, 2002. _
[4] S. Agrawal, S. Chaudhuri, L. Kollar, A. Marathe, V. Nasgga, and

_Stands for “What You See ks M_atlou Execute”. _The former M. Syamala, “Database tuning advisor for Microsoft SQL ®er2005,”
is used by users to “drop” their feedback to guide the search, in VDB, 2004, pp. 1110-1121.

and the latter previews the changes to the selected repro. [5] N. Brunc_) and R_. Nehme, “(_:onfiguration-parametric gueptiraization
for physical design tuning,” irSIGMOD, 2008, pp. 941-952.

5Due to space constraints, we only list a subseMafi-Me GUI tools here.

