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Abstract 

In this paper, we propose to improve our previously developed 

method for joint compensation of additive and convolutive 

distortions (JAC) applied to model adaptation. The 

improvement entails replacing the vector Taylor series (VTS) 

approximation with unscented transform (UT) in formulating 

both the static and dynamic model parameter adaptation. Our 

new JAC-UT method differentiates itself from other UT-based 

approaches in that it combines the online noise and channel 

distortion estimation and model parameter adaptation in a 

unified UT framework. Experimental results on the standard 

Aurora 2 task show that the new algorithm enjoys 20.0% and 

16.9% relative word error rate reductions over the previous 

JAC-VTS algorithm when using the simple and complex 

backend models, respectively. 

Index Terms: unscented transform, vector Taylor series, 

additive and convolutive distortions, robust ASR, adaptation 

1. Introduction 

Environment robustness has been one of the most popular 

research topics in automatic speech recognition (ASR) during 

past two decades. Techniques tackling robustness issues can 

be categorized into two classes: feature-domain and model-

domain approaches. Feature-domain approaches enhance the 

distorted speech features with advanced signal processing 

methods without adjusting the model parameters while the 

model-domain approaches adapt the model parameters to 

make the model better matched to the distorted environment.  

In recent years, a model-domain approach that jointly 

compensates for additive and convolutive distortions (JAC) 

was proposed and evaluated (e.g., [1][2][3][4][5][6]), yielding 

promising results. The various JAC-based methods proposed 

so far use a parsimonious nonlinear physical model to describe 

the environmental distortion and use the vector Taylor series 

(VTS) approximation technique to find closed-form hidden 

Markov model (HMM) adaptation and noise/channel 

parameter estimation formulas. The JAC-VTS model 

adaptation technique, while achieving noticeable performance 

improvement over various competing techniques, has the 

known limitation that the same approximated linear mapping 

between the clean and distorted speech model parameters is 

shared across the entire model space even though the true 

mapping is nonlinear.  

In this paper, we propose to address this and related 

limitations of the JAC-VTS technique by replacing VTS with 

unscented transformation (UT) in estimating the noise and 

channel distortions and in adapting the HMM parameters 

online. Originally developed to improve extended Kalman 

filter, UT [7] is an effective way to estimate mean and 

variance parameters under nonlinear transformation. It was 

first introduced to the field of robust ASR in [8]. In that work, 

the static mean and variance of nonlinearly distorted speech 

signals was estimated using UT,  but the authors estimated the 

static noise mean and variance with a simple average of the 

beginning and ending frames of the current utterance. The 

technique was improved in [9], where the static noise 

parameters were estimated online with maximum likelihood 

estimation (MLE) using the VTS approximation and the 

estimates were subsequently plugged into the UT formulation 

to obtain the estimate of the mean and variance of the static 

distorted speech features. Most recently, Faubel et al. [10] 

proposed a novel robust feature extraction technique which 

estimates the parameters of the conditional noise and channel 

distribution using UT and embeds the estimated parameters 

into the expectation maximization (EM) [11] framework. Note 

that in all these approaches [8][9][10], sufficient statistics of 

only the static features or model parameters are estimated 

using UT although adaptation of the  dynamic model 

parameters with reliable noise and channel estimations has 

shown to be important [4]. 

The JAC-UT approach proposed in this paper 

differentiates itself from [10] in that it is a model-domain 

approach while the technique proposed in [10] is a feature-

domain one. Our approach also differs from that of [8][9] in 

that our JAC-UT approach estimates both noise estimation and 

distorted speech estimation consistently within the same UT 

framework. Furthermore, our JAC-UT extends the previous 

work of [8][9][10] by estimating sufficient statistics of not 

only the static model parameters but also the dynamic model 

parameters.  

We evaluated the JAC-UT technique on the standard 

Aurora 2 task. The experimental results show that JAC-UT 

outperforms JAC-VTS by 20.0% and 16.9% in relative word 

error rate (WER) reductions when using the simple and 

complex backend models, respectively. The experimental 

results reported in this paper also shed insight into our earlier 

work [5][12] on the role of the mixing phase between speech 

and noise in speech feature enhancement. Specifically, our 

new results show that with better model space mapping and 

improved estimation of noise and channel parameters using 

UT, the performance of a phase-ignored JAC system [5][12] 

can be significantly improved and the unusually high 

distortion adjustment term proposed in [5] becomes less 

important compared with the adjustment introduced  under the 

previous JAC-VTS framework. 

The rest of the paper is organized as follows. In Section 2, 

we describe the novel JAC-UT algorithm. In Section 3, we 

present the experimental results on the standard Aurora 2 task 

using both simple and complex back-ends. We summarize our 

study and conclude the paper in Section 4. 

2. JAC-UT Adaptation Algorithms 

In this section, we first briefly review the JAC-VTS algorithm 

and then derive the JAC-UT algorithm for the HMM means 

and variances on the Mel-frequency cepstral coefficient 

(MFCC) features for both static and dynamic model 

parameters. We subsequently describe the algorithm which 

jointly estimates the additive and convolutive distortion 

parameters using UT.  



2.1. JAC-VTS Adaptation Algorithm 

Figure 1 shows a model for degraded speech with both noise 

(additive) and channel (convolutive) distortions. The observed 

distorted speech signal  [ ] is generated from clean speech 

 [ ] with noise  [ ] and channel’s impulse response  [ ] 
according to  

 [ ]   [ ]   [ ]   [ ]   

With discrete Fourier transformation (DFT), the equivalent 

relationship  

 [ ]   [ ] [ ]   [ ]  

can be established in the frequency domain, where k is the 

frequency-bin index in DFT given a fixed-length time window. 

 

  

Figure 1: A model for acoustic environment distortion 

 

The power spectrum of the distorted speech can then be 

obtained as 

| [ ]|  | [ ]| | [ ]|  | [ ]| 

  | [ ]|| [ ]|| [ ]|       
(1) 

where    denotes the (random) angle between the two 

complex variables  [ ] and ( [ ] [ ]).  
It is noted that Eq. (1) is a general formulation for JAC. If 

      is set to zero, Eq. (1) becomes 

| [ ]|  | [ ]| | [ ]|  | [ ]|   (2) 

which is the formulation often used when power spectra [2] 

are adopted as  the acoustic feature. If       is set to one, we 

obtain  

| [ ]|  | [ ]|| [ ]|   | [ ]|  (3) 

which is the formulation often used when magnitude spectra 

[4] are adopted as  the acoustic feature. 

By taking logarithm and multiplying the non-square 

discrete cosine transform (DCT) matrix C to both sides of Eq. 

(1) for all the L Mel filter-banks, we obtain the nonlinear 

distortion model of 

                (         ))

      (
         )

 
)  

(4) 

where  ,   ,  , and   are clean speech, noise, channel, and 

distorted speech, respectively, in the cepstral domain, and   is 

a phase related adjustment term. If    , Eq. (4) becomes 

                (         ))  (5) 

which is the popular JAC formulation.  

Note that     is a reasonable theoretical approximation 

since this is its mean value and the random value of   is 

ranged between -1 and 1 in theory [12]. However, it was 

observed in [5] and [13] that setting      performs much 

worse than setting       using JAC-VTS. A possible 

explanation is that the noise and channel distortions were 

estimated with possibly systematic biases since VTS discards 

the second and higher-order terms. A larger   thus may 

partially compensate for the biases. 

Given its theoretical justification, we assume     and 

thus use Eq. (5) to describe the feature space distortion hereon. 

By taking the expectation on both sides of Eq. (5), the static 

mean value of the distorted speech signal is 

                   ) 

                (       )      )(       )  
(6) 

where 

          )      (     (            )))  (7) 

By noting,  
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we can derive the JAC-VTS adaption formulations for  the k-

th Gaussian in the j-th state as (following [4]): 

                (           )  (10) 

           )          )  

                (       ))  (       ))
 
  

(11) 

            )        (12) 

             )         (13) 

            )           )  

                  (       ))   (       ))
 
  

(14) 

             )            )                      

                  (       ))    (       ))
 
  

(15) 

The online estimation formulas for   ,   ,   ,    , and 

     can be found in [6] and are not repeated here. 

2.2. Basic UT Algorithm 

As in [8], an augmented signal   [     ]  is formed 

with a D-dimensional clean speech cepstrum x and a noise 

cepstrum n, with dimensionality              

 

The UT algorithm samples the augmented signal s with 4D 

sigma points: 

   {
   (√     )            

   (√     )    
               

 (16) 

where    and    are the mean and covariance of the 

augmented signal, and (√  )
 
 denotes the i-th column of the 

square root matrix of  . 

In the feature space, the transformed sample    with a 

mapping function    ) is        )  
 

In the model space, the mean and variance values are 
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where       ⁄  are weights of each sigma  point. 

2.3. JAC-UT Algorithm 

h[m] x[m] y[m] 

n[m] 



From Eq. (5) the transformed sample    for the sigma point    
is 

       )   (  
    

 ) 
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where           and          , with     and     

being the offsets of    and    from    and   , respectively.  

They can be easily calculated from Eq. (16). 

We thus obtain the static transformed mean values as 

shown in Eq. (19), where 

            )            

              (     (                    )))  
(23) 

Likewise, the static transformed variance can be calculated 

with Eq. (18). We can also calculate the derivatives of    with 

respect to    and    as shown in Eq. (20)  and to    as 
   

   
     . (24) 

EM algorithm is developed in this work as part of the 

overall JAC-UT algorithm to estimate the noise and channel 

parameters. Let       ) denote the posterior probability for the 

k-th Gaussian in the j-th state of the HMM, i.e.,  

      )   (         |   ̅)   

where    denotes the state index, and    denotes the Gaussian 

index at time frame t.  ̅ is the old parameter set of noise and 

channel. Embedding    into the EM auxiliary function, and 

taking the first derivative with respect to    and   ,we obtain 
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Because    is a nonlinear function of    and   , by 

linearlizing it as  

             (       )       )(       ) (25) 

we obtain the closed-form solution as shown in Eqs. (21) and 

(22). 

Comparing Eqs. (21) and (22) with the solution in [6] 

where VTS is used, we can see that the solution formulas are 

the same except  we are using weighted sums       ) (defined 

in Eq. (20)) and   (                ) (defined in Eq. (23)) to 

replace      )   (defined in Eq. (8)) and  (                ) 

(defined in Eq. (7)).  

To estimate the dynamic parameters for distorted speech, 

linearization is still needed as discussed in [6]. Inferring from 

Eq. (25) and Eq. (6), we can similarly use        ) to replace 

     )  in Eqs. (12), (13), (14), and (15), and obtain the 

corresponding dynamic model formulations for the distorted 

speech signal. The re-estimation formulas for the dynamic 

noise variances are the same as that in [6] because the 

adaptation formulations share the same formulas.  

3. Experimental Evaluation 

The proposed JAC-UT algorithm presented in Section 2 has 

been evaluated on the standard Aurora 2 task [14] of 

recognizing digit strings in noise and channel distorted 

environments. The clean training set is used to train the 

baseline maximum likelihood estimation (MLE) HMMs. The 

test material consists of three sets of distorted utterances. Set-

A and set-B contain eight different types of additive noise 

while set-C contains two different types of noise and 

additional channel distortion. The baseline experiment setup 

follows the standard script provided by ETSI, including the 

standard simple and complex backend [15] of HMMs trained 

using the HTK toolkit. 

The features are 13-dimension MFCCs, appended by their 

first- and second-order time derivatives.  The cepstral 

coefficient of order zero is used instead of the log energy in 

the original script. We use power spectra for MFCC extraction 

in all experiments.  

The JAC-UT algorithm presented in this paper is used to 

adapt the ML-trained HMMs utterance by utterance for the 

entire test set (Sets-A, B, and C). The implementation steps 

described in [4] are used in the experiments. We use the first 

and last 20 frames from each utterance for initializing the 

noise means and variances. Only one-pass processing is used 

in the reported experiments.  

Table 1: Recognition accuracies (Acc) under the baseline, 

JAC-VTS, and different JAC-UT setups for clean-trained 

simple backend HMMs. Power spectra are used to extract 
MFCC features. 

Setup WER 

Baseline 58.70% 

JAC-VTS 88.35% 

Static noise/channel estimated in VTS, 
static model mean/variance updated in UT 

89.21% 

Static noise/channel estimated in UT, static 
model mean/variance updated in UT 

89.34% 

All estimates/updates are in UT 90.68% 

 

To examine the contribution of individual components in 

the JAC-UT algorithm, we conducted experiments using the 

JAC-VTS setting, and then gradually switched components 

   ∑     
  
    ∑  (              (     (                    ))))  

       ∑     ∑      ∑     ∑       (      (                    )))  

             ∑      (     (                     )))                    ).  

(19) 

   

   
 

   

   
  

                ∑       {   (                    ))       [                    )])⁄ }     

              ∑       {       [                    )])⁄ }         

(20) 

                {∑ ∑ ∑       )(        ))
 
     
  (        ))   }

  
  

                             {∑ ∑ ∑       )(        ))
 
     
  (                (               ))   }    

(21) 

        {∑ ∑ ∑       ) 
     )      

        )   }
  

  

                     {∑ ∑ ∑       ) 
     )      

  (                 (               ))   } . 

(22) 

 



from VTS to UT formulation. As shown in Table 1, the 

baseline accuracy (Acc) is 58.70% using the clean-trained 

simple backend model. When adapting with the normal JAC-

VTS (i.e.,     in phase-JAC-VTS, all noise/channel 

parameters are online estimated), the Acc improves to 88.35%. 

If we use VTS to estimate the static noise and channel means 

and then plug them into Eqs. (17) and (18) to adapt the static 

model mean and variance as done in [9], the Acc is increased 

to 89.21%. After applying Eqs. (21) and (22) to estimate the 

noise and channel means, the Acc further improves to 89.34%. 

Finally, the dynamic model parameters are updated by 

replacing the VTS-derived      )  with the UT-derived 

      ) in Eqs. (12)-(15), and the dynamic noise variances are 

estimated online. This setting achieves the highest accuracy of 

90.68%, which translates to a 20.0% relative WER reduction 

over the normal JAC-VTS algorithm. This demonstrates that 

the normal JAC method (without any phase term) can have 

better performance with an improved estimate of model space 

mapping using UT. 

In Table 2, we show experimental results using the 

complex backend with the JAC-UT model adaptation 

technique. When    , JAC-UT obtains 91.68% Acc, which 

stands for 16.9% relative WER reduction from the 89.99% 

Acc achieved using the JAC-VTS approach. Note that this 

accuracy is still lower than the 93.32% Acc achieved in [5] 

with phase-adjusted JAC-VTS when      . 

Table 2: Recognition accuracies (Acc) under the settings of 

baseline, phase-JAC-VTS, and alpha-JAC-UT with 

different   for clean-trained complex backend HMMs. Power 
spectra are used to extract MFCC features. 

Settings                         

phase-JAC-VTS 89.99% 91.85% 92.70% 93.32% 

alpha-JAC-UT 91.68% 92.57% 92.91% 93.30% 

 

In the formulation of JAC-UT, linearization is still used in 

order to achieve a closed-form solution. As argued in [6], a 

large value of    may be used to compensate for the 

linearization bias. Therefore, we try to keep the UT model 

space mapping in Eqs. (17) and (18), and use the     defined 

in Eq. (26) to replace    defined in Eq. (20) by introducing an 

  term with each element similar to the format in [6]. Note 

that        when    . We call this method alpha-JAC-UT 

instead of phase-JAC-UT because there is no phase term in 

this feature space distortion model and the   term is only used 

to compensate for the linearization bias. 

The results in Table 2 demonstrate that with larger   

values, JAC-UT can further improve the accuracy. When   

equals 0, 0.5, and 1, alpha-JAC-UT outperforms phase-JAC-

VTS with reduced relative gains as   is increased. When 

     , these two methods obtain almost the same accuracy.   

4. Conclusions 

In this paper, we have presented our recent development of the 

JAC-UT algorithm for HMM adaptation and demonstrated its 

effectiveness on the standard Aurora 2 environment-robust 

ASR task. This approach unifies the static and dynamic model 

parameter adaptation with online estimation of noise and 

channel parameters in the UT framework, distinguishing itself 

from prior arts.  

In the experimental evaluation using the standard Aurora 2 

task, the proposed JAC-UT algorithm has achieved 20.0% and 

16.9% relative WER reduction from JAC-VTS algorithm, with 

the clean-trained simple and complex HMM backends, 

respectively. The UT formulation and the experimental results 

shed light onto the previous unsatisfactory performance with  

    using the phase-JAC-VTS technique. We conclude 

from this work that JAC methods can obtain more satisfactory 

accuracy by utilizing a better model space mapping.  

To obtain a closed-form solution in this work, we still 

retain the linearization step in the JAC-UT framework. Alpha-

JAC-UT is used to boost the accuracy by adding an   term to 

compensate for the linearization loss. This partially exposes 

the weakness of our current JAC-UT formulation. Our future 

work involves further improvement of  the performance of 

JAC-UT without employing linearization. 
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