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Abstract

Photographing distant objects is challenging for a num-
ber of reasons. Even on a clear day, atmospheric haze often
represents the majority of light received by a camera. Un-
fortunately, dehazing alone cannot create a clean image.
The combination of shot noise and quantization noise is
exacerbated when the contrast is expanded after haze re-
moval. Dust on the sensor that may be unnoticeable in the
original images creates serious artifacts. Multiple images
can be averaged to overcome the noise, but the combina-
tion of long lenses and small camera motion as well as time
varying atmospheric refraction results in large global and
local shifts of the images on the sensor.

An iconic example of a distant object is Mount Rainier,
when viewed from Seattle, which is 90 kilometers away.
This paper demonstrates a methodology to pull out a clean
image of Mount Rainier from a series of images. Rigid
and non-rigid alignment steps brings individual pixels into
alignment. A novel local weighted averaging method based
on ideas from “lucky imaging” minimizes blur, resampling
and alignment errors, as well as effects of sensor dust, to
maintain the sharpness of the original pixel grid. Finally,
dehazing and contrast expansion results in a sharp clean
image.

1. Introduction

Distant objects present difficulties to photograph well.
Seeing detail obviously requires lenses with a very long fo-
cal length, thus even small motions of the camera during
exposure cause significant blur. But the most vexing prob-
lem is atmospheric haze which often leads to the majority
of photons arriving from scattering in the intervening media
rather than from the object itself. Even if the haze is fully
removed, there are only a few bits of signal remaining, thus
quantization noise becomes a significant problem. Other
noise characteristics of the sensor are also increased in the
contrast expansion following haze removal. Variations in
the density of air also cause refraction thus photons cannot
be counted on to travel in straight lines. Finally, small dust
particles on the sensor that cause invisible artifacts on the
original images can become prominent after haze removal.

Figure 1. Multi-Image Dehazing of Mount Rainier: Given multiple
input images, a sequence of rigid and non-rigid alignment and per-
pixel weighted averaging, minimizes blur, resampling, and align-
ment errors. Dehazing and contrast expansion then results in a
sharp clean image.

One such distant subject often photographed is Mount
Rainier when viewed from Seattle, approximately 90 kilo-
meters distant. For those who live in or visit Seattle, seeing
the mountain on a clear day is an exhilarating experience.
One can just make out the glaciers which pour down from
its 14,411 foot peak rising from the sea. Unfortunately, in
most amateur photographs the mountain seems to simply
disappear. Even with a long lens and tripod on a clear day,
the haze precludes creating a clean image of the mountain.

This paper demonstrates a methodology to create a clean
shot of a distant scene from a temporal series of images.
Care is taken to align the images due to global camera mo-
tion as well as considerable local time varying atmospheric
refraction. Noise reduction is achieved through a novel
weighted image averaging that avoids sacrificing sharpness.
Our main technical contribution is in the weight determi-
nation. Significant loss of sharpness can occur due to the
interaction of the pixel grid with strong edges in the scene
as well as resampling due to sub-pixel alignment. We over-
come this loss of sharpness through a novel weighted aver-
aging scheme by extending ideas related to lucky imaging
developed in the astronomy literature.



Atmosphere:
Light Attenuation, Color Shift,
Refraction (warping + blur)

There are three bodies of previous work that have the
most influence on our current problem. Those are the liter-
atures on denoising, image alignment and optical flow, and
dehazing. We’ll discuss the most relevant work.

Denoising: Image denoising methods have been re-
ported in a very wide and deep body of literature [11, 18,
12, 13]. Most methods address the problem of denoising a
single image. In general, for each pixel, a weighted aver-
aging is performed over a local neighborhood. The weights
can be as simple as a radially symmetric Gaussian (sim-
ple smoothing), may be determined by their similarity to
the pixel being smoothed as in Bilateral Filters [18], or are
based on higher order local statistics [16]. If one has mul-
tiple exact copies of an image, with each pixel corrupted
independently by Gaussian noise, the temporal stack of cor-
responding pixels from each image can simply be averaged
to remove the noise. Video denoising operates in a similar
manner. Typically, an alignment phase is first performed
to align the spatial neighborhoods in each frame. Then a
weight is determined for pixels in the aligned spatiotempo-
ral neighborhood. The weights may be based on the confi-
dence in the alignment [3], temporal similarity, not unlike
spatial bilateral filtering, to avoid averaging over moving
objects for example [1], and/or other local statistics. In our
case, we perform a weighted averaging of the pixel stacks,
where the weights are determined from the local (spatial and
temporal) statistics as well as a model to avoid spatial re-
sampling of pixel values due to sub-pixel alignment. Since
we have a deep stack to choose from, we can highly weight
only a small percentage of the pixels and still achieve a good
denoising. We extend ideas from lucky imaging [9, 6] in the
astronomy domain for this purpose.

Alignment and Flow: Our task involves both perform-
ing arigid alignment of images caused by small rotations of
the camera as well as local alignment of pixels due to time-
varying air turbulence. Szeliski [17] gives a nice tutorial of
alignment and stitching methodologies. Similarly, there is
a very rich literature on optical flow [5] for tracking pixels
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Figure 2. Imaging Mount Rainier: Several processes occur that introduce errors in the captured images. The atmosphere absorbs, scatters,
refracts, and blurs light rays, while the camera adds artifacts due to motion, defocus blur, dust, noise, and discrete sensor sampling. Our
method compensates for these multiple sources of error.

2. Related Work
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that move small amounts from frame to frame. Our case is
relatively simple compared to finding general flow since the
motion is spatially smooth, with no occlusions, and small
enough to use a simple patch based SSD search after the
global alignment.

Dehazing: There has been considerable work on remov-
ing haze from photographs. Haze removal is challenging
because the haze is dependent on the scene depth which is,
in general, unknown. Many methods use multiple images,
such as a pair with and without a polarizing filter [14] or
taken under different weather conditions [10]. The differ-
ences between the images are then used to estimate depth
and the airlight color for dehazing. In some cases, depth
can be derived from external sources by geo-registering the
image to known 3D models[8]. Recently, single image haze
removal [4, 7] has made progress by using a strong prior.
Fattal [4] assumes the transmission and surface shading are
locally uncorrelated to derive the effects of haze. He et
al. [7] propose an interesting dark channel prior. They ob-
serve that for outdoor scenes, in any local region of a haze
free image, there is at least one channel of one pixel that
is dark. The presence and quantity of haze is therefore de-
rived from the darkest pixel channel in some local region.
We will use a variation of this work in our processing.

None of the above methods address the issue of noise
when dehazing very distant objects obscured by a lot of
haze. Most show results where they visual quality of dis-
tant regions is improved by “adding back a bit of haze”.

3. Imaging The Mountain

To create a clean image of Mount Rainier we will work
from a temporal series of images. For each of these images,
I;, we observe at each pixel, p, the following:

Ii(p) = D(p)[B(p + Au(p)) @ [J(p + Ae(p))a(p + Ae(p))
+ A1 —a(p+ Aup))]] + Ne(p) ¢))

where J(p) will represent a measure (after tone-mapping)
of the true radiance reflecting from the mountain in a given
direction. A;(p) expresses the pixel’s offset due to the shifts
of the camera’s orientation and the air turbulence that may



have refracted the light to arrive from different direction.
a(p+Aq(p)) expresses the attenuation of light due to atmo-
spheric scattering, and A is the airlight. The total radiance
recorded at a pixel due to airlight goes up just as the true
radiance from the mountain is attenuated. B(p + A(p))
captures any blurring that may occur due to atmospheric
scattering and in-camera defocus resulting in a point spread
on the image. D(p) is another attenuation factor due to dust
on the sensor. Finally N;(p) is a zero mean additive noise
as a result of both quantization and shot noise. An example
of one observation is shown in the upper half of Figure 1
and in Figure 4(a).

Our goal is to extract an image which is as close as pos-
sible to J(p) using a temporal series of such observations.
Thus we must attempt to undo the spatial shifts A;p, as well
as remove the airlight and minimize the corruption due to
blur, noise, and sensor dust. An example result is shown in
the bottom half of Figure 1 and in Figure 4(f).

3.1. Input and System Overview

We create a final image of Mount Rainier from a se-
quence of 124 individual images shot at approximately 1 per
second on a Canon 1Ds Mark III camera at ISO 100 with a
400mm lens. The aperture and exposure were at f/14 and
1/200%" second, respectively. The mountain only occupied
about one quarter of the frame, so we cropped out a 2560 by
1440 portion of the center of the frame for further process-
ing. We also down-sampled the image to half-resolution,
as we ran into memory limitations when processing at the
original image resolution.

The camera was mounted on a tripod but the shutter re-
lease was operated manually. The images were recorded
with as JPEGs. Although the camera’s automated sensor
cleaning was activated, as will be seen, small dust particles
become apparent.

We create our final image of Mount Rainier with the fol-
lowing steps:

e Perform a global translational alignment of each im-
age to a single image and average over the resulting
images.

e Compute pixel-wise optical flow to the globally
aligned average image, initialized by the global align-
ment result for each image.

e For each pixel location, determine a pixel-wise weight
for each corresponding pixel in each image. Created
a weighted average image from the set of normalized
weights.

e Dehaze the result.

We will describe each of these steps in more detail below
and provide intermediate results.

3.2. Image Alignment

The images of Mount Rainier are misaligned due to cam-
era motion and temporally varying warping due to atmo-
spheric refraction. Fortunately, while the misalignments are
quite large, several aspects of our setup simplify the align-
ment process significantly: 1) images taken from 90 km
away with a long focal length are well modeled by an or-
thographic camera model, 2) the scene is mostly static, thus
all misalignment is due to the camera and atmosphere, 3)
the lighting on the mountain is effectively static over the
relatively short time the images were taken, and finally 4)
sensor noise is reasonably low during the daylight shooting
conditions.

Given these properties, a straightforward combination of
a global translation and local block-based flow allows us to
create very well aligned images. In fact, we found more
sophisticated methods, such as Black and Anandan’s well-
known method [2], to perform worse, as the regularization
intended to handle the complexities of general scenes, (such
as occlusions and parallax, scene motion, noise, lighting
changes, etc.), led to overly smooth flow that did not align
the small local features in our images.

Our alignment process proceeds in four steps. First, we
perform a global translational alignment of each image to
a single reference image using a full-frame alignment [15].
Both the camera x, y translation and yaw and pitch rotation
are modeled by translation, due to the orthographic projec-
tion model. The remaining z translation is irrelevant also
due to the orthographic projection. Any camera roll is han-
dled in the next step.

Next, we average these globally aligned frames to pro-
duce a reference frame for the local alignment process. For
each pixel in each image, we compute the sum-of-squared-
differences (SSD) between the 5 x 5 neighborhood around
the pixel and a corresponding translated window on the av-
eraged image. The per pixel flow is chosen as the minimum
SSD over a 1/2 pixel discrete sampling within [—5, 5] pix-
els translation in = and y. This flow vector captures both the
camera roll and atmospheric warping. Lastly, the global and
local translations are added to determine the offset, A;(p),
for each pixel. These offsets are used to warp each input
image, I; using bilinear interpolation to produce a warped
result, I}, such that I} (p) = I:(p + A+(p)).

It should be noted that all computations are done in float-
ing point to avoid further quantization errors. Figures 4 and
5 illustrate the affect of the image alignment process.

3.3. Determining Weights for Averaging

Once the images are aligned, they can be temporally av-
eraged, (i.e., across a stack of pixels), to reduce both sensor
and quantization noise. Unfortunately, a simple averaging
of these pixels (Figure 4(c) and 5(g)) does not produce a
result with very high visual quality, due to the errors intro-



duced into the capture process as discussed in Section 3.
Residual mis-alignments after flow warping, interpolation
during bilinear resampling, dust on the sensor, and vary-
ing atmospheric blur all lead to artifacts when using only a
simple average. To overcome these issues we developed a
novel per-pixel weighting scheme that is a function of local
sharpness.

There are two main properties we believe to be ideal
for overcoming errors due to the atmosphere and alignment
process. Specifically, our weighting scheme is designed
with these two goals in mind:

1. To maximally suppress noise it is best to average over
as many samples as possible, and

2. to maximize image sharpness it is best to only average
over a few well-aligned, sharp pixels.

It may seem that these goals are contradictory, and they
are in some sense — as the number of samples in the av-
erage increase, if any of those samples are mis-aligned or
blurred, the sharpness of the resulting image will decrease.
Our approach to merging these goals is to break-down the
per-pixel weight as a combination of sharpness weight and
a “selectivity” parameter that governs how many samples
are averaged. For both of these aspects we drew partly on
ideas from from “lucky imaging”.

Lucky imaging is used in earth-based astronomic pho-
tography to overcome warping and blurring due to the atmo-
sphere. There are many similarities between the approach’s
goals and ours. Mackay et al. [9] compensate for atmo-
spheric shifts and blurs by first ranking each image by a
sharpness measure which, in the domain of images of stars,
is simply the maximum pixel value in the image. Then the
top N% (often 1% to 10%) of the images, ranked by sharp-
ness, are aligned by computing a global translation — this
represents the “selectivity” of the averaging process. The
resulting images are averaged. Harmeling et al. [6] propose
an online method that extracts signal from each image by
estimating the PSF to update a final result.

We will use a combination of three weights and a selec-
tivity measure to determine the final weight given to each
pixel. The weights measure local sharpness, resampling er-
ror, and the presence of dust. The selectivity is based on a
measure of local variance to promote more noise reduction
in smooth areas.

Sharpness Weight: In contrast with the astronomy do-
main, simple intensity is not a meaningful sharpness mea-
sure and, as we have densely textured images, a full frame
metric is not appropriate. Instead, we compute a per-pixel
weight that is a function of a local sharpness measure. We
use the discrete Laplacian of the image as the local sharp-
ness measure and set our sharpness weight proportional to
the magnitude of the Laplacian.

Specifically, consider £} to be the convolution of an
warped input image I; with a 3 x 3 discrete Laplacian filter,
and £, to be the Laplacian of the un-weighted mean image:

N
1
= — I 2
p(p) N; +(p), 2)
where p is a pixel and there are ¢ = [1...N] images. The

use of £, is discussed later in this section. The sharpness
weight for a pixel is then:

Wieo (P) = [L4(D)]. 3)

We create a normalized weight, w;.,(p), by linearly re-
mapping the output range of the absolute value of the Lapla-
cian to the range of [0, 1] .

Resampling: In addition, we consider that smoothing
can be introduced during global and local alignment, as the
process requires pixels’ values to be estimated by an inter-
polation of the original input pixel values. If an edge falls
across integer pixel coordinates, it is known that the sub-
pixel interpolation of that edge will be smoothed. To re-
duce this type of smoothing, we have also derived a “re-
sampling” weight that down-weights pixels interpolated at
fractional pixel locations as a quadratic function of distance
of the fractional location from the nearest integer location.
Specifically,

Framp(P)=1 =\ frac(A(p)e)? + frac(Ai(p),)? @)
Wamp(P)= Fsamp(p)*- (5)

Ay (p) is the total alignment translation of pixel p, and the
“frac” function returns the fractional distance to the nearest
integer, i.e., frac(z) = min(mod(z,1),1 — mod(z,1)).
We create a normalized resampling weight, wsqmp(p) by
linearly re-mapping the output range of w},,,,(p) to the
range of [e, 1] . We map to a minimum value of € instead
of 0 as we have observed qualitatively better results when
allowing the interpolated pixels have some small non-zero
weight. We have found € = 0.1 to work well.

Selectivity: As discussed above, it is important to weigh
pixels not only by sharpness, but to also have a selectiv-
ity parameter. The more selective, i.e., fewer pixels aver-
aged, the sharper the result. One might think that being ex-
tremely selective is ideal, which is the approach lucky imag-
ing takes. However, this has as a downside, as with fewer
samples, noise is not well suppressed. When averaging a
fixed number of images, an equal amount of denoising oc-
curs across the entire image. In our image of Mount Rainier,
this has an undesired affect: being less selective, (i.e., using
many samples), denoised the sky well, but softens features
on the mountain, while fewer samples resulted in the moun-
tain being sharp, but the sky containing unacceptable noise.

Thus, just as we found a full frame sharpness measure
to be unsuitable for our images, we found a fixed selectiv-
ity measure non-ideal. We developed a per-pixel selectively




measurement that is more selective in areas of high local
texture, (i.e. the mountain), and averages over more sam-
ples in areas of low local texture, (i.e., the sky). Specifically,
we implement this selectivity parameter as an exponent on
our per-pixel weights which lie in [0, A] for some large value

Al wsharp(p) - (wsamp(p) * Wiex (P))W(p) (6)
The exponent is calculated by first computing:
7' (p) = L), )

and then we compute the exponent values -y(p) by linearly
re-mapping the output range of v*(p) to the range of [0, ]
for some large value A\. We have found A\ = 10 to work well
in practice.

Dust Removal: Lastly, we also consider sensor dust. To
minimize the effect of sensor dust on the final image we can
leverage the fact that the alignment shifts the dust around
from image to image. We hand-mark dust spots (a single
image of the clear sky can be used to automate this step)
on a single initial input frame to create a binary dust mask,
where a value of 1 indicated the presence of dust. We then
warp this mask using the computed global alignment. The
dust weight is then: wgyst(p) = 1 — dust(p).

Only the global alignment is performed on the dust mask
and the corresponding pixels in the input image, since the
dust texture itself is not part of the true texture. The global
alignment shifts the dust over a big enough range so that for
any output pixel there will be choices in the pixel stack that
do not have dust covering them. This effectively removes
the dust spots from the final result.

Putting it all together: The final per-pixel weight in-
cludes the dust mask simply as an additional multiplier to
down-weight dust spots:

w(p) = Wdust * (wsamp(p) * Wtex (p))’Y(p)- (®)

Finally, we recover a denoised image as the weighted sum

of warped images:
>y w(p) I (p)
J(p) = ==—"""""—=— A(1 — a(p)). 9)
v i, w(p) el

3.4. Dehazing and Constrast Expansion

Once we have a denoised image from the per-pixel
weighted sum of aligned images, the final step is to de-
haze the image. We adapt the dark channel method of He et
al. [7] to model the haze and airlight color by surmising that
in any local region of a haze free image, there is at least one
channel of one pixel that is dark. The presence and magni-
tude of the haze is derived from the darkest pixel channel in
some local region.

The local region model of He et al. is appropriate for
many natural scenes as they often have local dark regions
due to shadows or high-frequency textures, e.g., as images
of trees, urban environments, etc. However, in our image
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Figure 3. Computing the Airlight Component using the Dark
Channel Prior: (left) The initial estimate of the dark channel for
each pixel is the darkest value per horizontal scanline. The dashed
line shows where we set the airlight contribution equal to that for
the top of the mountain, which dehazes the sky region up to the
depth of the top of the mountain. (right) Finally, as the dark-
channel values are noisy across scanlines, we smooth the values.

of Mount Rainier there are many large local areas with no
dark values, such as the large white glaciers. Thus the local
model is not appropriate.

Instead, we note that as the haze amount and thus the
dark channel value is proportional to depth; any neighbor-
hood which captures a constant depth and has dark regions
can be used to measure the dark channel value. As anyone
who has flown into a metropolitan area has witnessed, the
air quality and color often takes on a layered appearance.
Due to the relatively conical shape of the volcano as well
as the haze’s relationship with altitude, we assume that the
haze is effectively constant per scan-line. In contrast with
previous work, we do not assume a single global airlight
color [4, 7]. Instead the airlight color can vary per-scanline.
We have found this necessary for our images where the
airlight color appears quite different towards the bottom of
the mountain (see Figure 3).

We estimate the dark channel value as the darkest value
per horizontal scanline:

[AQL = a(p))] = mingZ, I (p), (10)

where p is pixel and W is the image width.

We process the per-scanline minimum in two ways. The
dark channel value is somewhat meaningless in the sky re-
gion, as this region is completely airlight. In previous work,
pure sky regions were often simply ignored or masked out.
We instead choose to set the airlight color for the sky above
the mountain top to be equal to that at the top of the moun-
tain. This effectively dehazes the sky region up to the depth
of the mountain. Furthermore, as the dark-channel val-
ues can be somewhat noisy from scanline-to-scanline, we
smooth the dark channel image in the vertical direction us-
ing a broad 1D Gaussian filter. Figure 3 shows plots of the
per-scanline dark channel values.

The final dehazed image is computed as I(p) — [A(1 —
a(p))], for an image I. This dehazing operation is not only
valid for our final weighted mean. In the result section, we
will show dehazing applied at various stages of our process-
ing pipeline to illustrates the affect of each stage.



Finally, we stretch the contrast by a linear remapping of
the luminance to the full image range of [0, 1]. We color bal-
ance the final image using the gray granite of the mountain
and white glaciers as as a gray and white point.

4. Results

We demonstrate the results through a series of images
and detail crops. The image in Figure 4(a) shows a sin-
gle input image, I;(p). All further images demonstrate
intermediate results of the pipeline after dehazing (Before
dehazing the differences are almost imperceptible.) Fig-
ure 4(b) shows the same input image after haze removal,
I;(p) — A(1 — a(p)). The effects of noise and dust becomes
apparent. Before performing any processing on the images,
we crop our full-frame 21 MP images to include on the rel-
evant sections of the mountain and remove the gamma cor-
rection factor of 1.24, which we calibrated by imaging the
gray panels on a Macbeth Color Checker, from the JPEG
images. We re-apply a gamma correction of 1.45 for dis-
playing our results.

We also show the effect of simply averaging the temporal
samples. Figure 4(c) represents

N
2t ll0) (1 agy)) an
after averaging and dehazing. The averaging removes the
noise but also blurs considerably due to camera motion and
air turbulence.

Removing the global motion of each image and averag-
ing removes much of the blur as can be seen in Figure 4(d).
Adding the local flow into the pixel motion further refines
the image (Figure 4(e)):

N ’
L 0D 41 o)), (12)

Finally, by weighting each sample as described in Sec-
tion 3.3 we achieve our final result:

N
—yw(p) 1
ZEN (Z)@)(p) a0

which can be seen in Figure 4(f).

Figure 5 shows zoomed-in side-by-side comparisons of
two regions on the mountain for each of the results pre-
sented above. Each results shows progressively increasing
image quality, as a function of decreasing noise and increas-
ing sharpness. Our final result, that uses full alignment and
our novel per-pixel weights is significantly sharper than any
of the other results.

— a(p)); (13)

5. Discussion

We have shown that with careful registration and select-
ing the most reliable pixels, multiple images can provide
a sharp clean signal. The key contribution of this work is

the concept that such an image can be captured through 90
kilometers of hazy air. The main technical contribution is
in the choice of weights based on local sharpness measures
and resampling. While we have used these weights for de-
noising images for input to a dehazing process, we believe
our weighting methodology would improve general multi-
image denoising algorithms.

A second contribution is the use of spatially-varying (in
our case, per scanline) airlight color when performing de-
hazing. We have found this necessary for the scene we con-
sider, and it is likely important for dehazing any large and
very distant outdoor object.

One might consider which parts of the process can be
achieved on the sensor. If the camera is static and there is
no air turbulence, the main problem becomes one of remov-
ing the airlight before it saturates the pixels. A sensor could
open an electron drain per pixel or small patch. The drain
could be set equivalent to the electron gain from a large per-
centage of the minimum incoming radiance over the patch.
This would minimize the quantization noise by allowing a
longer exposure to spread the signal over more bits in the
sensor range. The final image plus the “drain” image, which
would approximate the airlight, would need to be recorded
to recover the full image. The effect would be similar to that
outlined in the Gradient Camera [19]. It is less clear how
any blur due to camera motion and air turbulence could be
minimized.

Our work demonstrates overcoming one specific difficult
imaging scenario. We hope this paper inspires further work
in capturing difficult to image scenes.
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