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Abstract—In statistical learning theory, good generalization
capability refers to small performance degradation when the
model is evaluated on unseen testing data that are drawn from the
same distribution as the training data, i.e. on matched training-
testing case. Recently, soft-margin estimation (SME) method was
proposed to improve acoustic model’s generalization capability
for clean speech recognition and achieved success. In this paper,
we study the generalization capability of acoustic model for
robust speech recognition, where the training and testing data fol-
low different distributions (i.e. mismatched training-testing case).
From our analysis of noise effect on the log likelihood values of
noisy speech features, although mismatch exists between testing
and training data, it is still possible to achieve better robustness
by improving the acoustic model’s generalization capability
using SME. This is confirmed by our experimental study on
Aurora-2 and Aurora-3 tasks, where SME improves recognition
performance significantly for both matched and low/medium
mismatched testing cases. However, the improvement in severely
mismatched cases is relatively small. To alleviate the violation of
SME assumption about the same distribution for training and
testing data, we apply mean and variance normalization (MVN)
to process speech features prior to model training. Experimental
study shows that when training-testing mismatch is reduced,
SME delivers better performance improvement. We expect SME
to improve the robustness of speech recognition further when it
is combined with other robustness methods. Although this study
is on noisy speech recognition tasks, the method and discovery in
this paper have no assumption on the type of distortion, and can
be extended to deal with different types of distortions in other
machine learning applications.

EDICS Category: SPE-ROBU; SPE-RECO

I. I NTRODUCTION

Speech recognition performance degrades significantly
when speech signals are corrupted by noises [1]. The noise
distortion usually causes a difference between the statistics
of training and testing speech features. Typically, the acoustic
model of a speech recognition system is trained from clean
data using the maximum likelihood (ML) criterion. Hence, the
decision boundary of the model fits well to the distribution of
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the clean training data. However, when noisy testing data with
different distribution are tested, the decision boundary may fail
and recognition performance will degrade.

To improve the robustness of speech recognition against
noise distortions, many methods have been proposed to reduce
the mismatch between clean-trained model and noisy testing
data. These methods can be grouped into two classes, i.e.
feature compensation methods and model adaptation methods.
The feature compensation methods aim to make the features
from different environmental conditions more consistent while
preserving the features’ discriminative power. Such methods
include various speech parameter estimators [2–8]; feature
normalization methods: cepstral mean normalization (CMN)
[9], mean and variance normalization (MVN) [10], histogram
equalization (HEQ) [11–14]; temporal filters: RASTA filter
[15], MVA processing [16] and temporal structure normaliza-
tion filter (TSN) [17, 18]; etc. In contrast, the model adaptation
methods reduce the mismatch by making the acoustic model
better fit the noisy testing data such that the adapted decision
boundary is more accurate for the noisy testing data. Typically,
the parameters of the acoustic model are adapted based on
observed noise data. Model adaptation methods include: max-
imum likelihood linear regression (MLLR) [19] adaptation,
maximuma posteriori (MAP) adaptation [20], parallel model
composition (PMC) [21], ensemble modeling [22, 23], and
joint compensation of additive and convolutive distortions
(JAC) [24, 25], etc.

Although the feature compensation and model adaptation
methods are quite effective, reducing mismatch is not the only
way to improve the robustness of speech recognition. In this
paper, we follow another direction to improve robustness, i.e.
improving the generalization capability of the acoustic model.
Instead of pursuing a good fit of the acoustic model to the
training data as in the ML estimation, we estimate the model
parameters to make the model more generalizable to unseen
testing data.

According to statistical learning theory [26], the general-
ization capability of model can be improved by increasing the
margin of the model. The margin is the desired minimum dis-
tance between any training sample to the decision boundary of
the model in a separable classification case. During the model
training, model parameters are estimated such that all or most
training samples are outside of the margin. As a result, a buffer
zone is created around the decision boundary, and the model
becomes more generalizable. A large margin corresponds to
a more general model. Recently, the soft-margin estimation
(SME) method [27] was proposed to maximize the margin for
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speech recognition problems and shown to perform well in
clean speech recognition.

In statistical learning theory, the generalization of model
refers to generalizing to testing data drawn from the same
distribution as the training data. In noisy speech recognition
problem to be studied in this paper, the training and testing
are from different distributions. Therefore, the assumption
of same distribution for both training and testing features
required by SME is violated in noisy speech recognition
tasks. However, we will show that increasing the margin of
the acoustic model is still desirable in mismatched training-
testing cases and our experimental results will verify the
effectiveness of this approach. In [28], we have conducted
an initial study of SME for Aurora-2 task [29] and achieved
promising results. In this paper, we conduct a more complete
study of the approach of improving model generalization
for better robustness against noise corruption. Furthermore,
we will also study the combination of SME with mean and
variance normalization (MVN). As MVN is able to reduce the
mismatch between training and testing data, if SME operates
on MVN-processed features, the assumption of SME about
the same distribution for training and testing data will be less
violated. We expect SME to perform better when combined
with MVN, or other feature domain methods.

This paper is organized as follows. In section II, we inves-
tigate the noise effect in log likelihood domain and decision-
making in speech recognition. This investigation provides
insight and motivation to the use of margin-based model
training approach. In section III, we discuss the method of
margin maximization for more robustness model and describe
the SME method. In section IV, we present our experimental
results and discussions. Finally, we conclude in section V.

II. N OISE EFFECT ONLOG L IKELIHOODS

When a speech signal is corrupted by noise, the speech
features extracted from the speech signal are also distorted.
The likelihood values of the distorted features evaluated on
different classes of clean-trained acoustic model will be differ-
ent from those of clean features. Therefore, the classification
decision based on the changed likelihood values will not be
optimal. In this section, we will analyze the noise effect inthe
log likelihood domain, and show the necessity to reduce noise
effect on log likelihoods.

A. A Two-Class Example

Speech recognition is a multi-class sequential pattern recog-
nition problem. The temporal dynamics of speech and the use
of hidden Markov models (HMM) make the direct analysis of
noise effect on log likelihoods very difficult. In this section, we
will first use a two-class, single feature vector based pattern
classification problem as an example to demonstrate noise
effect, and then examine noise effect in real speech recognition
experimentally.

Let there be two classes “A” and “B” as shown in Fig. 1(a).
We assume there areN training samples, each has two ele-
ments{Xi, Ci}, whereXi is a feature vector ofD dimensions,
Ci is the correct class label ofXi andCi ∈ {A,B}. We want
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Fig. 1. Illustration of the two-class classification problem in log likelihood
domain: (a) if well trained, the model is able to project the clean feature
vectors to the correct side of the decision boundary; (b) when noise distortion
presents, the noisy samples will deviate from the clean samples and may cross
the decision boundary, thus wrongly classified.

to build a classifier that can correctly classify any unseen
feature vector into one of the two classes. A common way
to build a classifier for this problem is to first estimate the
probability density function (p.d.f.) of feature vectors for each
class and then use the maximuma posteriori (MAP) decision
rule to classify the testing samples. The classification decision
for a feature vectorXi is made as follows:

Ĉi = arg max
j∈{A,B}

p(j|Xi)

= arg max
j∈{A,B}

p(Xi|j)p(j) (1)

where p(j) is the a priori probability of classj, i.e. our
prior knowledge about classj, andp(j|Xi) is thea posteriori
probability of classj after Xi is observed. In speech recog-
nition, the a prior knowledge about classes, such as words,
are represented by language model. As we are only interested
in the noise effect in acoustic modeling, it is reasonable to
ignore the language model in our analysis. We assume the
two classes have equala priori probability and (1) can be
rewritten as follows:

Ĉi = arg max
j∈{A,B}

p(Xi|j) (2)

and this is the maximum likelihood (ML) decision rule illus-
trated in Fig. 1(a). The decision boundary is the straight line
log p(Xi|A) = log p(Xi|B). The x-axis and y-axis represent
the log likelihoods of training samples on classA and B,
respectively. In the log likelihood domain, the classification
decision is based on the Euclidian distances from samples to
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the decision boundary. The distance between a sample of class
A to the decision boundary is

d(Xi,Λ) =

√
2

2
[log(p(Xi|A)) − log(p(Xi|B))]

=

√
2

2
dLLR(Xi,Λ) (3)

wheredLLR(Xi,Λ) is the log likelihood ratio (LLR) ofXi on
modelΛ = {λA, λB}, andλA andλB denote the parameters
of the p.d.f. of classA and B, respectively. IfXi is from
class B, dLLR(Xi,Λ) = log(p(Xi|B)) − log(p(Xi|A)). If
d(Xi,Λ) > 0, Xi is correctly classified and vice versa. The
distance serves as a measure of separation, i.e. how well a
training sample is separated from the decision boundary by the
model. If a training sample is far from the decision boundary,
the sample is well separated by the model.

The modelΛ is like a transformation, which transforms a
D-dimensional feature vector into a two-dimensional vector
whose elements are the coordinates of the feature vector in the
log likelihood domain. Usually the transformation is trained
to project the training samples into the correct side of the
decision boundary. If testing features have similar probability
distribution as that of the training features, they can alsobe
projected correctly. However, this is not true if the testing
features have different probability distribution, e.g. due to
noise corruption.

When a speech signal is corrupted by noise, the features
extracted from the signal will also be distorted. If we assume
the distortion to be additive and independent from clean
features in the feature domain, the noisy features can be
represented as:

Yi = Xi + Ni (4)

whereYi is the corrupted feature vector andNi is the distortion
in feature domain. The distortionNi will cause disturbance of
log p(Yi|A) and log p(Yi|B), i.e. the two coordinates ofYi in
the log likelihood domain. Therefore,Yi will wander off Xi

and the distance between them is governed by a probability
distribution. This is illustrated in Fig. 1(b), where we randomly
show three possible deviations of noisy sample from a clean
sample. Although the clean sample is on the correct side of the
decision boundary, its noisy versions may cross the boundary
and be wrongly classified. It is reasonable to predict that the
lower the signal-to-noise ratio (SNR) in the signal domain,the
higher the variance ofNi in the feature domain, and possibly
the larger deviation ofYi away fromXi in the log likelihood
domain. With larger deviation, the test samples are more likely
to be projected into the wrong side of the decision boundary,
thus wrongly classified.

B. Empirical Study of Noise Effect on Speech Recognition

Speech recognition problem is far more complex than
the two-class problem. There are several major differences
between the two which can be summarized as follows:

1) Speech patterns are represented by a sequence of feature
vectors rather than a single feature vector. To model the
temporal dynamics of speech, complicated HMM is used
as the model.
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Fig. 2. Histogram of separation measures for different SNR levels. Each
histogram is obtained from 10,010 separation measure instances.

2) In speech recognition, there are many classes rather than
two classes. WithN classes, the features are projected
into N -dimensional vectors in log likelihood domain
rather than two-dimensional vectors. It is hard to carry
on the study unless we only consider the correct and the
closest competing classes.

3) The assumption that the noise term is additive and
independent from the speech is also not true in real
feature extraction of speech recognition systems, such
as Mel-frequency cepstral coefficients (MFCC). It is
well known that in the cepstral domain, the relationship
between noise and speech is highly nonlinear [30, 31].

With the above challenges among many others, it is math-
ematically difficult to study the noise effect for real speech
recognition system. Nevertheless, the two-class example in the
previous sections provides us an intuitive example of noise
effect. In this section, we will empirically study how noise
affects the log likelihood of features in speech recognition.

Our study of noise effect will be described now. The
histogram of separation measures of training samples will
be shown. Note that each sample is an utterance in speech
recognition. The calculation of separation measure is described
as follows. For each utterance, we find the correct state-level
alignment of the utterance using correct transcription andthe
acoustic model trained from clean features. We also find the
closest competing alignment of the utterance using the clean
model. The next step is to find out the frames with confusion,
i.e. the frames that have different state identities in the correct
and competing alignments. The separation measure is defined
as the average log likelihood ratio (LLR) of those selected
frames [27]:

d(Oi,Λ) =
1

ni

∑

j∈Fi

log

[

PΛ(Oij |Si)

PΛ(Oij |Ŝi)

]

(5)

where Λ is the clean acoustic model,Oij is the jth frame
of the ith utteranceOi; Si and Ŝi represent the correct and
the closest competing alignments ofOi, respectively;Fi is
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the set of frames inOi with confusion; andni is the number
of frames inFi. Note that the separation measured(Oi,Λ)
is related to the distance between a training sample and the
decision boundary [see (3)] .

We study the noise effect on separation measure using the
Aurora-2 task [29]. The testing data of Aurora-2 are divided
into seven groups according to SNR level, including clean
testing data, 20dB to -5dB testing data with 5dB step. In
each SNR level, there are 10,010 utterances, each corrupted
by one of 10 types of noises. For each utterance, we obtain its
separation measure as described in (5), using acoustic model
trained from clean data and the ML estimation. The histogram
of separation measures for different SNR levels are compared
in Fig. 2. The part of histogram on the left side of the vertical
line at 0 are for those wrongly classified utterances. From the
figure, we observe that as SNR level decreases, the histogram
of separation measures shift left and becomes sharper. This
shows that in overall, the distances between test samples and
the decision boundary are reduced by noise distortion and
some utterances are moved to the wrong side of the decision
boundary. With lower SNR level, there are higher distortion
in the feature domain, and possibly larger deviation of noisy
samples from clean samples in the log likelihood domain, and
hence the histogram of separation measures are shifted left
further.

C. Summary

Noise corruption is shown to cause noisy features to de-
viate from corresponding clean features randomly in the log
likelihood domain. As a result, when noisy features are tested
on clean trained models, or more generally, whenever there
is statistical mismatch between training and testing features,
recognition performance will degrade. To improve the robust-
ness of speech recognition systems against noise distortion,
it is necessary to make the recognition less sensitive to noise
effect in the log likelihood domain.

III. I MPROVING THE GENERALIZATION CAPABILITY OF

ACOUSTIC MODEL

Currently, the noise effect is reduced by either feature
compensation methods or model adaptation methods. In fea-
ture compensation methods, if we can obtain an accurate
estimate of the clean feature from the observed noisy features,
the deviation of log likelihood will be reduced and better
classification can be performed. In model adaptation methods,
the model are adapted to approximate the model trained from
the noisy test features. If the adapted model can represent the
noisy test features well, the projection of feature vectorsto log
likelihood domain will also be correct and performance will
be improved. Although both feature compensation and model
adaptation are very important and effective ways of reducing
noise effect, we are going to propose another approach for the
problem. We aim at improving the generalization capability
of the acoustic model, i.e. the robustness of the projection
of acoustic model. In this section, we will first introduce the
concept of improving the generalization capability of acoustic
model, and then describe the SME method used to achieve our
objective.
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Fig. 3. Increasing margin to improve the generalization capability of the
model. The objective is to adjust the model parameters to pull the training
samples out of the class boundaries defined by the margin. As a result, a buffer
zone will be created around the decision boundary, hence themodel will be
more robust against the deviations caused by noise as shown inFig. 1(b).

A. Generalization Capability and Margin

By generalization capability, we refer to the ability of the
model to generalize well to data that are not observed during
training. When generalization capability of acoustic modelis
improved, the speech recognition system is more likely to
perform well on mismatched test data.

Statistical learning theory [26] provides us some insights
about improving pattern classification systems’ generalization
capability. In this theory, the expected risk of a system is
formulated as

R(Λ) ≤ Remp(Λ) + Rgen(Λ) (6)

where the empirical riskRemp(Λ) is the system’s recognition
error on training data and the generalization riskRgen(Λ)
is a regularization term proportional to model complexity.
Expected risk refers to the recognition error of the system on
all data in the problem scope, i.e. both clean and noisy speech
data in the case of noisy speech recognition. Both empirical
and generalization risks are related to model complexity. For
example, a more complex model is able to fit better to training
data to produce lower empirical risk, however, it also leadsto
higher generalization risk. Minimum expected risk is obtained
when a good balance between these two risks is achieved.

According to statistical learning theory, the generalization
risk is bounded by a function which is proportional to model
complexity. For the bound to be true, some assumptions are
required, e.g. the training and testing data are generated from
the same identical and independent distribution. However,in
robust speech recognition problems, the assumption is not
true, hence the bound does not exist. Fortunately, the lack
of a bound does not prevent us from reducing the general-
ization risk for mismatched problems. In fact, even when the
assumption is true and a bound exists, the bound is usually not
very useful in practical classifier design due to difficulties in
evaluating the bound. Instead, the reducing of generalization
risk relies on another factor, the margin of the model.

The generalization risk can be reduced if margin is in-
creased [26] as illustrated in Fig. 3. Margin serves as a
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desired minimum distance between training samples and the
decision boundary. During model training, the objective isto
pull those training samples that fall within the margin away
from the decision boundary. Those samples already far from
the decision boundary do not contribute to model parameter
estimation. After training, all or most training samples will
be outside the margin, and a “buffer zone” is formed around
the decision boundary with width equal to the margin in each
side. With this “buffer zone”, if a test sample deviates fromthe
training samples of its correct class but the distance between
the test sample and its nearest training sample is less than the
margin, correct decision can still be made. If a larger margin
is used during training, the “buffer zone” will also be wider
and therefore larger mismatch is allowed.

Although the margin approach is originally applied to
matched training-testing problems, it should also be effective
in dealing with deviation of log likelihood values caused by
noise distortion. In this paper, we apply the margin approach
to improve the generalization capability of acoustic model
for better robustness. We will describe how to maximize the
margin for speech recognition in the next section.

B. Improving Generalization Capability by Maximizing the
Margin

A large margin is the key to improve model’s generalization
capability. In [27, 28], SME was proposed to maximize the
margin. In our experiments, we use SME to maximize the
margin due to its good approximation of the expected risk.
A brief description of SME is presented in this section. For
detailed implementation and discussions about SME, please
refer to [27].

In SME, the parameters of the acoustic model are estimated
by minimizing an approximated expected risk as follows:

LSME(ρ,Λ) =
λ

ρ
+ Remp(ρ,Λ) (7)

whereΛ is the set of acoustic model parameters,ρ is the soft
margin, andλ

ρ
addresses the generalization risk. The variable

λ is used to control the relative weights of the two items in
(7). With a largeλ, the training process will focus on reducing
the generalization term and the margin will be large, and vice
versa. To obtain good performance, it is important to obtaina
good balance of these two terms.

The empirical risk is defined as the averaged risk of training
utterances:

Remp(ρ,Λ) =
1

N

N
∑

i=1

l(Oi, ρ,Λ) (8)

whereOi, i = 1, ..., N are the training utterances. The contri-
bution of the utteranceOi to the total empirical risk is defined
as:

l(Oi, ρ,Λ) =

{

ρ − d(Oi,Λ), if ρ > d(Oi,Λ);
0, otherwise.

(9)

whered(Oi,Λ) is a separation measure ofOi on modelΛ. The
separation measure usually represents how well the correct
model is separated from competing models regardingOi, or
how far Oi is from the decision boundary. If the separation

measure is not large enough, i.e. it is less than the margin,
a loss is generated that equals toρ − d(Oi,Λ). In SME, the
frame-normalized log likelihood ratio (LLR) defined in (5) is
used as the separation measure.

The minimization of the objective function is solved by
using generalized probabilistic descent (GPD) iteratively [28].
In order to obtain a differentiable loss function, the utterance
loss function in (9) is embedded into a sigmoidal function as
follows:

l(Oi, ρ,Λ) =
ρ − d(Oi,Λ)

1 + exp(−γ(ρ − d(Oi,Λ)))
(10)

whereγ is used to control the transition slope of the sigmoidal
function. With the smoothed loss function, the parameters of
the acoustic model and the marginρ can be jointly optimized
iteratively:

{

Λt+1 = Λt − ηt∇LSME(ρ,Λ)|Λ=Λt

ρt+1 = ρt − κt∇LSME(ρ,Λ)|ρ=ρt

(11)

whereηt andκt are the learning step size for acoustic model
parameters and margin.

IV. EXPERIMENTS

A. System Description

In this section, we study the effect of improving model
generalization capability on speech recognition performance
for both matched and mismatched testing cases. The perfor-
mance of SME is evaluated on Aurora-2 [29] and Aurora-3
[32] tasks. The acoustic models use standard “simple back-
end” configurations, in which each digit is modeled by 16-
state HMM with 3 Gaussian mixtures per state. MFCC features
are used for system training and testing and extracted using
the WI007 feature extraction program provided by Aurora-2.
There are 39 raw features, including 13 static features and their
first and second order differential features. Cepstral energy C0
is used instead of log energy (This is slightly different from
the system in [28]).

In our experimental study, we will compare SME with
another popular discriminative training (DT) criterion, i.e. the
minimum classification error (MCE) criterion [33–35]. Our
purpose is to demonstrate the good characteristics of SME in
improving model generalization capability rather than to carry
out a comprehensive comparison of the two criteria. Hence, we
will only show the comparison on selected test scenarios on
Aurora-2 task. Similar to SME, the implementation of MCE is
also based on GPD and N-best competing alignments (N=5)
are used in MCE training. For comparison, only the closest
competing alignment is used in SME, hence MCE actually
uses more confusion information than SME. The parameters
used in MCE are as follows: the sigmoid parametersθ = 0 and
γ = 0.066; the likelihood modification parameterη = 0.066
(in equation (13) of [34]). For brevity of the paper, we
won’t compare SME with other popular DT criterion such
as maximum mutual information estimation (MMIE) that has
been shown to deliver limited performance improvement in
noisy speech recognition tasks [36].
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Fig. 4. Histograms of separation measures obtained by using MLand SME models on: (a) clean training data; (b) clean testing data; (c) 10dB test data; (d)
-5dB test data.

B. Effect of SME on separation measures

Let’s first examine how well SME improves the separation
measure of the training and testing data. Note that a larger
separation measure corresponds to a larger distance between
a sample and the decision boundary and better separation. In
Fig. 4, we compare the histograms of separation measures
obtained using acoustic models trained by ML and SME.
The acoustic models are trained using clean training data.
The features are processed by MVN [10] in an utterance-by-
utterance fashion.

In Fig. 4(a), the histograms of separation measures of clean
training data are shown. There are 8440 training utterances
in the training set, hence there are 8440 separation measures
also. From the figure, we can see that the histogram obtained
using SME is shifted right significantly. This indicates that
the separation measures of training utterances are significantly
improved compared to the ML baseline. Furthermore, there
is a sharp slope around 9 in the histogram of SME. This is
because when the training process stops, the final margin value
is 9.14. By comparing the histograms of SME and ML, SME
increases the separation measures of most training utterances
to be larger than the margin. This observation indicates that in
the log likelihood domain, the distance between most training
utterances and their decision boundaries against the closest
competing classes are larger or equal to the margin. After SME
training, the portion of the histogram on the left side of the
zero line is very small, which indicates a very small empirical

risk, or training error. Compared to SME, the improvement of
separation measures by MCE is quite limited. From the curves,
SME allows the test data to deviate from the clean training data
with longer distance than MCE in the log likelihood domain.

In Fig. 4(b), the same study is carried out on the clean test
data. There are totally 10,010 test utterances in the clean test
set, the same as the following 10dB and -5dB test sets. In
the figure, we also observe significant increase of separation
measures achieved by SME. However, we don’t observe a
sharp increase of separation measure as we do in Fig. 4(a).
The SME also significantly reduces the amount of utterances
whose separation measures are smaller than zero, i.e. wrongly
classified utterances. Again, the improvement of MCE is less
significant than that of SME.

In Fig. 4(c), the separation measure histograms of 10dB test
sets are shown. From the figure, the effect of SME becomes
less significant in 10dB test set than in clean test set. One
reason is that the confusion pattern of noisy testing data may
be different from that of clean training data. Therefore, what
SME learns from clean training data becomes less relevant
when the model is tested on lower SNR data. Note that
the separation measures of most utterances evaluated on ML
model (ML separation measures) are larger than -9. However,
from the figure, only small portion of them are covered by
SME trained acoustic model, in which there is a buffer zone
with width=9.14. The majority of utterances that are wrongly
classified by ML model are still wrongly classified by SME.
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TABLE I
COMPARISON OFSME EFFECTS ON CORRECTLY AND WRONGLY

CLASSIFIED UTTERANCES. CORRECT REFERS TO THOSE UTTERANCES

CORRECTLY CLASSIFIED BYML MODEL, AND WRONG REFERS TO THE

REST UTTERANCES.

Group Clean 20dB 15dB 10dB 5dB 0dB -5dB
Correct 6.81 4.72 3.97 3.27 2.62 2.05 0.56
Wrong 3.81 2.23 1.68 1.29 0.68 -0.08 -0.71

This demonstrates the complexity of noise effect in speech
recognition, which cannot be analyzed in a simple way.

In Fig. 4(d), the separation measure histograms of -5dB
test sets are shown. In this SNR level, as the noise is more
dominant than speech, SME actually decreases the mean of
the histogram. However, the right tail part of the histogram
is improved, and the number of correctly classified utterances
is increased. The reason may be that SME is able to improve
those relatively good utterances, while it degrades separation
measures for those bad utterances. We will show next that
SME performs differently for good and bad utterances. As
compared to SME, MCE produces better separation measure
than SME on the left of the vertical line x=0, and worse
separation measure than SME on the right of x=0.

We also compare the SME effect on two groups of utter-
ances, i.e. the group that is correctly classified by ML model
and the group that is not. The comparison is shown in Table I,
where the average absolute increases of separation measures
achieved by SME over ML are shown. From the table, it
is obvious that SME performs better for those utterances
already correctly classified utterances by ML model, i.e. those
relatively good utterances. The reason for this is similar to the
reason for the different effects of SME at different SNR levels.
For utterances in relatively better conditions, the deviation in
log likelihood domain is smaller, the SME training is more
relevant, hence, the effect of SME is more obvious.

C. Effect of Margin Size

An important question in SME training is the determination
of the margin size. From our previous discussions, we expect
that wide margin will make the acoustic model more general
and robust. In this section, we will study the effect of SME on
model training and speech recognition with different margin
sizes.

In SME, the margin is not fixed, but jointly estimated with
the acoustic model parameters by using the GPD algorithm.
The variableλ is used to control the relative weights of the
generalization term and the empirical risk term in the objective
function of SME [see (7)]. Usually, largerλ will produce larger
margin and more general model. We now study fourλ values:
0.2, 1, 5, and 25. The acoustic model is trained from clean
data and the features are processed by MVN.

The average recognition accuracies obtained by SME with
different λ values are shown in Table II. From the table,
it is observed thatλ=0.2 produces poor performance, while
the other threeλ values produce similar results. Forλ=0.2,
SME improves recognition performance significantly at high
SNR levels (clean, 20dB), but decreases performance at low
SNR levels (5dB, 0dB, -5dB). For the other threeλ values,

TABLE II
PERFORMANCE OFSME WITH MVN PROCESSEDMFCC FEATURES WITH

DIFFERENTλ VALUES ON AURORA-2 TASK. THE MODEL IS TRAINED FROM

CLEAN DATA . ML REPRESENTS THE MAXIMUM LIKELIHOOD BASELINE.

SNR ML MCE
SME with differentλ

0.2 1 5 25
Clean 99.16 99.58 99.43 99.64 99.68 99.64
20dB 97.42 98.40 97.83 98.50 98.51 98.41
15dB 95.17 96.66 95.44 96.99 96.85 96.66
10dB 89.34 91.98 89.60 93.05 93.09 92.70
5dB 74.48 79.26 74.28 82.85 82.93 82.43
0dB 45.21 51.60 43.41 58.33 58.67 58.71
-5dB 17.81 20.40 17.25 26.55 24.90 25.07

0-20dB 80.33 83.58 80.11 85.94 86.01 85.78

Margin - - 1.00 7.62 10.31 12.39
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Fig. 5. Histogram of separation measures of training data with differentλ
values.

SME improves performance at all SNR levels. The last row
of the table shows the margins estimated by SME when the
accuracies shown in the table are obtained. As we expected,
largerλ produces larger margin. Recognition results produced
by MCE training are also shown for comparison. The perfor-
mance improvement of MCE is less significant than the best
performance improvement of SME at all SNR levels.

To examine the reason of the different performance shown
in Table II, let’s investigate the separation measures of training
data. In Fig. 5, the histograms of separation measures of
training data are shown with differentλ values. These sep-
aration measures are obtained when the accuracies in Table II
are obtained. Compared to ML,λ=0.2 does not change the
separation measures very much, except that the number of
training utterances whose separation measures are less than the
margin (1.00 in this case) is reduced. Hence, the generalization
capability of acoustic model withλ=0.2 is quite poor and this
leads to poor recognition performance at mismatched testing
scenarios when SNR level is low as shown in Table II. When
usingλ values of 1, 5, and 25, SME improves the separation
measures of training data significantly, and largerλ produces
bigger improvement. However, the difference in recognition
performance of the three cases are quite insignificant. It is
also observed that usingλ values of 1, 5, and 25 all produce
better separation measure histogram than MCE. This explains
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TABLE III
PERFORMANCE OFSME WITH RAW MFCC FEATURES ONAURORA-2
TASK. RESULTS OF BOTH CLEAN AND MULTI-CONDITION TRAINING

SCHEMES ARE SHOWN AT DIFFERENSNR LEVELS. ML REPRESENTS THE

MAXIMUM LIKELIHOOD BASELINE . Imp. REFERS TO THE RELATIVE WORD

ERROR RATE REDUCTION ACHIEVED BYSME OVER ML BASELINE.

SNR
Clean Condition Multi-Condition

ML SME Imp. ML SME Imp.
Clean 99.04 99.57 55.06 98.60 99.13 37.89
20dB 94.36 97.56 56.69 97.66 98.67 43.11
15dB 85.58 92.99 51.35 96.69 98.05 41.17
10dB 66.82 77.36 31.77 94.38 96.38 35.66
5dB 39.20 48.50 15.30 86.77 90.18 25.81
0dB 17.14 23.44 7.60 59.46 66.51 17.39
-5dB 9.78 11.70 2.13 24.27 26.65 3.14

0-20dB 60.62 67.97 18.66 86.99 89.96 22.82

the better performance of SME than MCE whenλ is properly
chosen in Table II.

D. Speech Recognition Performance on Aurora-2

We first examine the performance of SME with raw MFCC
features. As the performance of SME is not very sensitive
to the value ofλ, we setλ to be 5 for all following speech
recognition experiments. The MFCC features used here are
not processed by any feature compensation methods.

The performance of SME on Aurora-2 task is shown in
Table III. From the table, SME improves recognition accu-
racy significantly for both clean and multi-condition training
schemes. This shows the effectiveness of our approach that
improves model robustness by improving its generalization
capability. There are some differences between the two train-
ing schemes in terms of relative error rate reduction. In clean
condition training, SME performs better at high signal-to-noise
ratio (SNR) levels (15dB and above) than at low SNR levels
(5dB and below). This may be due to that the features at low
SNR levels are too different from the clean training features,
therefore, even more general model is not able to perform
well. In multi-condition training, as the training data include
noisy data down to 5dB, we see more even improvements at
all SNR levels.

E. Interaction with MVN

As we have discussed in previous sections, one theoretical
difficulty in applying SME to noisy speech recognition is the
mismatch between training and testing distributions. In this
section, we will study the effect of reducing training-testing
mismatch on SME training. A simple and effective feature
normalization method, MVN [10], is used to process both the
training and testing features before model training and testing.
Each dimension of the 39 MFCC features are processed by
utterance-based MVN individually.

The performance of the combined system is shown in
Table IV. From the table, we observe about 28% relative error
rate reduction for both clean and multi-condition training. If
we compare the results in Table IV and those in Table III, we
can see that SME gains further performance when working
with MVN in terms of average relative error rate reduction.
For example, for clean condition training, as MVN reduces the

TABLE IV
PERFORMANCE OFSME WITH MVN- PROCESSED FEATURES ON

AURORA-2 TASK.

SNR
Clean Condition Multi-Condition

ML SME Imp. ML SME Imp.
Clean 99.16 99.68 61.86 98.23 99.20 54.80
20dB 97.42 98.51 42.19 98.53 99.28 51.19
15dB 95.17 96.85 34.76 97.70 98.93 53.71
10dB 89.34 93.09 35.16 96.09 97.92 46.67
5dB 74.48 82.93 33.12 90.71 94.02 35.63
0dB 45.21 58.67 24.57 74.26 79.28 19.49
-5dB 17.81 24.90 8.63 40.87 45.43 7.70

0-20dB 80.33 86.01 28.89 91.46 93.89 28.42

mismatch between noisy test features and clean training fea-
tures, SME produces higher improvement in low SNR levels
(5dB and below). However, the relative error rate reductionin
20dB and 15dB are decreased. For multi-condition training,
we see better performance of SME in all SNR levels.

The experimental results show good interaction between
SME and MVN. After MVN, the global mean and variance
of both training and testing data become zero and one,
respectively. Hence, the assumption of same distribution for
both training and testing data in the statistical learning theory
is less violated. We expect SME to work well with other
feature domain methods as well.

F. Speech Recognition Performance on Aurora-3

We also evaluate our approach on Aurora-3 task, in which
the data were recorded in real noisy environments. Our eval-
uations are based on raw MFCC and MVN-processed MFCC
features. The value ofλ is 5 and not tuned.

The performance of SME with raw MFCC features on
Aurora-3 is shown in Table V. From the results, we have sev-
eral observations. First, SME improves recognition accuracy
for all cases except for the high-mismatch (HM) of German.
This shows that by making the model more general, better
performance can be obtained in realistic tasks. Second, SME
usually produces higher relative error rate reduction in more
matched cases. In most cases, the improvement for well-match
(WM) is always the highest, followed by medium-mismatch
(MM), and improvement is usually the lowest for HM. This is
because in more mismatch training-testing cases, what SME
learns from the training data is less relevant to the recognition
of test data. The mismatch in HM may be beyond the
generalization capability of the SME-trained acoustic model
to tolerate. Similar results are observed in Aurora-2, where
performance at very low SNR levels is usually less improved
due to the high level of mismatch.

The performance of SME with MVN-processed MFCC
features is shown in Table VI. Similar to results in Table V,
SME improves recognition accuracies significantly. This fur-
ther manifested synergistic interaction between MVN and
SME.

V. CONCLUSIONS

In this paper, we studied the effect of acoustic model
generalization capability on robust speech recognition tasks.
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TABLE V
PERFORMANCE OFSME WITH RAW MFCC FEATURES ONAURORA-3 TASK. THE THREE TRAINING SCHEMES ARE: WELL-MATCHED (WM),

MEDIUM -MISMATCH (MM) AND HIGH-MISMATCH (HM). I N AVERAGED RESULTS, THE WEIGHTS OFWM, MM AND HM ARE 40%, 35%AND 25%,
RESPECTIVELY.

Scheme
Finnish Spanish German Danish Italian

ML SME Imp. ML SME Imp. ML SME Imp. ML SME Imp. ML SME Imp.
WM 92.00 96.97 62.13 86.08 94.69 61.85 90.62 92.59 21.00 77.92 89.24 51.28 94.70 97.02 43.77
MM 69.36 78.39 29.47 73.28 84.53 42.10 79.28 80.97 8.16 53.11 64.41 24.09 85.30 86.38 7.35
HM 42.61 56.47 24.15 41.29 54.05 21.73 72.66 72.66 0.00 38.01 43.14 8.28 40.58 45.62 8.48

Avg. 71.73 80.34 30.47 70.40 80.97 35.72 82.16 83.54 7.73 59.26 69.02 23.97 77.88 80.45 11.60

TABLE VI
PERFORMANCE OFSME WITH MVN- PROCESSEDMFCC FEATURES ONAURORA-3 TASK.

Scheme
Finnish Spanish German Danish Italian

ML SME Imp. ML SME Imp. ML SME Imp. ML SME Imp. ML SME Imp.
WM 89.24 97.82 79.74 93.16 96.35 46.64 93.01 94.27 18.03 85.12 91.82 45.03 94.59 97.79 59.15
MM 76.68 89.12 53.34 86.55 89.28 20.30 84.63 85.21 3.77 62.71 71.47 23.49 82.26 90.81 48.20
HM 79.65 82.90 15.97 81.65 83.31 9.05 86.63 86.63 0.00 62.38 72.49 26.88 81.02 83.99 15.65

Avg. 82.45 91.05 48.98 87.97 90.62 22.00 88.48 89.19 6.14 71.59 79.87 29.12 86.88 91.90 38.23

Specifically, SME is used to increase the separation measures
of training data to be larger than the margin, and therefore
improve the generalization capability of the model. Experi-
mental results confirmed that by making the acoustic model
more general, speech recognition can tolerate certain level
of mismatch between training and testing data. This shows
another way of improving system robustness other than feature
compensation and model adaptation methods. In addition, we
observed that SME is more effective in modest mismatched
scenarios than severe mismatched scenarios. Furthermore,we
showed that feature domain method MVN works well together
with SME, since MVN reduces the mismatch between the
training and testing data such that SME-trained acoustic model
is able to better tolerate the mismatch. We also expect better
performance could be obtained when SME is combined with
other noise robust methods. Currently, we are applying SME
to large vocabulary tasks such as Aurora-4.
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