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ABSTRACT
We define component-based synthesis to be the problem of
synthesis of (straight-line) programs from appropriate com-
position of base components from a specified library of soft-
ware components. The functional specification of the desired
program and the library components is provided in the form
of logical formulas that relate the respective input and out-
put variables. This has applications in design of intricate
circuits or algorithms, superoptimization, and API mining.
Furthermore, automated synthesis provides the promise of
correctness by construction, generation of efficient systems,
and improvement in developer’s productivity.

We solve the component-based synthesis problem using
a constraint-based approach that involves first generating a
synthesis constraint, and then solving the constraint. The
synthesis constraint is a first-order logic formula whose size
is quadratic in the number of components, but has quanti-
fier alternation. We present a novel algorithm for solving
such constraints. Our algorithm is based on counterexam-
ple guided iterative synthesis paradigm and uses off-the-shelf
SMT solvers.

We present experimental results on synthesizing a variety
of bitvector algorithms that involve unintuitive composition
of standard bitvector operations and are difficult to synthe-
size manually. We also compare our technique with existing
synthesis approaches based on sketching and superoptimiza-
tion. Our tool Brahma can efficiently synthesize highly non-
trivial 10-20 line loop-free programs. These programs repre-
sent a state space of approximately 2010 programs, and are
beyond the reach of the other tools.

1. INTRODUCTION
Composition has played a key role in enabling configurable

and scalable design and development of efficient hardware as
well as software systems. Hardware developers find it useful
to design specialized hardware using some base components,
such as adders and multiplexers, rather than having to de-
sign everything using universal gates at bit-level. Similarly,
software developers prefer to use library features and frame-
works.

Composition has also played a key role in enabling scal-
able verification of systems that have been designed in a
modular fashion. This involves verifying specifications of the
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base/constituent components in isolation, and then assum-
ing these specifications to verify specification of the higher-
level system made up of these components.

In this paper, we push the above-mentioned two appli-
cations of composition to another dimension, that of auto-
mated synthesis of systems from simply a specification of the
desired system and specifications of base components. For
technical reasons, we restrict ourselves to a circuit-style com-
position of these components, or equivalently, a straight-line
program built out of these components. This is already a
large and useful class of systems. Note that loop-free control-
flow can be encoded by providing the ite (if-then-else) oper-
ator as a base component. As part of future work, we plan
to study even loopy composition of these components.

Automated component-based synthesis is attractive for
many reasons. First, the designed system is correct by con-
struction, which obviates the need for verification. Second,
the designed system can be guaranteed to be optimal in
terms of using the fewest possible number of components.
Third, automation improves developer’s productivity, since
finding the correct components and the correct composition
manually can be a daunting task, especially when the base
component library is huge.

While we foresee several applications of component-based
program synthesis, in this paper we consider a specific ap-
plication – discovering intricate bitvector programs, which
combine arithmetic and bitwise operations. Bitvector pro-
grams can be quite unintuitive and extremely difficult for
average, or sometimes even expert, programmers to dis-
cover methodically. Consider, for example, the problem of
turning-off the rightmost 1-bit in a bitvector x. This can be
achieved by computing x&(x − 1), which involves compos-
ing the bitwise & operator and the arithmetic subtraction
operator in an unintuitive manner. In fact, the upcoming
4th volume of the classic series art of computer programming
by Knuth has a special chapter on bitwise tricks and tech-
niques [15]. In this paper, we demonstrate how to automate
the discovery of small, but intricate, bitvector programs us-
ing the currently available formal verification technology.

The ability to automatically synthesize correct programs
that accomplish a certain task can be used in at least two dif-
ferent ways. First, software development environments can
provide this capability to help programmers write correct
and efficient code. Alternatively, compilers can use the syn-
thesis procedure to optimize implementations or make them
more secure. Superoptimizers, for example, perform auto-
matic translation of a given sequence of instructions into an
optimal sequence of instructions for performing aggressive
peephole optimizations [5] or binary translation [6]. Rather
than achieve efficiency, the goal of the translation could be
reducing vulnerability in software. For example, any piece
of code that computes the average of two numbers, x and
y, by evaluating (x + y)/2 is inherently flawed and vulner-



able since it can overflow. However, using some bitwise
tricks, the average can be computed without overflowing
(e.g., (x∣y) − ((x ⊕ y)>> 1)). Compilers can automatically
replace vulnerable snippets of code by the automatically dis-
covered equivalent secure code.

The number of straight-line programs that can be con-
structed using a given set of base library components is
exponential in the number of base components. Rather
than performing a naive exponential search for finding the
correct program, our synthesis algorithm relegates all ex-
ponential reasoning to tools that have been engineered for
efficiently performing exponential search, namely the Sat-
isfiability (SAT) and Satisfiability Modulo Theory (SMT)
solvers1. SMT solvers use intelligent backtracking and learn-
ing to overcome the complexity barrier. SMT solvers can be
used to verify that a given (loop-free) system meets a given
specification. In this paper, we show how to use the same
SMT solving technology to synthesize systems that meet a
given specification.

Existing synthesis techniques based on superoptimizers [20,
11, 14] and sketching [25, 26] can also be used to solve the
component-based synthesis problem. Superoptimizers ex-
plicitly perform an exponential search. Sketching solves a
more general program synthesis problem, and is not designed
for solving the component-based synthesis problem. When
they are used to solve the component-based synthesis prob-
lem, both superoptimizers and sketching were empirically
found to not scale. In contrast, our technique leaves the
inherent exponential nature of the problem to the underly-
ing SMT solver, whose engineering advances over the years
have made them effective to deal with problem instances
that arise in practice, which are usually not hard, and hence
end up not requiring exponential reasoning.

Our synthesis algorithm is based on a constraint-based ap-
proach that involves reducing the synthesis problem to that
of solving a constraint. This involves the two key steps of
constraint generation and constraint solving.

In the constraint generation phase, the synthesis problem
is encoded as a constraint, referred to as synthesis constraint.
Our synthesis constraint has two interesting aspects.

∙ The synthesis constraint is a first-order logic formula.
The synthesis problem can be viewed as a generalization
of the verification problem. It is well known that verifica-
tion of a straight-line program can be reduced to proving
validity of a first-order logic formula, and hence the syn-
thesis problem can be reduced to finding satisfiability of
a second-order logic formula. But, the non-trivial aspect
of our encoding is that it generates a first-order logic for-
mula. This is significant because off-the-shelf constraint
solvers cannot effectively solve second-order formulas.

∙ The size of the synthesis constraint is quadratic in the
number of components.
One way to generate a first-order logic constraint would
be to use the constraint generation methodology used in-
side the sketching technique, which is also a constraint-
based technique. However, the size of the constraint gen-
erated by the sketching technique could potentially be ex-
ponential in the number of components. In contrast, our

1SMT solving is an extension of SAT solving technology
to work with theory facts, rather than just propositional
facts. In fact, there is a SMT solving competition that is
now held every year, and it has stimulated improvement in
solver implementations [1].

encoding yields a constraint that is guaranteed quadratic
in the number of components.

In the constraint solving phase, we use a refined form of
the classic counterexample guided iterative synthesis tech-
nique [10, 22] built on top of off-the-shelf SMT solvers. The
synthesis constraint obtained from our encoding is an ∃∀ for-
mula, which cannot be effectively solved using off-the-shelf
SMT solvers directly. The counterexample guided iterative
synthesis technique involves choosing some initial set of test
values for the (∀) universally quantified variables and then
solving for the (∃) existentially quantified variables in the
resulting constraint using SMT solvers. If the solution for
the existentially quantified variables works for all choices
of universally quantified variables, then a solution has been
found. Else, a counterexample is discovered and the process
is repeated after adding the counterexample to the set of test
values for the universally quantified variables. This method
works great for certain classes of constraints, but not for our
synthesis constraint.

Our refinement to the iterative synthesis strategy involves
working with two representations of the synthesis constraint.

∙ The original ∃∀ representation.
This is used to check whether a solution to the existen-
tially quantified variables found using only a few test
cases (for the universally quantified variables) is, in fact,
a correct solution.

∙ An alternate ∃∀∃ representation, where the universal quan-
tification is only over input variables of the system.
This is used to find a solution to the existentially quan-
tified variables that works for a set of test cases.

At a high level, it is quite counter-intuitive how such an
alternate representation helps since an extra level of quanti-
fier alternation makes it even more difficult to reason about
the constraint. However, it helps by reducing the universal
quantification to be only over the “true inputs” of the sys-
tem. This enables us to solve for the existentially quantified
variables by using a few choices for only the true inputs (and
making copies of the inner existentially quantified variables
for each such choice). We experimentally validate this strat-
egy for our application domain of bitvector program synthe-
sis. Furthermore, the classic result on learning AC0 circuits
from a few test inputs [16] provides an excellent theoretical
justification for the effectiveness of this strategy. The result
relies on a theorem that states that AC0 circuits can be ap-
proximated well by low-degree polynomials, which in turn
are known to be identifiable by their behavior on few inputs.

We have implemented our constraint generation and con-
straint solving technique in a tool called Brahma. We have
applied Brahma to the domain of bitvector program synthe-
sis using a set of components that implement basic bitvec-
tor operations. These programs typically involve unintuitive
composition of the bitvector operations, and are quite chal-
lenging to synthesize manually. Brahma is able to synthe-
size (equivalent variants of) a variety of bitvector programs
picked up from a classic book [28] in time ranging from 1.0
to 2778.7 seconds. In contrast, the Sketch and AHA tools,
based respectively on sketching and super-optimization, time-
out on 9 and 12 of the 25 examples respectively where time-
out was set to 3600 seconds. Sketch is slower by an average
factor of 20 on the remaining examples.

Contributions and Organization.



∙ We define the problem of component-based synthesis us-
ing a set of base components (Section 3).

∙ We present an encoding that reduces the synthesis prob-
lem to that of finding a satisfying assignment to a first-
order logic constraint with quantifier alternation, whose
size is at most quadratic in the number of base compo-
nents. (Section 5).

∙ We present a novel technique for solving first-order logic
constraints with quantifier alternation using off-the-shelf
SMT solvers (Section 6).

∙ We apply our constraint generation and solving technique
to synthesis of bitvector programs using standard bitvec-
tor operators (Section 7). We also experimentally com-
pare our technique with other existing techniques, namely
sketching and superoptimization, that can be used to syn-
thesize bitvector programs (Section 8). Tools based on
other techniques either perform order of magnitude slower
or timeout and fail to yield a solution.

2. RUNNING EXAMPLE
First, we introduce a small example to give a high-level

overview of our technique. We also use this example as a
running example to illustrate several details of our technique
in following sections.

Consider the task of designing a bitvector program that
masks off the right-most significant 1-bit in an input bitvec-
tor. More formally, the bitvector program takes as input
one bitvector I and outputs a bitvector O such that O is ob-
tained from I by setting the right-most significant 1-bit in I
to 0. For example, the bitvector program should transform
the bitvector 01100 into 01000.

A simple method to accomplish this would be to iterate
over the input bitvector starting from the rightmost end
until a 1 bit is found and then set it to 0. However, this
algorithm is worst-case linear in the number of bits in the
input bitvector. Furthermore, it uses undesirable branching
code inside a loop.

There is a non-intuitive, but elegant, way to achieving the
desired functionality in constant time by using a tricky com-
position of the standard subtraction operator and the bitwise
logical & operator, which are supported by almost every ar-
chitecture. The desired functionality can be achieved using
the following composition:

I & (I − 1)

The reason why we can do this seemingly worst-case linear
task in unit time using the subtraction operator and the
logical bitwise-and operator is because the hardware imple-
mentations of these operators manipulate the constituent
bits of the bitvectors in parallel in constant time.

One way to discover the above tricky composition would
be exhaustive enumeration. Let f1 denote a unary compo-
nent that implements the subtract-one operation, and let
f2 denote a binary component that implements a binary
bitwise-and operation. Suppose we knew that the desired
functionality can be achieved by some unknown composition
of these two components f1 and f2. We can then simply enu-
merate all different ways of composing a unary operator and
a binary operator, and then verify which one of them meets
the functional specification with the help of an SMT solver
(using the process described in Section 4). Figure 1 shows
the six different straight-line-programs that can be obtained
from composition of one unary and one binary operator.

Of these the programs shown in 1(e) and 1(f) provide the
desired functionality. There is a major problem with this
explicit enumeration approach; it is too expensive. In fact,
superoptimizers [20] do such an exhaustive enumeration, and
hence fail to scale beyond composition of 4 components.

In contrast, our technique encodes (instead of explicitly
enumerating) the space of all (six) possible straight-line pro-
grams for composing the two operations f1 and f2 using a
logical formula  wfp. The formula  wfp uses (five) integer
variables, each corresponding to an input or output of some
component. Intuitively, the integer variable corresponding
to the output of some component denotes the line number
at which the component is used. The integer variable cor-
responding to an input of some component denotes the line
number from where the actual parameter corresponding to
that input is defined. The formula  wfp is such that the
satisfying assignments to the integer variables have a one-
to-one correspondence with the different straight-line pro-
grams that can be obtained from composition of these op-
erators. In conjunction with some other constraints that
encode the functional specifications of the base component
programs and the desired program, our technique generates
a formula that we refer to as the synthesis constraint. A sat-
isfying assignment to the integer variables that satisfies the
synthesis constraint corresponds to the desired straight-line
program. The synthesis constraint is a first-order logic con-
straint with quantifier alternation, and is not amenable to
solving directly using off-the-shelf constraint solvers. One of
the key technical contributions of the paper is an algorithm
to find satisfying assignments to such synthesis constraints
by using an off-the-shelf SMT solver.

Even though there is no provable polynomial time guar-
antee associated with our technique, there is a crucial differ-
ence between the exponential exhaustive enumeration tech-
nique and our technique based on synthesis-constraint gener-
ation and solving. The number of variables in the synthesis
constraint is linear in the number of components and the
size of the synthesis constraint is quadratic in the number
of components. The winning advantage comes from the fact
that we ride over the recent engineering advances made in
SMT solving technology to solve a constraint with a linear
number of unknowns as opposed to explicitly performing an
exhaustive enumeration over an exponential search space.

3. PROBLEM DEFINITION
The goal of this paper is to synthesize a program by using

a given set of base software components. The program as
well as the base components are specified using their func-
tional description. This description is given in the form of a
logical formula that relates the inputs and the outputs.

For simplicity of presentation, we assume that all com-
ponents have exactly one output. We also assume that all
inputs and the output have the same type. These restrictions
can be easily removed.

Formally, the synthesis problem requires the user to pro-
vide:

∙ A specification ⟨I⃗ , O, �spec(I⃗ , O)⟩ of the program, which
includes

∙ a tuple of input variables I⃗ and an output variable O.

∙ an expression �spec(I⃗ , O) over the variables I⃗ and O
that specifies the desired input-output relationship.

∙ A set of specifications {⟨I⃗i, Oi, �i(I⃗i, Oi)⟩ ∣ i = 1, . . . , N},



f�impl(I):

1 O2 := f2(I, I);
2 O1 := f1(O2);

return O1;

f�impl(I):

1 O2 := f2(I, I);
2 O1 := f1(I);

return O1;

f�impl(I):

1 O1 := f1(I);
2 O2 := f2(I, I);

return O2;

f�impl(I):

1 O1 := f1(I);
2 O2 := f2(O1, O1);

return O2;

f�impl(I):

1 O1 := f1(I);
2 O2 := f2(O1, I);

return O2;

f�impl(I):

1 O1 := f1(I);
2 O2 := f2(I,O1);

return O2;
lI1 = 1 lO1 = 2
lI2 = 0 lO2 = 1
lI′2 = 0

lI1 = 0 lO1 = 2
lI2 = 0 lO2 = 1
lI′2 = 0

lI1 = 0 lO1 = 1
lI2 = 0 lO2 = 2
lI′2 = 0

lI1 = 0 lO1 = 1
lI2 = 1 lO2 = 2
lI′2 = 1

lI1 = 0 lO1 = 1
lI2 = 1 lO2 = 2
lI′2 = 0

lI1 = 0 lO1 = 1
lI2 = 0 lO2 = 2
lI′2 = 1

(a) (b) (c) (d) (e) (f)
Figure 1: The first row shows six different ways of composing a unary component f1 and a binary component
f2 to synthesize a straight-line program f�impl with one input I. Second row shows an integer encoding of the
corresponding program using location variables.

called a library, where �i(I⃗i, Oi) is a specification for base

component fi. All variables I⃗i, Oi are assumed distinct.

The goal of the synthesis problem is to discover a program
f impl that correctly implements the specification �spec us-
ing only the components provided in the library[17]. The
program f impl is essentially a straight-line program that

takes as input I⃗ and uses the set {O1, . . . , ON} as tempo-
rary variables in the following form:

f_impl(I⃗):

O�1 := f�1(V⃗�1); . . . ; O�N := f�N (V⃗�N );
return O�N ;

where

∙ each variable in V⃗�i is either an input variable from I⃗, or
a temporary variable O�j such that j < i,

∙ �1, . . . , �N is a permutation of 1, . . . , N , and

∙ the following correctness criteria holds:

∀I⃗ , O1, . . . , ON :
(
��1(V⃗�1 , O�1) ∧ ⋅ ⋅ ⋅ ∧ ��N (V⃗�N , O�N )

)
⇒ �spec(I⃗ , O�N ) (1)

The last formula above is called the verification constraint.
It states the correctness criterion for the output program: for
all inputs I⃗, if O�N is the output of the implementation on I⃗,

then O�N should also be the output of the specification on I⃗;
that is, the implementation should imply the specification.

We note that the implementation above is using all com-
ponents from the library. We can assume this without any
loss of generality. Even when there is a correct implemen-
tation using fewer components, that implementation can al-
ways be extended to an implementation that uses all com-
ponents by adding dead code. Dead code can be easily iden-
tified and removed in a post-processing step.

We also note that the implementation above is using each
base component only once. If there is an implementation
using multiple copies of the same base component, we assume
that the user provides multiple copies explicitly in the library
(discussed further in Section 8.3). Such a restriction of using
each base component only once is interesting in two regards:
It can be used to enforce efficient or minimal designs. This
restriction also prunes down the search space of possible
designs making the problem finite and tractable.

Informally, the synthesis problem seeks to come up with
an implementation – using only the base components in the
given library – that implies the given specification.

Example 1 (Problem Definition). The problem def-
inition for the running example in Sec. 2 can be stated as:

∙ The formal specification of the desired program to be syn-
thesized is given by the following relationship �spec be-
tween the input bitvector I and the output bitvector O.

We use b to denote the total number of bits in the bitvec-
tors, and I[j] to denote the bit at jtℎ position in bitvector
I, when viewed as an array of bits.

�spec(I,O) :=

b⋀
t=1

((
I[t] = 1 ∧

b⋀
j=t+1

I[j] = 0

)
⇒

⎛⎝O[t] = 0 ∧
⋀
j ∕=t

O[j] = I[j]

⎞⎠⎞⎠
∙ The number of base components in the library is N = 2.

One of them is a unary component f1 that implements
the subtract-one operation, and its formal specification is
given by the following relationship �1 between its input
parameter I1 and output O1.

�1(I1, O1) := O1 = (I1 − 1)
The other component is a binary component that imple-
ments the bitwise-and operation, and its formal specifica-
tion is given by the following relationship �2 between its
input parameters I2, I

′
2 and output O2.

�2(I2, I
′
2, O2) := O2 = (I2 & I ′2)

4. REVISITING VERIFICATION CONSTRAINT
Before we describe our approach for solving the synthesis

problem – consisting of the synthesis constraint generation
phase and the constraint solving phase – we will perform two
steps in this section to support the transition to these two
phases. First, we will rewrite the verification constraint in
Eq. 1 so that it resembles the synthesis constraint. Second,
we discuss solving of the verification constraint, which is a
small part of the process of solving the synthesis constraint.

Consider the verification constraint in Eq. 1. We can re-
place each atomic fact ��i(V⃗�i , O�i) in the antecedent by

��i(I⃗�i , O�i) ∧ I⃗�i = V⃗�i . We can also replace the fact

�spec(I⃗ , O�N ) in the consequent by �spec(I⃗ , O) provided we
add O = O�N in the antecedent. Hence, the verification
constraint can be rewritten as:

∀I⃗ , O, I⃗1, . . , I⃗n, O1, . . , ON :(
(O = O�N ) ∧

N⋀
i=1

(�i(I⃗i, Oi) ∧ I⃗i = V⃗i)

)
⇒ �spec(I⃗ , O)

We now split the antecedent in the above formula into
two parts �lib and �conn. We also group together the formal
inputs and outputs of the base components into two sets P
and R to rewrite the above verification constraint as:

∀I⃗ , O,P,R : (�lib(P,R) ∧ �conn(I⃗ , O,P,R))⇒ �spec(I⃗ , O) (2)

where �lib := (

N⋀
i=1

�i(I⃗i, Oi)), �conn := (O = O�N ) ∧ (

N⋀
i=1

I⃗i = V⃗i),



P and R denote the union of all formal inputs (Parameters)
and formal outputs (Return variables) of the components:

P :=
∪N
i=1 I⃗i R :=

∪N
i=1{Oi} = {O1, . . . , ON}

Note that �lib represents the specifications of the base
components, and �conn represents the interconnections that
includes the mappings from formals to actuals and from the
return variable of some component to the output of the pro-
gram. Observe that �conn is a conjunction of equalities be-
tween a variable in P ∪ {O} and a variable in R ∪ I⃗. The
connectivity constraint �conn determines:

∙ the order in which base components occur in the program.

∙ the value of each input parameter of each base compo-
nent.

Example 2 (Verification Constraint). The verifi-
cation constraint for the program in Figure 1(e) when re-
garded as a solution to the running example formally de-
scribed in Example 1 is the following formula.

∀I,O, I1, I2, I ′2, O1, O2 (�lib ∧ �conn ⇒ �spec)

where �lib := �1(I1, O1) ∧ �2(I2, I
′
2, O2)

and �conn := I1 = I ∧ I2 = O1 ∧ I ′2 = I ∧ O = O2

and �1, �2, �spec are as defined in Example 1.

We now briefly discuss the process of solving the verifi-
cation constraint, which is a universally quantified formula.
The complexity of deciding the validity of the formula in
Eq. 2 depends on the expression language used for defining
�spec and �i’s. If this expression language is a subset of the
language that can be handled by Satisfiability Modulo The-
ory (SMT) solvers, then we can use off-the-shelf SMT solvers
to decide the formula in Eq. 2 and thus solve the verification
problem. Specifically, we can check validity of a (universal)
formula by asking an SMT solver for checking satisfiability
of the negation of that formula.

5. SYNTHESIS CONSTRAINT
In this section, we show how to reduce the problem of

straight-line-program synthesis to that of finding a satisfy-
ing assignment to a first order logic constraint. Given a li-
brary of base components, and a specification for the desired
program, we show how to generate a formula that encodes
the existence of a program that is constructed using the base
components and that meets the given specification.

Consider the verification constraint in Eq. 2. We are given
�spec and �lib as part of the synthesis problem. However, we
do not know the interconnections �conn between the inputs
and outputs of the base components. Hence, the synthesis
problem is equivalent to solving the following constraint:

∃�conn : ∀I⃗ , O,P,R :

(�lib(P,R) ∧ �conn(I⃗ , O
′,P,R))⇒ �spec(I⃗ , O)

where we have a second-order existential quantifier over the
set of all possible interconnections.

In the remaining part of this section, we show how to con-
vert the second-order existential quantifier into a first-order
existential quantifier. The basic idea is to introduce new
first-order integer-valued variables, referred to as location
variables, whose values decide the interconnections between
the various components. To describe a program, we have
to determine which component goes on which location (line-
number), and from which location (line-number or program

input) does it get its input arguments. This information can
be described by a set of location variables L

L := {lx ∣ x ∈ P ∪R}
that contains one new variable lx for each variable x in P∪R
with the following interpretation associated with each of
these variables.

∙ If x is the output variable Oi of component fi, then lx
represents the line in the program where the component
fi is used.

∙ If x is the jtℎ input parameter of component fi, then lx
represents the location “from where component fi gets its
jtℎ input”.

A location above refers to either a line of the program,
or to some program input. To represent different possible
locations, we use integers in the set {0, . . ,M −1}, where M
is the sum of the number N of components in the library
and the number ∣I⃗∣ of program inputs, i.e., M = N + ∣I⃗∣,
with the following interpretation.

∙ The jtℎ input is identified with the location j − 1.

∙ The jtℎ line or the assignment statement in the program
is identified with the location j + ∣I⃗∣ − 1.

Example 3 (Location Variables). For our running
example formally described in Example 1, the set L of loca-
tion variables consists of 5 integer variables. L = {lO1 , lO2 , lI1 ,
lI2 , lI′2}. The variables lO1 and lO2 denote the location at
which the components f1 and f2 are used respectively. The
variable lI1 denotes the location of the definition of the input
to the unary component f1. The variables lI2 and lI′2 denote
the locations of the definitions of the first and the second in-
put respectively of the binary component f2. Since there are
two components and one input, we have N = 2 and M = 3.
The variables lO1 , lO2 take values from the set {1, 2}, while
the variables lI1 , lI2 , lI′2 take values from the set {0, 1, 2}.

The synthesis constraint, which uses the location variables
L, is given in Eq. 4 in Section 5.3. We next discuss the
key constituents of the synthesis constraint. For notational
convenience (for the discussion below), we also define lx for

the global inputs I⃗ and output O. We define lO to be equal
to M − 1, denoting that the output O of the program is
defined on the last line of the program. For the jtℎ input x
to the program, we define lx to be j−1, which is the integer
location that we associated with the jtℎ program input.

5.1 Encoding Well-formedness of Programs:
 wfp

We noted above that every straight-line program can be
encoded by assigning appropriate values from the set {0, . . ,M−
1} to variables in L. On the other hand, any possible as-
signment to variables in L from the set {0, . . ,M − 1} does
not necessarily correspond to a well-formed straight-line pro-
gram. We require the variables in L to satisfy certain con-
straints to guarantee that they define well-formed programs.
The following two constraints guarantee this.

Consistency Constraint : Every line in the program has
at most one component. In our encoding, lOi encodes
the line number where component fi is used. Hence
for different i, lOi should be different. Thus we get the
following consistency constraint.

 cons :=
⋀

x,y∈R,x ∕≡y

(lx ∕= ly)



Acyclicity Constraint : In a well-formed program, every
variable is initialized before it is used. In our encoding,
component fi is used at location lOi and its inputs are

coming from locations {lx ∣ x ∈ I⃗i}. Thus, we get the
following acyclicity constraint.

 acyc :=

N⋀
i=1

(
⋀

x∈I⃗i,y≡Oi

lx < ly)

The acyclicity constraint says that, for every compo-
nent, if x is an input of that component and y is an
output of that component, then the location lx where
the input is defined, should be earlier than the loca-
tion ly where the component is used and its output is
defined.

We now define  wfp(L) to be following constraint that en-
codes the interpretation of the location variables lx along
with the consistency and acyclicity constraints.

 wfp(L) :=
⋀
x∈P

(0 ≤ lx ≤M − 1) ∧
⋀
x∈R

(∣I⃗∣ ≤ lx ≤M − 1) ∧

 cons(L) ∧  acyc(L)

We note that if the location variables L satisfy  wfp, then L
defines a well-formed straight-line program in static single
assignment (SSA) form [8], whose assignments make calls
to the components in the library. Specifically, the function
Lval2Prog returns the program corresponding to a given
valuation L as follows: in the itℎ line of Lval2Prog(L), we
have the assignment Oj := fj(O�(1), . . , O�(t)) if lOj = i,
lIkj

= l�(k) for k = 1, . . , t, where t is the arity of component

fj , and (I1j , . . , I
t
j) is the tuple of input variables I⃗j of fj .

It isn’t difficult to prove following property about our en-
coding.

Theorem 1. Let L be the set of all valuations of L that
satisfy the well-formedness constraint  wfp. Let Π be the
set of all straight-line programs in SSA form that take input
I⃗ and contain the N assignments, Oi := f(V⃗i), such that
every variable is defined before it is used. Then, the mapping
Lval2Prog goes from L to Π and it is bijective.

Example 4 (Well-formedness Constraint). For our
running example formally described in Example 1, the con-
straint  wfp is:
 wfp :=  cons ∧  acyc ∧

⋀
x∈P

(0 ≤ lx ≤ 2) ∧
⋀
x∈R

(1 ≤ lx ≤ 2)

where  cons := (lO1 ∕= lO2)

and  acyc := (lI1 < lO1) ∧ (lI2 < lO2) ∧ (lI′2 < lO2)

Here P = {I⃗1, I⃗2, I⃗ ′2} and R = {O1, O2}. There are 6 solu-
tions for lI1 , lI2 , lI′2 , lO1 , lO2 that satisfy the constraint  wfp.
Each of these solutions correspond to a syntactically distinct
and well-formed straight-line program obtained by composi-
tion of unary component f1 and binary component f2. These
6 solutions and the corresponding straight-line-programs are
shown in Figure 1.

5.2 Encoding Dataflow in Programs:  conn

Given an interconnection among components specified by
values of location variables L, we can relate the input/output
variables of the components and the program by the follow-
ing connectivity constraint:

 conn :=
⋀

x,y∈P∪R∪I⃗∪{O}

(lx = ly ⇒ x = y)

The constraint  conn will play the role of �conn later.

5.3 Putting it all together
We are now ready to present the (first-order) synthesis

constraint that encodes the synthesis problem.
We showed how the set of all valid programs can be de-

scribed by valuations of the location variables L. Hence, the
synthesis problem reduces to finding a value for the variables
L such that
(1) this valuation corresponds to a well-formed program and
(2) the corresponding well-formed program is correct, as de-
scribed by the verification constraint (Eq. 2).
In other words, we get the following synthesis constraint:

∃L : ( wfp(L) ∧ ∀I⃗ , O,P,R :

�lib(P,R) ∧  conn(I⃗ , O,P,R, L)⇒ �spec(I⃗ , O)) (3)

We will merge the (temporary) variables P and R and call
it the set T . We can rewrite the formula in Eq. 3 by pulling
out the universal quantifier to get the following synthesis
constraint.

∃L∀I⃗ , O, T :  wfp(L) ∧
(�lib(T ) ∧  conn(I⃗ , O, T, L)⇒ �spec(I⃗ , O)) (4)

Example 5 (Synthesis Constraint). Of the 6 solu-
tions to the location variables L described in Example 4,
there are 2 solutions that satisfy the entire synthesis con-
straint. These two solutions are shown in Figure 1(e) and
Figure 1(f).

The following theorem states that the synthesis constraint
in Eq. 4 is quadratic in size and it exactly encodes our
synthesis problem. Hence, solving the synthesis problem is
equivalent to solving the synthesis constraint. The proof of
the theorem follows from the definition of Lval2Prog, The-
orem 1, and the definitions of the verification and synthesis
constraints.

Theorem 2 (Synthesis Constraint). Let (�spec, �lib)
be the given specifications. Let  be the corresponding syn-
thesis constraint, defined in Eq. 4, that is derived from the
given specifications. The size of  is O(n+m2) where n is
the size of (�spec, �lib) and m is the number of base compo-
nents in the library. Furthermore,  is valid if and only if
there is a straight-line program that implements the specifi-
cation �spec using only the components in �lib.

Proof. The number of variables in L is O(m) and hence
the size of  is seen to be O(n+m2).

(⇒): Suppose  is valid. This implies that there exists a
value for L, say L0, such that  wfp(L0) holds and the formula

∀I⃗ , O,P,R : �lib(P,R)∧ conn(I⃗ , O,P,R, L0)⇒ �spec(I⃗ , O)
is valid. Since  wfp(L0) holds, we can use Theorem 1 to
get a Program Lval2Prog(L), call it P . Now, the definition
of Lval2Prog and the constraint  conn together guarantee
that the connectivity constraint �conn defined by P and the
connectivity constraint  conn(L0) are equivalent. Since we

know ∀I⃗ , O,P,R : �lib∧ conn ⇒ �spec is valid, it follows that

the formula ∀I⃗ , O,P,R : �lib ∧ �conn ⇒ �spec is also valid.
This shows that the verification constraint for correctness of
P is valid.

(⇐): Suppose there is a straight-line program, say P , that
correctly implements the given specification �spec using only



the components in �lib. Given a program P , we can imme-
diately define values for the location variables L such that
�conn is equivalent to  conn(L). Since the program P is as-
sumed to be well-formed, this valuation of L will satisfy  wfp.
Furthermore, since P is correct, the verification constraint is
valid. Replacing �conn in the verification constraint by  conn

shows that the synthesis constraint is also valid.

6. SYNTHESIS CONSTRAINT SOLVING
In this section, we show how to solve the synthesis con-

straint (Eq. 4 in Section 5.3). In particular, we show how
to find an assignment to the decision variables L that would
witness the validity of the synthesis constraint.

We describe our procedure for solving the synthesis con-
straint, which has a quantifier alternation of the form ∃∀, in
two steps. First, in Section 6.1, we present a generic solver
for ∃∀ formulas. This solver can be built modularly over
any existing satisfiability solver. It is based on the standard
counterexample-guided iterative refinement paradigm [10,
22]. The generic solver is not limited to solving only the
synthesis constraint. However, because of its generality, it
turns out to be inefficient for our purpose. Then, in Sec-
tion 6.2, we refine the generic procedure to efficiently solve
the synthesis constraint.

6.1 Standard Counterexample-Guided Solver
The pseudocode for the generic procedure StandardEx-

AllSolver is presented in Figure 2. The input to the proce-
dure is a formula of the form ∃L∀I⃗ : �(L, I⃗). This procedure
is iterative and it needs a seed to start. This seed is an arbi-
trarily chosen value I⃗0 for the universally quantified variables
I⃗. The program variable S is initialized to {I⃗0} (in Line 3).
The procedure then iteratively performs the following steps:

Finite Synthesis (Lines 5-7): In this step, the procedure
finds a value for the existential variables L that work
for (only) finitely many choices S for the universal vari-

ables I⃗. (Line 5,6). If no such value for L is found, then
we terminate and declare the formula as unsatisfiable
(Line 7).

Verification (Lines 8-10): In this step, we verify if the
value currL for existential variables L found in the
previous step – that we know works for the values in
S – also works for all possible values of the universal
variables. If so, we return“Satisfiable” (Line 10) If not,

we find a value I⃗1 on which it does not work and add
I⃗1 to S (Line 9).

The function T-SAT checks for satisfiability modulo theory
of an existentially quantified formula. If the formula is satis-
fiable, then it returns a model, i.e., values for the existential
variables that make the formula true. Note that the function
T-SAT is essentially a call to the SMT solver.

We need to argue that the above approach for solving ∃∀
formulas is correct. It is easily seen to be sound: if the
procedure StandardExAllSolver terminates, then it termi-
nates with the correct answer. It is also easy to show that
the procedure makes progress in every iteration. Specifi-
cally, in every iteration, at least one choice of values for L is
forever eliminated. If the domain of L is bounded, then this
observation also proves termination of the above method.
Of course, all these results hold only under the assumption

StandardExAllSolver(∃L∀I⃗ : �(L, I⃗)):

1 // Input ∃L∀I⃗ : � is an exists-forall formula

2 // Output: unsatisfiable or satisfiable

3 S := {I⃗0} // I⃗0 is an arbitrary value for I⃗
4 while (1) {

5 model := T-SAT(∃L :
⋀
I⃗0∈S �(L, I⃗0));

6 if (model ∕= ⊥) {currL := model∣L}
7 else {return("unsatisfiable")};

8 model := T-SAT(∃I⃗ : ¬�(currL, I⃗));

9 if (model ∕= ⊥) { I⃗1 := model∣I⃗; S := S ∪ {I⃗1}}
10 else {return("satisfiable")};

11 }

Figure 2: Standard counterexample guided ∃∀ solver
built using an ∃ satisfiability solver.

RefinedExAllSolver( wfp, �lib,  conn, �spec):

1 // ∃L∀I⃗ , O, T :  wfp ∧ (�lib ∧  conn ⇒ �spec)
// is a synthesis constraint

2 // Output: synthesis failed or values for L

3 S := {I⃗0} // I⃗0 is an arbitrary input

4 while (1) {

5 model := T-SAT(∃L,O1, . . . , On, T1, . . . , Tn :  wfp(L)∧⋀
I⃗i∈S(�lib(Ti) ∧  conn(I⃗i, Oi, Ti, L)

∧�spec(I⃗i, Oi)));
6 if (model ∕= ⊥) {currL := model∣L}
7 else {return("synthesis failed")};

8 model := T-SAT(∃I⃗ , O, T : conn(I⃗ , O, T, currL)∧
�lib(T ) ∧ ¬�spec(I⃗ , O));

9 if (model ∕= ⊥) {I⃗1 := model∣I⃗; S := S ∪ {I⃗1};}
10 else {return(currL)};
11 }

Figure 3: Refined counterexample guided ∃∀ solver
for solving the synthesis constraint. Note that Line 5
and Line 8 use different formulas. If successful, the
procedure outputs values for L that can be used
to extract the desired straight-line program (The-
orem 1).

that the base satisfiability procedure (used in Line 5 and
Line 8) is sound, complete and terminating.

The iteration between finite synthesis and verification steps
is attractive because, in each iteration, the two steps learn
from each other. The new value for L is always guided by a
set of inputs on which the previous choice for L failed.

6.2 Refined Counterexample-Guided Solver
The generic procedure StandardExAllSolver, when given

the synthesis constraint in Eq. 4, performs no better than a
naive exhaustive enumeration (as we also found experimen-
tally for our benchmark examples). We first explain why
this is the case, and then we refine the generic procedure to
ensure that it works effectively on synthesis constraints.

First, let us observe what happens when we use Pro-
cedure StandardExAllSolver directly to solve the synthe-
sis constraint (Eq. 4). Since the universal quantification

in this formula is over I⃗ , O, T , the variable S of Proce-
dure StandardExAllSolver will need to keep tuples of the
form (I⃗0, O0, T0). Performing two iterations of the proce-
dure will convince the reader that the procedure will main-
tain a set {(I⃗0, O0, T0), (I⃗1, O1, T1), . . .} of tuples that cor-



respond to “runs” of the implementations that have been
tried so far. Since the implementations have not worked,
�spec(I⃗i, Oi) does not hold for each such tuple. In the ver-
ification phase, the procedure will add another such tuple
to the above set. In the synthesis phase, the procedure will
find a new implementation (new values for L) that is incon-
sistent with all the above runs. Hence, rather than finding
implementations that work on more and more inputs, the
procedure is finding implementations that are simply differ-
ent from earlier ones.

It is easy to see that, as a result, the iterative loop of the
procedure essentially performs“exhaustive enumeration”. What
this means is that, since Procedure StandardExAllSolver is
sound, we still get sound answers, but the number of itera-
tions required to terminate (and the probability of nonter-
mination) is greatly increased. This is clearly undesirable.

Ideally, we want to keep values of only the inputs I⃗ in the
set S and then synthesize designs that work for these finitely
many inputs. We do not want to keep values for the tempo-
rary variables T since they can change as the design changes.
We do not want to force them to remain unchanged.

The modified procedure, Procedure RefinedExAllSolver,
is shown in Figure 3. The crucial difference is that the new
procedure uses the following two different variants of the
synthesis constraint in the two phases. The formula (Fver)
is same as the synthesis constraint, while the formula (Fsyn)
is a weaker version of the synthesis (Lemma 1 on Page ).

(Fver) ∃L ∀I⃗ , O, T : ( wfp ∧ (�lib ∧  conn ⇒ �spec))

(Fsyn) ∃L ∀I⃗ ∃O, T : ( wfp ∧ (�lib ∧  conn ∧ �spec))

The new procedure is similar to old one and works in 2
phases.

Finite Synthesis (Lines 5-7): In this step, we synthesize a
design that works for finitely many inputs. Specifically,
the procedure finds values for L that work for all the
inputs in S (Line 5,6). If no such values are found, we
terminate and declare that no design could be found
(Line 7). Line 5 is effectively solving for Formula (Fsyn),
which is different from the synthesis constraint.

Verification (Lines 8-10): In this step, we verify if the syn-
thesized design – that we know works for the inputs
in S – also works for all inputs. Specifically, if the
generated value currL for L work for all inputs, then
we terminate with success. If not, then we find an
input I⃗1 on which it does not work and add I⃗1 to S
(Line 9). Line 8 is verifying Formula (Fver), which is
the synthesis constraint.

Procedures RefinedExAllSolver and StandardExAllSolver

perform similar operations on matching line numbers. How-
ever, by using Formula (Fsyn)in the synthesis phase, we guar-
antee that when we synthesize L, it “works” for the inputs
in S. In the verification phase, we continue to use the actual
synthesis constraint.

We need to argue that Procedure RefinedExAllSolver

always returns the correct answer on termination. This is
stated in Theorem 3. But, before that, we need a lemma
that relates the two formula (Fsyn) and (Fver). Under the
assumption that the implementations fi’s of the base com-
ponents in the library are all terminating, we can prove that
(Fver) logically implies (Fsyn).

CompositionSynthesis(�spec, {�i ∣ i = 1, . . . , N}):
// Input: �spec: component specification

// {�i ∣ i = 1, . . . , N}: library specification

// Output: Failure/Program implementing �spec

1 Let ∃L∀I⃗ , O,P,R :  wfp ∧ (�lib ∧  conn ⇒ �spec)
be the synthesis constraint.

2 L := RefinedExAllSolver( wfp, �lib,  conn, �spec);

3 if (L ∕= "synthesis failed") {return(Lval2Prog(L))}

4 else {return("synthesis failed")};

Figure 4: Algorithm for the component-based syn-
thesis problem.

Lemma 1. Suppose the implementation of each base com-
ponent fi in the library is terminating. Then, (Fver) logically
implies (Fsyn).

Proof. Suppose (Fver) holds. Let L0 be the values of L
that show validity of (Fver). We need to prove that (Fsyn)
also holds. We will show that the values L0 will also make
the formula (Fsyn) valid. Let I⃗ be an arbitrary input. We
need to show that there are values for P,R and O such that
�lib(P, O) ∧  conn(I⃗ , O,P,R, L0) holds. Since  wfp(L0) is
true, it follows from Theorem 1 that there is a well-formed
program P . Since all components in the library are assumed
to be terminating, the program P on input I⃗ will compute at
least one value for each variable in the program. These val-
ues will make the formula �lib(P, O) ∧  conn(I⃗ , O,P,R, L0)
true.

The following theorem states the correctness of our con-
straint solving procedure, and its proof follows from Lemma 1.

Theorem 3. Suppose that Procedure RefinedExAllSolver

is called with the input  wfp(L), �lib(T ),  conn(I⃗ , O, T, L),

and �spec(I⃗ , O), where T := (P ∪R). Then,
(a) If the procedure terminates with answer synthesis

successful, then the synthesis constraint is valid.
(b) If the procedure terminates with answer synthesis

failed, then the synthesis constraint is not valid.

Proof. Proof of Part (a): First, since currL is (a part
of) a model for the formula in Line 6, the value of currL in
the program always satisfies the constraint  wfp(L). Second,
the procedure returns synthesis successful only when the

constraint ∃I⃗ , O, T : �lib ∧  conn ∧ ¬�spec is unsatisfiable.

This means that the verification constraint, ∀I⃗ , O, T : �lib ∧
 conn ⇒ �spec, is valid. This completes the proof of Part (a).

Proof of Part (b): The procedure returns synthesis failed

only when the constraint ∃L,O1, . . . , On, T1, . . . , Tn :  wfp(L)∧⋀
Pi∈S(�lib(Ti)∧ conn(I⃗i, Oi, Ti, L)∧�spec(I⃗i, Oi)) is unsat-

isfiable. By Lemma 1, this implies that the verification con-
straint is unsatisfiable.

Now we have all the components – synthesis constraint
generation (Eq. 4), synthesis constraint solving (Figure 3),
and the mapping from values of L to programs (Lval2Prog)
– to describe our overall approach. Our complete synthesis
procedure is described in Figure 4, and its correctness follows
from the correctness of the three steps, namely Theorem 1,
Theorem 2 and Theorem 3.

7. APPLICATION TO BITVECTOR PROGRAMS



We chose the domain of bitvector programs for applying
our theory of component-based synthesis. The running ex-
ample described in Section 2 belongs to this domain. Synthe-
sis of bitvector programs has two main applications. (a) Ef-
ficient bitvector code-fragments are of great significance for
people who write optimizing compilers or high-performance
code as these code-fragments can be used to speed up the
inner loop of some integer or bit-fiddly computation. (b)
These are also helpful for designing specialized hardware.

We chose this domain for the following two primary rea-
sons.

∙ There is a need for automated tools for synthesizing bitvec-
tor manipulating algorithms since these are usually inge-
nious little programming tricks that can “sometimes stall
programmers for hours or days if they really want to un-
derstand why things work”. These algorithms “typically
describe some plausible yet unusual operation on integers
or bit strings that could easily be programmed using ei-
ther a longish fixed sequence of machine instructions or
a loop, but the same thing can be done much more clev-
erly using just four or three or two carefully chosen in-
structions whose interactions are not at all obvious until
explained or fathomed” [28].

∙ There are two existing techniques that can also be used
to synthesize bitvector programs: superoptimizers [4, 20]
and sketching [25, 26]. This allows for experimental com-
parison of our technique with existing techniques, which
work in a fundamentally different way.

An additional challenge that this domain offers is the pres-
ence of arbitrary constants in some programs. Our synthesis
framework can be easily extended to discovering such con-
stants. For this purpose, we introduce a generic base com-
ponent fc that simply outputs some arbitrary constant c.
The component fc takes no input and returns one output
O and its functional specification is written as O = c. The
only change to the framework is that since c is allowed to
be arbitrary, we existentially quantify over c in the synthesis
constraint in Equation 4.

8. EXPERIMENTAL RESULTS
In this section, we present an experimental evaluation of

our synthesis technique as applied to bitvector program syn-
thesis. We also experimentally compare our technique with
other existing techniques that can be used for bitvector pro-
gram synthesis.

Benchmarks. We selected 25 benchmark examples from
the book Hacker’s Delight, commonly referred to as the
Bible of bit twiddling hacks [28].

These examples are described in Figure 5. The bench-
marks are organized in increasing order of complexity re-
flected by the number of lines in the program. For each
example, we provided the specification of the desired circuit
by specifying the functional relationship between the inputs
and output of the circuit. We also provided the set of base
components (in the form of their functional specifications)
used in these examples.

Implementation and Experimental Setup. We imple-
mented our technique in a tool called Brahma. It uses Yices
1.0.21 [3] as the underlying SMT solver, which supports rea-
soning for quantifier-free bitvector arithmetic. We ran our
experiments on 8x Intel(R) Xeon(R) CPU 1.86GHz with
4GB of RAM. Brahma was able to synthesize the desired pro-

grams for each of the benchmark examples. We now present
various statistics below.

8.1 Performance of Synthesis Algorithm
Table 1 reports some interesting statistics about the syn-

thesis algorithm (presented in Fig. 4) on the various bench-
mark examples. The total time taken by the algorithm (col.
4) on the various examples varies between 1.0 to 2778.7 sec-
onds. We also report the number of iterations taken by the
loop (col. 3) inside our constraint solving algorithm in Fig. 3
while performing the refined counterexample guided itera-
tive synthesis. The small number of these iterations (which
varies between 2 to 14) illustrates the effectiveness of our
technique in using counterexamples for iterative synthesis.

There has been a huge investment in building formal rea-
soning technology for full verification of safety-critical sys-
tems or hardware circuits, and partial verification of general
purpose software. In this paper, we show that the same
formal reasoning technology for verification can be lifted to
perform synthesis. In that context, the number of itera-
tions required by our technique points out the extra factor
of computational resources required to go from verification
to synthesis. The largest example in our experimental evalu-
ation took over 45 minutes but it involved only 11 iterations.
Hence, the largest SAT problem solved during synthesis is
roughly 11 times the size of the SAT problem for verifi-
cation. Any improvement in satisfiability solvers for veri-
fication would also directly increase the scalability of our
technique.

8.2 Comparison with Sketch and AHA
We experimentally compared the implementation of our

synthesis technique Brahma with two other existing tools for
synthesis - Sketch and AHA - on our benchmark suite of 25
examples.

Sketch. The tool Sketch is based on the sketching tech-
nique [25, 26] to synthesis. We used the most recent version
of Sketch (v1.3.0) for comparison with our technique. For
these 25 examples, we expressed the component based de-
sign problem as a sketch by defining functions for the base
components and encoding the component-based synthesis
problem using a variety of encodings, some of which even
turned out to be exponential. After consultation with the
Sketch team, we chose the best encoding, which is at best
a high degree polynomial (as illustrated below). The total
runtime of Sketch on the benchmark examples is presented
in col. 5 in Table 1. Sketch times out on 6 examples and
is slower by an average factor of over 20 on other examples
(col. 6).

We now explain why Brahma performs much better than
Sketch. At a higher level, the sketching technique is sim-
ilar to our synthesis technique – both generate constraints
in the first step and then use off-the-shelf solvers to solve
these constraints in the second step. However, there are
fundamental differences in the constraints generated by the
two techniques as well as the algorithms used for solving the
constraints. To illustrate these differences, we compare the
scalability of the two techniques as we increase the number
of components in the user-specified library for synthesizing
the running example in Table 2. The time taken by Sketch
(Col. 3 of Table 2) appears to scale exponentially, while the
time taken by Brahma (Col. 2 of Table 2) appears to scale
non-exponentially as the number of components increases



P1(x) : Turn-off right-
most 1 bit. This is the
running example in the
paper.

1 o1:=bvsub (x,1)
2 res:=bvand (x,o1)

P2(x) : Test whether an
unsigned integer is of the
form 2n−1

1 o1:=bvadd (x,1)
2 res:=bvand (x,o1)

P3(x) : Isolate the right-
most 1-bit

1 o1:=bvneg (x)
2 res:=bvand (x,o1)

P4(x) : Form a mask
that identifies the right-
most 1 bit and trailing 0s

1 o1:=bvsub (x,1)
2 res:=bvxor (x,o1)

P5(x) : Right propagate
rightmost 1-bit

1 o1:=bvsub (x,1)
2 res:=bvor (x,o1)

P6(x) : Turn on the
rightmost 0-bit in a word

1 o1:=bvadd (x,1)
2 res:=bvor (x,o1)

P7(x) : Isolate the right-
most 0-bit

1 o1:=bvnot (x)
2 o2:=bvadd (x,1)
3 res:=bvand (o1,o2)

P8(x) : Form a mask
that identifies the trail-
ing 0’s

1 o1:=bvsub (x,1)
2 o2:=bvnot (x)
3 res:=bvand (o1,o2)

P9(x) : Absolute Value
Function

1 o1:=bvshr (x,31)
2 o2:=bvxor (x,o1)
3 res:=bvsub (o2,o1)

P10(x, y) : Test if nlz(x)
== nlz(y) where nlz is
number of leading zeroes

1 o1:=bvand (x,y)
2 o2:=bvxor (x,y)
3 res:=bvule (o2,o1)

P11(x, y) : Test if nlz(x)
< nlz(y) where nlz is
number of leading zeroes

1 o1:=bvnot (y)
2 o2:=bvand (x,o1)
3 res:=bvugt (o2,y)

P12(x, y) : Test if nlz(x)
<= nlz(y) where nlz is
number of leading zeroes

1 o1:=bvnot (y)
2 o2:=bvand (x,o1)
3 res:=bvule (o2,y)

P13(x) : Sign Function

1 o1:=bvshr (x,31)
2 o2:=bvneg (x)
3 o3:=bvshr (o2,31)
4 res:=bvor (o1,o3)

P14 (x, y) : Floor of
average of two integers
without over-flowing

1 o1:=bvand (x,y)
2 o2:=bvxor (x,y)
3 o3:=bvshr (o2,1)
4 res:=bvadd (o1,o3)

P15 (x, y) : Ceil of aver-
age of two integers with-
out over-flowing

1 o1:=bvor (x,y)
2 o2:=bvxor (x,y)
3 o3:=bvshr (o2,1)
4 res:=bvsub (o1,o3)

P16 (x, y) : Compute
max of two integers

1 o1:=bvxor (x,y)
2 o2:=bvneg (bvuge (x,y))
3 o3:=bvand (o1,o2)
4 res:=bvxor (o3,y)

P17(x) : Turn-off the
rightmost contiguous
string of 1 bits

1 o1:=bvsub (x,1)
2 o2:=bvor (x,o1)
3 o3:=bvadd (o2,1)
4 res:=bvand (o3,x)

P18(x) : Determine if an
integer is a power of 2 or
not

1 o1:=bvsub (x,1)
2 o2:=bvand (o1,x)
3 o3:=bvredor (x)
4 o4:=bvredor (o2)
5 o5:=!(o4)
6 res:=(o5 && o3)

P19(x,m, k) : Exchang-
ing 2 fields A and B of
the same register x where
m is mask which identi-
fies field B and k is num-
ber of bits from end of A
to start of B

1 o1:=bvshr (x,k)
2 o2:=bvxor (x,o1)
3 o3:=bvand (o2,m)
4 o4:=bvshl (o3,k)
5 o5:=bvxor (o4,o3)
6 res:=bvxor (o5,x)

P20(x) : Next higher un-
signed number with same
number of 1 bits

1 o1:=bvneg (x)
2 o2:=bvand (x,o1)
3 o3:=bvadd (x,o2)
4 o4:=bvxor (x,o2)
5 o5:=bvshr (o4,2)
6 o6:=bvdiv (o5,o2)
7 res:=bvor (o6,o3)

P21(x, a, b, c) : Cycling
through 3 values a,b,c

1 o1:=bvneg (bveq (x,c))
2 o2:=bvxor (a,c)
3 o3:=bvneg (bveq (x,a))
4 o4:=bvxor (b,c)
5 o5:=bvand (o1,o2)
6 o6:=bvand (o3,o4)
7 o7:=bvxor (o5,o6)
8 res:=bvxor (o7,c)

P22(x) : Compute Parity

1 o1:=bvshr (x,1)
2 o2:=bvxor (o1,x)
3 o3:=bvshr (o2,2)
4 o4:=bvxor (o2,o3)
5 o5:=bvand (o4,0x11111111)
6 o6:=bvmul (o5,0x11111111)
7 o7:=bvshr (o6,28)
8 res:=bvand (o7,0x1)

P23(x) : Counting number of bits

1 o1:=bvshr (x,1)
2 o2:=bvand (o1,0x55555555)
3 o3:=bvsub (x,o2)
4 o4:=bvand (o3,0x33333333)
5 o5:=bvshr (o3,2)
6 o6:=bvand (o3,0x33333333)
7 o7:=bvadd (o4,o6)
8 o8:=bvshr (o7,4)
9 o9:=bvadd (o8,o7)

10 res:=bvand (o9,0x0F0F0F0F)

P24(x) : Round up to the next
highest power of 2

1 o1:=bvsub (x,1)
2 o2:=bvshr (o1,1)
3 o3:=bvor (o1,o2)
4 o4:=bvshr (o3,2)
5 o5:=bvor (o3,o4)
6 o6:=bvshr (o5,4)
7 o7:=bvor (o5,o6)
8 o8:=bvshr (o7,8)
9 o9:=bvor (o7,o8)

10 o10:=bvshr (o9,16)
11 o11:=bvor (o9,o10)
12 res:=bvadd (o10,1)

P25(x, y) : Compute higher order
half of product of x and y

1 o1:=bvand (x,0xFFFF)
2 o2:=bvshr (x,16)
3 o3:=bvand (y,0xFFFF)
4 o4:=bvshr (y,16)
5 o5:=bvmul (o1,o3)
6 o6:=bvmul (o2,o3)
7 o7:=bvmul (o1,o4)
8 o8:=bvmul (o2,o4)
9 o9:=bvshr (o5,16)

10 o10:=bvadd (o6,o9)
11 o11:=bvand (o10,0xFFFF)
12 o12:=bvshr (o10,16)
13 o13:=bvadd (o7,o11)
14 o14:=bvshr (o13,16)
15 o15:=bvadd (o14,o12)
16 res:=bvadd (o15,o8)

Figure 5: Benchmark Examples. The functions used in the examples have the usual semantics defined in
SMTLIB QF BF logic [2].



Benchmark Brahma Sketch ratio AHA
Id #lines Iter. runtime runtime Sketch/ time(sec)

sec sec Brahma [#cand]
1 2 3 4 5 6 7
P1 2 2 3.2 69.8 22 0.1[1]
P2 2 3 3.6 28.9 8 0.1[1]
P3 2 3 1.4 91.8 63 0.1[1]
P4 2 2 3.3 68.4 21 0.1[1]
P5 2 3 2.2 67.9 31 0.1[1]
P6 2 2 2.4 87.0 36 0.1[1]
P7 3 2 1.0 69.6 68 1.7[9]
P8 3 2 1.4 70.0 51 1.4[9]
P9 3 2 5.8 85.1 15 6.5[5]
P10 3 14 76.1 timeout NA 10.4[1]
P11 3 7 57.1 timeout NA 9.3[1]
P12 3 9 67.8 timeout NA 9.5[1]
P13 4 4 6.2 193.7 31 timeout
P14 4 4 59.6 935.3 16 timeout
P15 4 8 118.9 726.5 6 timeout
P16 4 5 62.3 820.8 13 timeout
P17 4 6 78.1 626.1 8 108.6[9]
P18 6 5 45.9 117.2 2 timeout
P19 6 5 34.7 472.8 14 timeout
P20 7 6 108.4 timeout NA timeout
P21 8 5 28.3 timeout NA timeout
P22 8 8 279.0 timeout NA timeout
P23 10 8 1668.0 timeout NA timeout
P24 12 9 224.9 timeout NA timeout
P25 16 11 2778.7 timeout NA timeout

Table 1: Comparing our tool Brahma with Sketch
and AHA. Timeout was 1 hour. NA denotes not
applicable. The table shows the runtime for Brahma

(Col. 4), Sketch (Col. 5) and AHA (Col. 7) on 25
benchmarks sorted by lines of code (Col. 2). We also
report the number of iterations needed by Brahma

(Col. 3), ratio of runtimes of Brahma and Sketch (Col.
6) and the number of candidate solutions found by
AHA (within brackets in Col. 7).

from 2 to 7. The ratio of Sketch runtime to Brahma runtime,
shown in col. 4 of Table 2, increases from 2 to nearly 500.

While the size of the constraints generated by our tech-
nique is provably quadratic in the number of components,
experimental evidence indicates that the size of the con-
straints generated by the sketching technique is either expo-
nential or a high degree polynomial in the number of holes or
components. This is also illustrated in Table 2 that shows
the normalized size of the constraints generated by both
techniques against the number of components (Col. 5 and
Col. 6 for Brahma and Sketch respectively). We normalize
the size of the constraints with respect to the constraint size
for 2 components. This ensures a fair comparison of the
rate of increase in constraint size with increase in number
of components for the two tools irrespective of the abso-
lute size of the generated constraints which may depend on
optimizations and preprocessing. The succinctness of our
constraint is because of our non-trivial encoding that ex-
ploits the modular specifications of the components, and it
helps us relegate the inherent exponential reasoning to the
underlying SMT solvers.

It may be tempting to speculate that the runtime gains
of Brahma over Sketch arise because Brahma uses a differ-
ent SMT solver. However, this is not true, since Brahma

and Sketch are experimentally observed to take comparable
time for performing the verification step; see Table 3. It fol-
lows that the differences are entirely due to the algorithmic
improvements in Brahma.

Ratio Normalized
No. of Runtime of Runtime Constraint Size

Comps. Brahma Sketch Sketch/Brahma Brahma Sketch
1 2 3 4 5 6

2 0.11 0.27 2.45 1 1
3 0.14 0.83 5.93 1.52 5.00
4 0.20 2.09 10.45 1.91 19.85
5 0.25 6.78 27.12 2.36 48.01
6 0.36 19.69 54.70 3.18 129.26
7 0.33 164.80 499.39 3.76 242.04

Table 2: Comparing Brahma and Sketch on running
example by increasing the number of components.
Constraint size is normalized with respect to the
size for 2 components.

AHA. The AHA tool [4] is a superoptimizer, endorsed by
our benchmark book [28] as A Hacker’s Assistant. It is
based on an idea by Henry Massalin [20], and was made
widely available by Granlund and Kenner as the GNU super-
optimizer [11]. For experimental comparison, we provided
the set of base components as a set of library functions.
AHA enumerates all possible composition of these functions
to generate candidate programs (in a way described in Fig-
ure 1), but it tests the correctness of the candidate pro-
grams only on some inputs, and often outputs a number of
potential solutions. The solutions produced by AHA must
be verified in order to select the right solution. Table 1
lists the total number of solutions generated by AHA (col.
7 within [brackets]) and the total time (col. 7) taken for
generation and verification of these solutions. AHA times
out on 12 examples. The better performance of Brahma is
explained by the fact that Brahma does not perform an ex-
haustive enumeration of the exponential state space, but
relies on a non-trivial strategy of candidate selection and
elimination though SMT solving. Thus, we exploit the engi-
neering advances in the underlying SMT solving technology
for an efficient search.

8.3 Choice of Set of Base Components
We now discuss the strategy that we used for choosing

the set of base components for our benchmark examples.
Picking the set of base components is the only step in our
approach that currently requires human guidance, although
even it is partly automated.

In our experiments, we started with a common set of base
components, referred to as the standard library, for synthe-
sizing programs for each of the benchmark examples. The
standard library included 12 components performing stan-
dard operations, such as bitwise-and, bitwise-or, bitwise-not,
add-one, bitwise-xor, shift-right, comparison, add, and sub-
tract operations. The standard library was sufficient for
synthesizing the first 17 benchmark examples. For other
examples, the library was augmented with a set of new com-
ponents suggested by the user. We call this set the extended
library. This is similar to many library driven programming
languages such as Java and Ocaml which have standard li-
brary functions. If a program requires functions outside the
standard library, the user has to select the appropriate li-
braries to include. Similarly, in our technique, programmer
specifies the extended library if the standard library is not
sufficient for the synthesis of the program. This also facili-
tates the hierarchical design of programs where the user can
specify a synthesized program as a new component in a new
synthesis problem.



Benchmark Verification Runtime(ms)

Brahma Sketch Ratio

P1 35 18 1.94
P2 11 16 0.69
P3 98 57 1.72
P4 58 31 1.87
P5 59 45 1.31
P6 78 32 2.43
P7 03 11 0.27
P8 78 66 1.18
P9 14 08 1.75
P10 48 NA NA
P11 29 NA NA
P12 29 NA NA
P13 12 16 0.75
P14 69 38 1.82
P15 108 56 1.93
P16 77 41 1.88
P17 109 78 1.40
P18 72 47 1.53
P19 64 52 1.23
P20 96 NA NA
P21 42 NA NA
P22 127 NA NA
P23 103 NA NA
P24 62 NA NA
P25 184 NA NA

Table 3: Comparing the verification times of
Brahma and Sketch. Timeout was 1 hour. For the
similar verification step, Sketch is slower only by an
average factor of 1.4 (maximum factor is 2.43) on
all examples. NA denotes that Sketch timeouts on
that example and hence there is no verification time.
For the algorithmically-different synthesis step, as
shown in Table 1, Sketch was slower by a factor of
20 on examples on which it terminates – so, even if
we normalize for use of different constraint solvers,
sketch continues to be an order-of-magnitude slower.

For the above-mentioned incremental design technique to
be successful, it is pertinent that the synthesis engine not
only synthesize correct designs quickly but also report in-
feasibility of the synthesis problem quickly. In our experi-
ments, we noted that Brahma reports infeasibility of design
rather quickly. More specifically, when the standard library
was insufficient to synthesize a desired specification, Brahma

terminated in less than 100 seconds on almost all examples.
Hence, reliance on human guidance can be reduced using a
strategy where components are added in an incremental way
to the library until synthesis is successful.

Regarding the issue of synthesis of optimal designs – de-
signs that use the minimal number of components – we ob-
served that in experiments, we always got minimal designs.
However, this is not a guarantee. Minimality can, however,
be ensured by iteratively removing each component as long
as a design exists.

9. RELATED WORK
Counterexample Guided Inductive Synthesis. Induc-
tive synthesis refers to generating a system from input-output
examples. This process involves using each new input-output
example to refine the hypothesis about the system until con-
vergence is reached. Inductive synthesis had its origin in
the pioneering work by Gold on language learning [10] and
by Shapiro on algorithmic debugging and its application to
automated program construction [22]. The inductive ap-
proach [21, 9] for synthesizing a program involves debugging
the program with respect to positive and negative examples
until the correct program is synthesized. The negative ex-
amples can be counterexamples discovered while trying to
prove a program’s correctness. Counterexamples have been
used in incremental synthesis of programs [26] and discrete
event systems [7].

We have recently used the encoding presented in this pa-
per to solve a different component-based synthesis problem
wherein logical specification of the desired program is re-
placed by an input-output oracle [12]. The synthesis ap-
proaches in the two papers are significantly different – [12]
uses only the encoding of the synthesis problem as an ∃∀
formula that is presented in (and is the contribution of) this
paper, but not the ∃∀ solving strategy.

Automated API Composition. The Jungloid mining
tool [18] synthesizes code-fragments (over a given set of API
methods annotated with their type signatures) given a sim-
ple query that describes the desired code in terms of input
and output types. We push this work forward to synthesiz-
ing code-fragments that meet a functional specification as
opposed to simply type specifications. Typing constraints
can also be easily incorporated in our synthesis constraints.
DIPACS [13] compiler incorporates an AI planner to replace

a call of a programmer-defined abstract algorithm with a se-
quence of library calls. It uses programmer-compiler inter-
action to prune undesirable compositions. DIPACS requires
the library (or application) programmer to specify behavior
of the library procedures (or, desired effect of the abstract
algorithm) using high-level abstractions, such as predicates
sorted and permutation. Furthermore, it then needs axioms
for these predicates. This is similar to the work on auto-
matic program synthesis [19, 27], where a theorem prover
was used instead of an AI planner. Our approach does not
use abstract predicates and axioms and relies on the pred-



icates provided by the SMT solver. The SMT solver also
reasons about the implicit axioms using decision procedures.

Sketching. System development requires both algorithmic
insights as well as careful attention to details. Sketching [25]
requires a developer to come up with the algorithmic insight
and uses the sketch compiler to fill in missing details by us-
ing principle of counterexample guided inductive synthesis.
This allows the sketch technique to be quite general, and ap-
plicable to discovering small unknown details in a variety of
programs [26, 23, 24]. In contrast, our tool seeks to discover
algorithmic insights, albeit at cost of being more suited for
a special class of programs. We chose bitvector programs
as our application domain since key hardness in synthesis of
these programs is to come up with the algorithmic insight.

Super-optimizers. Superoptimization is the task of find-
ing an optimal code sequence for a straight-line target se-
quence of instructions, and has shown to be useful in op-
timizing performance-critical inner loops. One approach to
superoptimization has been to simply enumerate sequences
of increasing length or cost, testing each for equality with
the target specification [20]. Another approach has been
to constrain the search space to a set of equality-preserving
transformations expressed by the system designer [14] and
then select the one with the lowest cost. Recent work has
used superoptimization [5, 6] to automatically generate gen-
eral purpose peephole optimizers by optimizing a small set
of instructions in the code. In these approaches, the ex-
haustive state space search is quite expensive making them
amenable to only discovering optimal instructions of length
four or less in reasonable amount of time.

Use of satisfiability solving for synthesis. SAT solvers
have been used for synthesis previously. Massalin [20] used
them for verification of candidate synthesized programs. SAT
solvers are also used in Sketching [26] to implement the in-
ductive program synthesis technique. We use SMT solving
to implement our algorithm for solving synthesis constraints.
This makes our synthesis approach more efficient as well as
more general. We only require that synthesis constraints
generated by our technique be solvable by an SMT solver.

10. CONCLUSION AND FUTURE WORK
Automated synthesis has the potential to revolutionize

system development process. Up until now, automating syn-
thesis was beyond the realm of practicality. However, huge
engineering advances in logical reasoning have significantly
changed the landscape. It has enabled verification of large
systems, and in this paper, we show that synthesis requires
resources within one order of magnitude of the resources
required for verification.

Most recent work on automated synthesis is based on the
philosophy that synthesis can be automated only if it is
partially aided by humans. We demonstrate that, using a
combination of the modularity principle, SMT solver, non-
trivial encoding of synthesis as constraint solving, and re-
fined constraint-solving approaches, human intervention can
be eliminated. This is especially true for specific domains,
such as bitvector algorithms, where algorithms are not in-
tuitive and human guidance is a hindrance, rather than a
help, to automated synthesis.

Our formulation of the component-based synthesis prob-
lem and our solution are both more widely applicable, and
this exploration is left for future work. There are possible

generalizations to synthesizing programs with richer control
structure, such as loops and recursion, and to synthesizing
from partial specifications. There is also potential for us-
ing richer theories, and limited first-order reasoning, that is
supported by modern SMT solvers, to synthesize from com-
ponents whose specifications are given at higher levels of
abstraction.
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