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ABSTRACT

This paper addresses the problem of discriminative training of lan-
guage models that does not require any transcribed acoustic data.
We propose to minimize the conditional entropy of word sequences
given phone sequences, and present two settings in which this cri-
terion can be applied. In an inductive learning setting, the pho-
netic/acoustic confusability information is given by a general phone
error model. A transductive approach, in contrast, obtains that in-
formation by running a speech recognizer on test-set acoustics, with
the goal of optimizing the test-set performance. Experiments show
significant recognition accuracy improvements in both rescoring and
first-pass decoding experiments using the transductive approach, and
mixed results using the inductive approach.

Index Terms— Discriminative training, language model, unsu-
pervised training, conditional entropy.

1. INTRODUCTION

A statistical language model (LM) is often trained in the maximum
likelihood sense with some smoothing techniques, aiming at reduc-
ing the perplexity on future data. When used in speech recognition,
however, such an objective may not be optimal. There have been
a number of discriminative training criteria, including minimum
classification error (MCE) [1], minimum word error (MWE) [2],
large margin [3], and maximum conditional likelihood (MCL) [3, 4],
which take into account acoustic confusability in language model-
ing. These methods are usually conducted in a supervised machine
learning setting. In other words, both acoustic waveforms and their
corresponding transcriptions are available at training time. More-
over, a speech recognizer is often used to produce a set of hypotheses
(e.g., an n-best list) for each train-set utterance. The LM parameters,
then, are estimated to boost the likelihood of the correct hypothesis
and to penalize those of the competing, incorrect hypotheses.

While these discriminative training methods lead to modest error
rate reductions in different applications, they all require supervised
(or implicitly supervised [4]) training data. This creates roadblocks
to the development of speech applications in new domains where
little in-domain acoustic data is available. For example, as an ex-
tension to voice search systems that recognize local search queries
spoken by users [5], a universal voice search (UVS) system would
allow users to speak general web search queries. Although we can
leverage a large query log in the web search domain for language
modeling, discriminative training of such an LM is challenging due
to the lack of real acoustic data.
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This work addresses the problem of discriminative training of
LMs without transcribed acoustic data. We assume the availabil-
ity of (1) an initial LM estimated from a text corpus, (2) a lexi-
con that contains pronunciations for all words in the LM, and (3)
some representation of phonetic/acoustic confusability. We propose
a new optimization objective that minimizes the conditional entropy
of word sequences given phone sequences. Following this criterion,
we explore two settings which differ in how phonetic/acoustic con-
fusability information is obtained and what LM parameters are to be
updated. In the first setting, we utilize a transducer to generate pho-
netically similar word sequences for each n-gram in the LM, and
update n-gram probabilities under the conditional entropy criterion.
This setting is akin to a recent work by Kurata et al. [6] that gener-
ated pseudo-ASR n-best lists for a sampled set of training sentences
and applied MCE training accordingly. We will discuss the relation
of our method to [6] in Section 3.2. The second setting, in contrast,
runs a speech recognizer on test-set acoustic waveforms and gener-
ates acoustic confusability information therefrom. The discrimina-
tive training only updates LM parameters that occur in the n-best
lists of the test set. In this regard, this setting essentially corresponds
to an adaptation scenario: the discriminative training aims at opti-
mizing the test-set performance and is heavily influenced by test-set
inputs. To avoid confusion, we refer to these two settings as an in-
ductive and transductive approach respectively. Finally, we evaluate
both approaches on a UVS dataset.

2. CONDITIONAL ENTROPY CRITERIA

This section presents a discriminative training criterion for LMs that
does not need transcribed acoustic data. We start by introducing our
notation and problem setting. Let W and ¢ denote random vari-
ables that represent word sequences and phone sequences respec-
tively; and let their lower-case counterparts, w and ¢, denote specific
values of these random variables. Furthermore, we assume the avail-
ability of (1) an initial LM p(w) trained in the maximum likelihood
sense on a text corpus, (2) a pronunciation lexicon p(¢|w), and (3)
some representation of phonetic (or acoustic) confusability informa-
tion which will be discussed shortly. Given the above resources, our
goal is to generate a new LM that minimizes the conditional entropy
H(W|®) which is given by

H(WI[®) == "p(w,¢)logp (w|$)
w ¢

(D
==Y > pw)p(¢lw)logp (w|e).
w ¢

The conditional entropy was used by Zweig and Nedel [7] as
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a measure of how much information the phones provide about the
words, and was shown in their work to correlate well with the phone-
to-word transduction error rate for difference languages. This mo-
tivates us to use the conditional entropy as a training criterion for
language modeling. Intuitively, minimizing the conditional entropy
results in better predictability of words given phones.

Following [7], we re-write the conditional entropy as

H(WI[D)~ =Y > j(w)p(dlw)logp(wlg). ()
w o ¢

Here we approximate p(w) by the initial LM p(w). In the universal
voice search task, for example, p(w) can be an n-gram LM estimated
from a large set of text queries. In such a case, p(w) represents the
empirical distribution of w w.r.t. the text query corpus. Furthermore,
while p(¢|w) represents the true distribution of all possible pronun-
ciations given a word sequence, we approximate it using a typical
lexicon p(¢p|w) for simplicity. Finally, the posterior p(w|¢) is com-
puted based on the Bayes rule,

PA(w)*p(g|w)

(w]g) = ,
g > pa(w)) p(ou)

3

where A represents LM parameters (log n-gram probabilities in our
case) that are to be updated. The sum in the denominator is taken
over word sequences w'’ that are confusable with w. And p(¢|w)
can be chosen to encode various forms of phonetic confusability. In
one approach, we can obtain w’ using a finite state transducer that
consists of a phone error model, a lexicon and a language model.
Alternatively, when untranscribed acoustic data are available, we can
discover w’ from the decoding results of a speech recognizer. The
following two sections will discuss these two approaches in detail. In
addition, a scaling constant « on the language model is used whose
value depends on the dynamic ranges of p(w) and p(p|w).

3. INDUCTIVE APPROACH

In the inductive learning setting, our goal is to produce a discrimina-
tively trained LM that is optimal for recognizing any utterance in the
same domain. In contrast, a transductive learning setting (Section 4)
only focuses on optimizing the test-set performance, which may or
may not generalize to other in-domain data.

In this section, we approximate the sum over w in Equation (2)
by the sum over all maximum-order n-grams in the initial LM p(w):

)5 (6 log 22 P(G0)
we{ré;ams} zqﬁ:p g ¢ Zp/\ (w/)ap(¢|w/)

“
The lexicon p(¢p|w) then generates the corresponding phone se-
quence ¢ for each maximum-order n-gram. The simplest way to
generate a set of confusable word sequences w’ is to find homo-
phone sequences for w according to the lexicon. However, the
resulting set would be very sparse (not many w have homephones).
Instead, we adopt a phone error model to perturb the phone se-
quence, and map the perturbed phone sequences back to possible
word sequences using a lexicon and a language model. A phone-
to-word transducer is built to perform this process. Specifically, the
transducer comprises three components:

Ji=—

1. E: aphone error model that encodes p(¢|¢’), where ¢’ is the
corrupted phone sequence w.r.t. the intended one ¢. In this
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work, we estimated a monophone error model from results of
a phone recognition task using the same acoustic model;
2. P: apronunciation lexicon, which encodes p(¢'|w);
3. L: alanguage model, which encodes p(w).
Given an intended ¢, the transduction process can be written as
w = ¢o EoPolL An output w comes with a path score
> P(B1¢")p(¢|w)p(w); and the top n outputs, ranked by their
path scores, form a set of confusable word sequences. p(¢$|w) inside
the log in Equation (4) is computed by 3=, p(¢[¢")p(¢'|w).

3.1. Optimizing LM parameters \

Having described all components in Equation (4), we now describe
a stochastic gradient descent method of optimizing J;. Denote the
log probability of the k*" n-gram as \,. The gradient of (4) with
respect to A is given by

D D M LI,

we{n-grams} ¢

(5)
Cr(w) = > p(w'|¢)Cr(w) |,

w’

where Cj(w) is the number of times that the k' n-gram occurs
w. In each epoch of stochastic gradient descent, Ay is added by an
amount proportional to the gradient, i.e., A = 1(9J1/0Ax), where
7 is the step size. The parameters A, are iteratively updated until the
change in the objective J; is smaller than a threshold. We update n-
grams of the highest order. When backoft happens, however, we fix
backoff weights and update lower-order n-grams. At each iteration,
we do not normalize LM parameters, as normalization would require
constrained optimization which is unnecessary to our task.

It is worth noting that we empirically found that the dynamic
range of Ay can be rather large due to the large dynamic range of
p(w). To compensate for this problem, we use a normalized gradient
by replacing p (w) in (5) with p (w) / 3°., B (w’). This normaliza-
tion leads to a slightly better performance in practice compared to
using the gradient without normalization.

3.2. Comparison to Kurata’s approach

In [6], Kurata et al. proposed a discriminative training method of

LMs without acoustic data. They generated pseudo-ASR n-best lists

for a sampled set of training texts, and applied MCE training using

the generated n-best lists. Our inductive approach is similar to theirs,
but differs in the following aspects:

e Training data: Kurata et al. used a sampled set of training texts,
while we view the maximum-order n-grams as “training sen-
tences” to which the transducer is applied. In this way, we include
all n-grams in discriminative training without transducing mil-
lions of text queries in our task.

e Transduction: Kurata et al. computed p(¢|¢’) based on acoustic
model distance. We resort to the phone recognition statistics ob-
tained directly from a phone recognizer. However, it is not clear
to us which one gives a better representation of phonetic/acoustic
confusability.

e Training objective: Kurata et al. applied MCE training while our
approach is based on the minimum conditional entropy criterion.

4. TRANSDUCTIVE APPROACH

Transductive learning [8] is a machine learning paradigm that aims
at minimizing the risk of the test set. In this setting, we assume



the availability of test-set inputs, denoted by {z;};", and we de-
sire to predict as accurately as possible their corresponding word
sequences. The key characteristic of the transductive approach is
that the resulting LM is optimized for the test set only, which may
or may not generalize. In this regard, this setting essentially cor-
responds to an unsupervised adaptation scenario, where the test-set
inputs are used to influence LM training.

Specifically, for each test-set utterance x;, we use a speech rec-
ognizer to obtain a set of n-best word sequence hypotheses, denoted
as R;. Two word sequences are considered confusable with each
other if they belong to the same n-best list. We let R represent the
union of all R;, ¢ = 1,2,...,m. Next, we let ¢; denote the true
phone sequence for x;. We introduce a virtual lexicon p"" (¢|w) in
which each entry consists of a word sequence w € R and its corre-
sponding “pronunciation”; we consider ¢; as a pronunciation for w
if and only if w € R;. Then, we replace the sum over all possible w
in Equation (2) by the sum over w € R only, and replace p(¢|w) by

""" (#|w). Consequently, the training objective becomes,

Jo==>p

weR

(w) > p" " (lw) log p (w]g) . ©6)
]

Note that the concept of p"'"(¢p|w) is introduced only for no-
tional consistency. An equivalent representation of .J; is given by

- - R;)
= W)Y Hwe log p (w|éi) , o
weR =1 1 w c R )

where 1(-) is an indicator function. Apparently, this objective re-
quires the knowledge of ¢; which we do not have. In this work, we
simply use p(w|x;) as a substitute, i.e.,

pa(w)*p(wi|w) @®)

ST oA plaslw’)’

w/€R;

p(w]$i)  p(wlz;) =

where p(z;|w) is the acoustic model (AM) score; « is the language
model scalar; and w’ are obtained from the n-best list of each test-set
utterance, representing a set of word sequences truly confusable to
the recognizer. This is a key difference from the inductive approach
where w' are fabricated using a transducer.

4.1. Optimizing LM parameters \

Taking the derivative of .J,, with respect to Ay, we have

a1 _ B (w .
O D DA IR

i=1 weR;

where di(w,7) = Cir(w) — 32, /cp, P(W'|¢:))Cr(w'). A delta,
which equals the gradient scaled by a step size, is used to update
Ak in a batch mode — the gradient of Ax is accumulated at each
utterance, and is used to update A\ after seeing all utterances.
Alternatively, we can update LM parameters in an online mode,
meaning that we update A at each utterance. Since only one utterance
is considered at a time, we can eliminate 7" | 1(w € R;) in the
denominator, leading to the following gradient at utterance ¢:

8J2,¢
Ok

— Z p(w)de(w, ). (10)

weR;
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In both cases, we perform the stochastic gradient descent iteratively
until the objective value saturates.

4.2. Optimizing LM scalar o

In a similar way, we can update the LM scalar ov. While this pa-
rameter is often tuned on a development set (a becomes a practical
scalar in a recognizer when the AM score is used in Equation (8)),
this work explores the possibility of optimizing « under the condi-
tional entropy criterion on test-set inputs. The gradient of J with
respect to «, in a batch mode, is given by

8J2_ (w)
ZZZ wER)

i=1 weR;

e(w,i), (11)

where e(w,i) = logpa(w) — >, p(w'|¢:) log pa(w'). An on-
line version of Equation (11), similar to Equation (10), is obtained
by eliminating 37", 1(w € R;) in the denominator.

In fact, updating « alone can be viewed as tying all Ax together
and adjusting them all at once. This is computationally more effi-
cient compared to updating a large number of A\. Additionally, we
can update both o and A, as will be shown in our experiments.

5. EXPERIMENTS

5.1. Test data

We evaluate our methods in a UVS task, i.e., to recognize spoken
queries in the general web search domain. Since this is a relatively
new speech application, we do not have any transcribed in-domain
acoustic data by the time of our experiments, to apply supervised
discriminative training of language models. Although the language
modeling techniques proposed in this work do not require tran-
scribed acoustic data for training, we still need to collect a small set
of such data for evaluating recognition performance. To this end,
we randomly sampled text queries from the Bing search query log
as prompts, and then asked 50 speakers to read the prompts over
their mobile phones or land lines. The prompts are considered as the
ground truth of the corresponding utterances. Our test set consists
of 2075 utterances collected in this manner.

5.2. System setup

We deploy the same acoustic model as was used in [5] for voice-
enabled local search. We use a combination of a hand-authored
pronunciation lexicon and a letter-to-sound system to generate pro-
nunciations for words. Our baseline LM is a trigram model with
back-off, trained on millions of text queries issued to Bing search.
After applying cutoffs at different levels, the final LM consists of
100K unigrams, 1.7M bigrams and 1.2M trigrams. In decoding, we
use an initial LM scalar equal to 15, which was optimized for the
voice search system in [5]. The decoder is a Gaussian-mixture HMM
based speech recognizer implemented using HTK. The baseline rec-
ognizer gives a sentence accuracy of 67.71% on the test set.

Our proposed methods are evaluated on both rescoring and first-
pass decoding experiments. For rescoring, the m-best lists output
by the baseline recognizer are rescored using the newly-trained lan-
guage model. An oracle experiment shows that the best rescoring
accuracy that can be achieved using the n-best lists with n=10 is
80.00%. For first-pass decoding, we run the recognizer with the
discriminatively-trained LM.
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Fig. 1. Training objective value (upper panel) and recognition ac-
curacy (lower panel) on the test set over iterations for the inductive
approach.

Table 1. Sentence recognition accuracies (%) of the baseline LM
and the discriminatively-trained LMs

[ Rescoring [ First-pass decoding

Baseline [ 6771 | 67.71
Inductive approach
Optimize A | 6819 | 67.66
Transductive approach
Optimize A online 69.30 68.96
Optimize A batch 68.53 68.33
Optimize o« online 69.78 69.11
Optimize « batch 69.59 70.07
Optimize « then A 70.17 70.31

5.3. Inductive approach results

For the inductive approach, the sum in Equation (4) was taken over
all 1.2M trigrams in the LM, but any order of n-gram can be included
with the same approach. We applied the stochastic gradient descent
method described in Section 3 to update the baseline LM. We used
an LM scalar o = 0.15 and a step size 7 = 10~ 2. The algorithm
ran for 200 iterations before the objective value converged. Figure 1
shows the objective value and the sentence recognition accuracy for
the rescoring results over iterations. Table 1 contains accuracies for
both rescoring and first-pass decoding using the inductive approach.
As shown, the inductive approach gives an absolute 0.48% accuracy
increase in rescoring, while it does not help in first-pass decoding.

5.4. Transductive approach results

For the transductive approach, we first ran the baseline recognizer on
the test-set utterances to generate n-best lists (n=10) and extracted
both LM and AM scores for each utterance. Then the techniques
described in Section 4 were used to update the baseline LM. We
compared five settings for this approach. The first two settings cor-
respond to optimizing A only, one using the batch mode and the other
using the online mode. The next two settings correspond to optimiz-
ing av only. In the last setting, we first update « in a batch mode, and
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then update A in an online mode (other configurations gave compara-
ble results). Table 1 summarizes the sentence accuracies for rescor-
ing and first-pass decoding. Optimizing A alone helps increase the
accuracy by an absolute 0.62-1.59%. Optimizing « alone helps in-
crease the accuracy by an absolute 1.40-2.36%. Optimizing « then
A gives the largest accuracy gain for both rescoring (absolute 2.46%)
and first-pass (absolute 2.6%) decoding experiments.

One important factor that contributes to the effectiveness of the
transductive approach is that the set of confusable word sequences
are discovered by the recognizer directly. As a result, the LM dis-
criminatively trained against such a set is optimized to overcome the
confusability in real decoding. For the test set of 2075 utterances,
one iteration took only several seconds using a single CPU.

6. CONCLUSION

This paper proposes discriminative training methods for language
modeling without the need of transcribed audio data. Our approach
aims at minimizing the conditional entropy of word sequences given
phone sequences, which only requires the availability of an initial
language model, a pronunciation lexicon, and a certain form of con-
fusability information. This training criterion can be implemented
in two settings. In an inductive learning setting, a phone-to-word
transducer that incorporates a phone error model is used to generate
confusable word sequences, while in a transductive learning setting,
the decoded n-best lists of the test set form the confusable sentence
set. The experiments showed a moderate accuracy improvement us-
ing the LM trained with the inductive approach, and significant im-
provements using the LM trained with the transductive approach in
both rescoring and first-pass decoding.

For future work, we would like to apply our methods to other
applications with longer utterances, to see how well they general-
ize. We are also interested in a a context-dependent phone error
model for the inductive approach. The authors would like to thank
Chin-Hui Lee for useful discussions, and thank Geoffrey Zweig for
providing several tools used in the experiments.
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