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Abstract—In statistical learning theory, good generalization the clean training data. However, when noisy testing data wi
capability refers to small performance degradation when the (different distribution are tested, the decision boundaay fiail
model is evaluated on unseen testing data that are drawn from the and recognition performance will degrade.

same distribution as the training data, i.e. on matched training- . .. .
testing case. Recently, soft-margin estimation (SME) method was TO mprov_e the robustness of speech recognition against
proposed to improve acoustic model's generalization capability Noise distortions, many methods have been proposed toeeduc
for clean speech recognition and achieved success. In this paperthe mismatch between clean-trained model and noisy testing
we study the generalization capability of acoustic model for data. These methods can be grouped into two classes, i.e.
robust speech recognition, where the training and testing datafo  aature compensation methods and model adaptation methods
low different distributions (i.e. mismatched training-testing case) . .

From our analysis of noise effect on the log likelihood values of The fe_ature compensatlon metho_d; aim to make. the features
noisy speech features, although mismatch exists between testingfom different environmental conditions more consistehtles

and training data, it is still possible to achieve better robustness preserving the features’ discriminative power. Such mdsho

by improving the acoustic model's generalization capability include various speech parameter estimators [2-8]; featur
using SME. This is confirmed by our experimental study on qmalization methods: cepstral mean normalization (CMN)

Aurora-2 and Aurora-3 tasks, where SME improves recognition . o .
performance significantly for both matched and low/medium [9], mean and variance normalization (MVN) [10], histogram

mismatched testing cases. However, the improvement in severelyequalization (HEQ) [11-14]; temporal filters: RASTA filter
mismatched cases is relatively small. To alleviate the violation of [15], MVA processing [16] and temporal structure normaliza
SME assumption about the same distribution for training and tion filter (TSN) [17, 18]; etc. In contrast, the model adaigia
testing data, we apply mean and variance normalization (MVN) - mathods reduce the mismatch by making the acoustic model
to process speech features prior to model training. Experimenta better fit th isv testing dat h that the adapted decisi
study shows that when training-testing mismatch is reduced, etter i .e NOISy testing data suc . a ga apte - 151
SME delivers better performance improvement. We expect SME boundary is more accurate for the noisy testing data. Tyipica

to improve the robustness of speech recognition further when it the parameters of the acoustic model are adapted based on
is combined with other robustness methods. Although this study observed noise data. Model adaptation methods include: max
is on noisy speech recognition tasks, the method and discovery i”imum likelihood linear regression (MLLR) [19] adaptation,

this paper have no assumption on the type of distortion, and can . o .
be extended to deal with different types of distortions in other maximuma posteriori (MAP) adaptation [20], parallel model

machine learning applications. composition (PMC) [21], ensemble modeling [22,23], and
joint compensation of additive and convolutive distortion
EDICS Category: SPE-ROBU; SPE-RECO (JAC) [24, 25], etc.

Although the feature compensation and model adaptation
methods are quite effective, reducing mismatch is not the on
way to improve the robustness of speech recognition. In this

Speech recognition performance degrades significanfigper, we follow another direction to improve robustness, i
when speech signals are corrupted by noises [1]. The noisgroving the generalization capability of the acousticdsio
distortion usually causes a difference between the statistinstead of pursuing a good fit of the acoustic model to the
of training and testing speech features. Typically, theuatio training data as in the ML estimation, we estimate the model
model of a speech recognition system is trained from cleparameters to make the model more generalizable to unseen
data using the maximum likelihood (ML) criterion. Henceg thtesting data.
decision boundary of the model fits well to the distributidn o According to statistical learning theory [26], the general

ization capability of model can be improved by increasing th
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speech recognition problems and shown to perform well in (a)
clean speech recognition. log p(X|B)
In statistical learning theory, the generalization of nlode B . . N
refers to generalizing to testing data drawn from the same ° © ., o &\ g , Decisionboundary
distribution as the training data. In noisy speech recammit o o
problem to be studied in this paper, the training and testing ° ° 0/ o
are from different distributions. Therefore, the assuppti o o o
of same distribution for both training and testing features o ° e (Class
required by SME is violated in noisy speech recognition °
tasks. However, we will show that increasing the margin of o ® log p(X/A)
the acoustic model is still desirable in mismatched trajnin *
testing cases and our experimental results will verify the
effectiveness of this approach. In [28], we have conducted (b)
an initial study of SME for Aurora-2 task [29] and achieved Class log p(X/B)
promising results. In this paper, we conduct a more complete B o
study of the approach of improving model generalization ° o o ° Decision boundary
for better robustness against noise corruption. Furthesmo o °
we will also study the combination of SME with mean and o ° o o °
variance normalization (MVN). As MVN is able to reduce the o * o
mismatch between training and testing data, if SME operates o ® o ° A
on MVN-processed features, the assumption of SME about °
the same distribution for training and testing data will bssl o e e, log p(X/A)
violated. We expect SME to perform better when combined
with MVN’ or _Other feature domain methOdS'_ . Fig. 1. lllustration of the two-class classification prahlén log likelihood
This paper is organized as follows. In section Il, we inveSomain: (a) if well trained, the model is able to project theadldeature
tigate the noise effect in log likelihood domain and decisio vectors to the correct side of the decision boundary; (b)nwigse distortion
making in speech recognition. This investigation providéﬁsscfgéiss'iémebnool%zf‘yry"‘g]'i chr”ogz\l/;/aéleafsr:i?etc?e clean sanapi may cross
insight and motivation to the use of margin-based model
training approach. In section 1ll, we discuss the method of

margin maximization for more robustness model and descriRe puild a classifier that can correctly classify any unseen
the SME method. In section IV, we present our experimentglature vector into one of the two classes. A common way
results and discussions. Finally, we conclude in section V. to puild a classifier for this problem is to first estimate the
probability density function (p.d.f.) of feature vectors fach
[1. NOISEEFFECT ONLOG LIKELIHOODS class and then use the maximanposteriori (MAP) decision
When a speech signal is corrupted by noise, the spedble to classify the testing samples. The classificationsita
features extracted from the speech signal are also digtortr a feature vectoX; is made as follows:
The likelihood values of the distorted features evaluatad o ¢
different classes of clean-trained acoustic model will bied ’
ent from those of clean features. Therefore, the classditat
decision based on the changed likelihood values will not be
optimal. In this section, we will analyze the noise effectlie  where p(j) is the a priori probability of classj, i.e. our
log likelihood domain, and show the necessity to reduceenoigrior knowledge about clags andp(j| X;) is thea posteriori

arg j&l}fg}p(ﬂ )

X;19)p 1
argje?gfé}p( 17)p(5) 1)

effect on log likelihoods. probability of class; after X; is observed. In speech recog-
nition, thea prior knowledge about classes, such as words,
A. A Two-Class Example are represented by language model. As we are only interested

Speech recoanition is a multi-class sequential patte ecin the noise effect in acoustic modeling, it is reasonable to
b 9 q patteror iggore the language model in our analysis. We assume the

nition problem. The temporal dynamics of speech and the o .
of hidden Markov models (HMM) make the direct analysis 'EJ&%NO classes have equal priori probability and (1) can be

noise effect on log likelihoods very difficult. In this seami, we fewritten as follows:

will first use a two-class, single feature vector based patte C; = arg max

classification problem as an example to demonstrate noise jeiA.BY

effect, and then examine noise effect in real speech rettogni and this is the maximum likelihood (ML) decision rule illus-

experimentally. trated in Fig. 1(a). The decision boundary is the straigt li
Let there be two classesi” and “B” as shown in Fig. 1(a). logp(X;|A) = logp(X;|B). The x-axis and y-axis represent

We assume there a®¥ training samples, each has two elethe log likelihoods of training samples on clagsand B,

ments{ X;, C;}, whereX; is a feature vector ab dimensions, respectively. In the log likelihood domain, the classificat

C; is the correct class label of; andC; € {A, B}. We want decision is based on the Euclidian distances from samples to

p(Xilj) 2
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the decision boundary. The distance between a sample af cl
A to the decision boundary is

\/i 1400

1600

AX,A) = llog(p(Xil4)) — log(p(X,|B))]
= gdLLR(Xi,A) 3) 1000}
whered"Lf(X;, A) is the log likelihood ratio (LLR) ofX; on 800y

model A = {\4, A}, and A4 and g denote the parameters
of the p.d.f. of classA and B, respectively. IfX; is from
class B, d"FR(X;,A) = log(p(X;|B)) — log(p(X;|A)). If 4001
d(X;,A) > 0, X; is correctly classified and vice versa. The
distance serves as a measure of separation, i.e. how we
training sample is separated from the decision boundarpdy Qs
model. If a training sample is far from the decision boundar separation measure
the sample is well separated by the model.

The modelA is like a transformation, which transforms arig. 2. Histogram of separation measures for different SNRIte Each
D-dimensional feature vector into a two-dimensional vectdistogram is obtained from 10,010 separation measure iessan
whose elements are the coordinates of the feature vectbein t
log likelihood domain. Usually the transformation is trath
to project the training samples into the correct side of the 2) In speech recognition, there are many classes rather than

600

200

decision boundary. If testing features have similar pritgb two classes. WithV classes, the features are projected
distribution as that of the training features, they can &leo into N-dimensional vectors in log likelihood domain
projected correctly. However, this is not true if the tegtin rather than two-dimensional vectors. It is hard to carry
features have different probability distribution, e.g.edto on the study unless we only consider the correct and the
noise corruption. closest competing classes.

When a speech signal is corrupted by noise, the features}) The assumption that the noise term is additive and
extracted from the signal will also be distorted. If we assum independent from the speech is also not true in real

the distortion to be additive and independent from clean feature extraction of speech recognition systems, such

features in the feature domain, the noisy features can be as Mel-frequency cepstral coefficients (MFCC). It is
represented as: well known that in the cepstral domain, the relationship

Y, = X; + N; 4) between noise and speech is highly nonlinear [30, 31].

With the above challenges among many others, it is math-
ematically difficult to study the noise effect for real spleec
recognition system. Nevertheless, the two-class exampileei
previous sections provides us an intuitive example of noise
ﬁffect. In this section, we will empirically study how noise
at?fects the log likelihood of features in speech recognitio

Our study of noise effect will be described now. The

show three possible deviations of noisy sample from a Cle%psto ram of separation measures of training samples will
sample. Although the clean sample is on the correct sideeof 9 P . 9 p
e shown. Note that each sample is an utterance in speech

decision boundary, its noisy versions may cross the boyndar - . ) o
Y y Y on cognition. The calculation of separation measure isriteest

ly classified. It i | ict that th° :
ﬁ)r\]/\?ef)?héws?gr?a)l/-t% ?:Silslsc:atit)I?SrEaRS)c?ziEeesti(;nparleccjj(ljcr:];i;t tas follows. For each utterance, we find the correct stai-lev

higher the variance ai; in the feature domain, and Ioossiblyallgnment of the utterance using correct transcription #ed

the larger deviation oF; away from X; in the log likelihood acoustic model trained from clean features. We also find the

domain. With larger deviation, the test samples are mogdylik fli?)?ji?t _?ﬁ;ngg)t('tn gt:“?grtr;efri]rt] dO]:)LTihlgtﬁ :r‘:: xir%(:sg ;Ig:
to be projected into the wrong side of the decision bounda ' P '

Ly, . . o
thus wrongly classified. I’é. the fram_es tha_lt have different state |(_1ent|t|es in ttm_leal:t _
and competing alignments. The separation measure is defined

- ) . as the average log likelihood ratio (LLR) of those selected
B. Empirical Sudy of Noise Effect on Speech Recognition frames [27];

Speech recognition problem is far more complex than
the two-class problem. There are several major differences (0, A) = 1 Z log
between the two which can be summarized as follows: " n;
1) Speech patterns are represented by a sequence of feature
vectors rather than a single feature vector. To model théhere A is the clean acoustic model);; is the j'* frame
temporal dynamics of speech, complicated HMM is useaf the i*" utteranceO;; S; and S; represent the correct and
as the model. the closest competing alignments ©6f, respectively;F; is

whereY; is the corrupted feature vector and is the distortion
in feature domain. The distortialN; will cause disturbance of
log p(Y;|A) andlog p(Y;|B), i.e. the two coordinates df; in
the log likelihood domain. Thereford;; will wander off X;
and the distance between them is governed by a probabi
distribution. This is illustrated in Fig. 1(b), where we damly

Pr(Oij |~?z') 5)
Py (045:)

' jer;
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the set of frames i®; with confusion; and; is the number Class B boundary

of frames in F;. Note that the separation measutg;, A)
is related to the distance between a training sample and the
decision boundary [see (3)] .

We study the noise effect on separation measure using the
Aurora-2 task [29]. The testing data of Aurora-2 are divided
into seven groups according to SNR level, including clean
testing data, 20dB to -5dB testing data with 5dB step. In

Decision boundary

Class A boundary

each SNR level, there are 10,010 utterances, each corrupted A
by one of 10 types of noises. For each utterance, we obtain its _ < T o pxA)
separation measure as described in (5), using acousticlmode?2 * magin e o

trained from clean data and the ML estimation. The histogram ®
of separation measures for different SNR levels are condpare
in Fig. 2. The part of histogram on the left side of the vettica
line at 0 are for those wrongly classified utterances. Fraen thig. 3. Increasing margin to improve the generalization céipatf the
figure, we observe that as SNR level decreases, the histograefel. The objective is to adjust the model parameters to pailtrining

. . ples out of the class boundaries defined by the margin. Asily, re buffer
of separation measures shift left and becomes sharper. will be created around the decision boundary, hencentiael will be
shows that in overall, the distances between test samptes are robust against the deviations caused by noise as shofig.if(b).
the decision boundary are reduced by noise distortion and
some utterances are moved to the wrong side of the decision
boundary. With lower SNR level, there are higher distortiofs- Generalization Capability and Margin
in the feature domain, and possibly larger deviation of yiois By generalization capability, we refer to the ability of the
samples from clean samples in the log likelihood domain, angbdel to generalize well to data that are not observed during
hence the histogram of separation measures are shifted {edining. When generalization capability of acoustic maodel

further. improved, the speech recognition system is more likely to
perform well on mismatched test data.
C. Summary Statistical learning theory [26] provides us some insights

Noise corruption is shown to cause noisy features to dabout improving pattern classification systems’ geneatibn
viate from corresponding clean features randomly in the Ig@pability. In this theory, the expected risk of a system is
likelihood domain. As a result, when noisy features areetéstformulated as
on clean trained models, or more generally, whenever there
is statistical mismatch between training and testing festu R(A) < Remp(A) + Rgen(A) ©)
recognition performance will degrade. To improve the rébusvhere the empirical risi...,,,(A) is the system’s recognition
ness of speech recognition systems against noise distortierror on training data and the generalization riBg.,,(A)
it is necessary to make the recognition less sensitive teenois a regularization term proportional to model complexity.
effect in the log likelihood domain. Expected risk refers to the recognition error of the system o

all data in the problem scope, i.e. both clean and noisy $peec

lIl. I MPROVING THE GENERALIZATION CAPABILITY OF (3t in the case of noisy speech recognition. Both empirical

ACOUSTIC MODEL and generalization risks are related to model complexity. F

Currently, the noise effect is reduced by either featuexample, a more complex model is able to fit better to training
compensation methods or model adaptation methods. In felata to produce lower empirical risk, however, it also letads
ture compensation methods, if we can obtain an accurdtigher generalization risk. Minimum expected risk is obéai
estimate of the clean feature from the observed noisy festurwhen a good balance between these two risks is achieved.
the deviation of log likelihood will be reduced and better According to statistical learning theory, the generalaat
classification can be performed. In model adaptation methodsk is bounded by a function which is proportional to model
the model are adapted to approximate the model trained frammplexity. For the bound to be true, some assumptions are
the noisy test features. If the adapted model can reprelsenttequired, e.g. the training and testing data are generabea f
noisy test features well, the projection of feature vectol®g the same identical and independent distribution. Howewer,
likelihood domain will also be correct and performance wiltobust speech recognition problems, the assumption is not
be improved. Although both feature compensation and modale, hence the bound does not exist. Fortunately, the lack
adaptation are very important and effective ways of redyciof a bound does not prevent us from reducing the general-
noise effect, we are going to propose another approach éor thation risk for mismatched problems. In fact, even when the
problem. We aim at improving the generalization capabilitgssumption is true and a bound exists, the bound is usudilly no
of the acoustic model, i.e. the robustness of the projectioery useful in practical classifier design due to difficidtia
of acoustic model. In this section, we will first introducesth evaluating the bound. Instead, the reducing of generaizat
concept of improving the generalization capability of esttm risk relies on another factor, the margin of the model.
model, and then describe the SME method used to achieve oufhe generalization risk can be reduced if margin is in-
objective. creased [26] as illustrated in Fig. 3. Margin serves as a
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desired minimum distance between training samples and theasure is not large enough, i.e. it is less than the margin,
decision boundary. During model training, the objectivéds a loss is generated that equalsge- d(O;, A). In SME, the
pull those training samples that fall within the margin awaframe-normalized log likelihood ratio (LLR) defined in (5 i
from the decision boundary. Those samples already far framsed as the separation measure.

the decision boundary do not contribute to model parameterThe minimization of the objective function is solved by
estimation. After training, all or most training samplesllwi using generalized probabilistic descent (GPD) iterafiy28].

be outside the margin, and a “buffer zone” is formed around order to obtain a differentiable loss function, the atere
the decision boundary with width equal to the margin in eadbss function in (9) is embedded into a sigmoidal function as
side. With this “buffer zone”, if a test sample deviates friva  follows:

training samples of its correct class but the distance katwe p—d(0;, A)

the test sample and its nearest training sample is less liean t (0, p,A) = L (20)
margin, correct decision can still be made. If a larger nrargi 1+ exp(—(p = d(0;, A)))

is used during training, the “buffer zone” will also be wideghere is used to control the transition slope of the sigmoidal
and therefore larger mismatch is allowed. function. With the smoothed loss function, the parametérs o

Although the margin approach is originally applied tahe acoustic model and the margircan be jointly optimized
matched training-testing problems, it should also be &ffec iteratively:

in dealing with deviation of log likelihood values caused by SaE
noise distortion. In this paper, we apply the margin appnoac { Apy1 = A — ﬁtVLSME (P, A)|a=a, (11)
to improve the generalization capability of acoustic model pri1 = pr — ke VLEME(p, N)] =y,

for b‘?“er robustness. We.V.V'” Qescrlbe how tq maximize thv(\?herem and x, are the learning step size for acoustic model
margin for speech recognition in the next section.

parameters and margin.

B. Improving Generalization Capability by Maximizing the
Margin IV. EXPERIMENTS

A large margin is the key to improve model’'s generalization, System Description
capability. In [27,28], SME was proposed to maximize the In this section, we study the effect of improving model
margin. In our experiments, we use SME to maximize the o Co T -

. . e ._generalization capability on speech recognition perforcea
margin due to its good approximation of the expected I’ISE.

A brief description of SME is presented in this section. Fop" both matched and mismatched testing cases. The perfor-

. . . : . mance of SME is evaluated on Aurora-2 [29] and Aurora-3
detailed implementation and discussions about SME, plezﬁg] tasks. The acoustic models use standard “simple back-
refer to [27]. )

In SME, the parameters of the acoustic model are estimaf%t%d conﬂguratlons, n \.Nh'Ch. each digit is modeled by 16-

by minimizing an approximated expected risk as follows: state HMM with 3 Gauss!ap mixtures per state. MFCC featurgs

are used for system training and testing and extracted using

LSME(p £) = A + Remp(p, A) @) the WI007 feature extraction program provided by Aurora-2.

There are 39 raw features, including 13 static features'aeid t

whereA is the set of acoustic model parameterss the soft first and second order differential features. Cepstralggn€o

margin, and? addresses the generalization risk. The variablé used instead of log energy (This is slightly differentnfro

)\ is used to control the relative weights of the two items ifhe system in [28]).

(7). With a large), the training process will focus on reducing In our experimental study, we will compare SME with

the generalization term and the margin will be large, ane vianother popular discriminative training (DT) criteriorg.ithe

versa. To obtain good performance, it is important to obginminimum classification error (MCE) criterion [33-35]. Our

good balance of these two terms. purpose is to demonstrate the good characteristics of SME in
The empirical risk is defined as the averaged risk of trainirigiproving model generalization capability rather than aorg
utterances: out a comprehensive comparison of the two criteria. Henee, w
N will only show the comparison on selected test scenarios on
Remp(p, A) = 1 Z (04, p, A\) (8) Aurora-2 task. Similar to SME, the implementation of MCE is
N = also based on GPD and N-best competing alignments (N=5)

whereO;,i = 1,..., N are the training utterances. The contri@'® used in MCE training. For comparison, only the closest

bution of the utteranc®); to the total empirical risk is defined COMPeting alignment is used in SME, hence MCE actually
as: uses more confusion information than SME. The parameters

. ] used in MCE are as follows: the sigmoid parametets 0 and
1(O4,p,A) = { g_ d(0:, 4), gtﬁe?w(iis(gi’/\), (9) ~ = 0.066; the likelihood modification parameter = 0.066
’ ' (in equation (13) of [34]). For brevity of the paper, we
whered(O;, A) is a separation measure©f on modelA. The won't compare SME with other popular DT criterion such
separation measure usually represents how well the corrastmaximum mutual information estimation (MMIE) that has
model is separated from competing models regardingor been shown to deliver limited performance improvement in
how far O; is from the decision boundary. If the separatiomoisy speech recognition tasks [36].
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Fig. 4. Histograms of separation measures obtained by usin@iMLSME models on: (a) clean training data; (b) clean testig;dc) 10dB test data; (d)
-5dB test data.

B. Effect of SME on separation measures risk, or training error. Compared to SME, the improvement of
. ] . _ separation measures by MCE is quite limited. From the curves
Let's first examine how well SME improves the separatiog\pE allows the test data to deviate from the clean trainirtg da

measure of the training and testing data. Note that a larggith onger distance than MCE in the log likelihood domain.
separation measure corresponds to a larger distance letwee

a sample and the decision boundary and better separation. I" Fi9- 4(b), the same study is carried out on the clean test
Fig. 4, we compare the histograms of separation measufidla. There are totally 10,01_0 test utterances in the ckestn t

obtained using acoustic models trained by ML and SMEeL the same as the following 10dB and -5dB test sets. In
The acoustic models are trained using clean training dat€ figure, we also observe significant increase of separatio

The features are processed by MVN [10] in an utterance-bjreasures achieved by SME. However, we don't observe a
utterance fashion. Sharp increase of separation measure as we do in Fig. 4(a).

In Fig. 4(a), the histograms of separation measures of cleg e SME also_S|gnlf|cantIy reduces the amount of utterances
ose separation measures are smaller than zero, i.e. lwrong

training data are shown. There are 8440 training utteranc ssified utterances. Again, the improvement of MCE is less
in the training set, hence there are 8440 separation meas JE e ant than that bf SME’
(gnifi .

also. From the figure, we can see that the histogram obtain
using SME is shifted right significantly. This indicates ttha In Fig. 4(c), the separation measure histograms of 10dB test
the separation measures of training utterances are segmifjc sets are shown. From the figure, the effect of SME becomes
improved compared to the ML baseline. Furthermore, theless significant in 10dB test set than in clean test set. One
is a sharp slope around 9 in the histogram of SME. This tisason is that the confusion pattern of noisy testing data ma
because when the training process stops, the final margie vabe different from that of clean training data. Therefore atvh

is 9.14. By comparing the histograms of SME and ML, SMIEME learns from clean training data becomes less relevant
increases the separation measures of most training utesarwhen the model is tested on lower SNR data. Note that
to be larger than the margin. This observation indicatesitha the separation measures of most utterances evaluated on ML
the log likelihood domain, the distance between most tngini model (ML separation measures) are larger than -9. However,
utterances and their decision boundaries against the stlo§eom the figure, only small portion of them are covered by
competing classes are larger or equal to the margin. Aftede SNBME trained acoustic model, in which there is a buffer zone
training, the portion of the histogram on the left side of theith width=9.14. The majority of utterances that are wrgngl
zero line is very small, which indicates a very small empiric classified by ML model are still wrongly classified by SME.
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TABLE | TABLE Il
COMPARISON OFSME EFFECTS ON CORRECTLY AND WRONGLY PERFORMANCE OFSME WITH MVN PROCESSEOMFCC FEATURES WITH
CLASSIFIED UTTERANCES CORRECT REFERS TO THOSE UTTERANCES  DIFFERENTA\ VALUES ON AURORA-2 TASK. THE MODEL IS TRAINED FROM
CORRECTLY CLASSIFIED BYML MODEL, AND WRONG REFERS TO THE CLEAN DATA. ML REPRESENTS THE MAXIMUM LIKELIHOOD BASELINE

REST UTTERANCES

SNR ML MCE SME with different\

Group | Clean| 20dB | 15dB | 10dB | 5dB | 0dB | -5dB 0.2 1 5 25
Correct| 6.81 | 4.72 | 3.97 | 3.27 | 262 | 2.05 | 0.56 Clean | 99.16 | 99.58 | 99.43 | 99.64 | 99.68 | 99.64
Wrong | 3.81 223 | 168 | 1.29 | 0.68 | -0.08 | -0.71 20dB | 97.42 | 98.40 | 97.83 | 98.50 | 98.51 | 98.41

15dB | 95.17 | 96.66 | 95.44 | 96.99 | 96.85 | 96.66
10dB | 89.34 | 91.98 | 89.60 | 93.05 | 93.09 | 92.70

. . . . 5dB | 74.48 | 79.26 | 74.28 | 82.85 | 82.93 | 82.43
This demonstrates the complexity of noise effect in speech —ggs—T 2527 5160 4341 5833 | 5867 | 58.71

recognition, which cannot be analyzed in a simple way. 5dB | 17.81 | 20.40 | 17.25 | 26.55 | 24.90 | 25.07
In Fig. 4(d), the separation measure histograms of -5dB [ 0-20dB | 80.33 | 83.58 | 80.11 | 85.94 | 86.01 | 8578
test sets are shown. In this SNR level, as the noise is more [Margin [ - [ - [ 1.00 | 7.62 [ 10.31] 12.39 |

dominant than speech, SME actually decreases the mean of

the histogram. However, the right tail part of the histogram
1600

is improved, and the number of correctly classified utteganc oL

is increased. The reason may be that SME is able to improv 1400} MR ol
those relatively good utterances, while it degrades sépara —6— Lambda=1
measures for those bad utterances. We will show next the %[ T Lamoacss |]

SME performs differently for good and bad utterances. As  1o00}
compared to SME, MCE produces better separation measul
than SME on the left of the vertical line x=0, and worse
separation measure than SME on the right of x=0. 00k

We also compare the SME effect on two groups of utter-
ances, i.e. the group that is correctly classified by ML model

800

400

and the group that is not. The comparison is shown in Table | 2001

where the average absolute increases of separation mgasu

achieved by SME over ML are shown. From the table, it 5%

is obvious that SME performs better for those utterances Separation Measure

already correctly classified utterances by ML model, i.esth

relatively gOOd utterances. The reason for this is simdahe Fig. 5. Histogram of separation measures of training dath different \
: ) . lues.

reason for the different effects of SME at different SNR lsve '

For utterances in relatively better conditions, the désain

log likelihood domain is smaller, the SME training is mor

%SME improves performance at all SNR levels. The last row
relevant, hence, the effect of SME is more obvious. b b

of the table shows the margins estimated by SME when the
accuracies shown in the table are obtained. As we expected,
C. Effect of Margin Sze larger \ produces larger margin. Recognition results produced
An important question in SME training is the determinatioRy MCE training are also shown for comparison. The perfor-
of the margin size. From our previous discussions, we expéaance improvement of MCE is less significant than the best
that wide margin will make the acoustic model more genergerformance improvement of SME at all SNR levels.
and robust. In this section, we will study the effect of SME on To examine the reason of the different performance shown
model training and speech recognition with different margiin Table Il, let's investigate the separation measuresaofing
sizes. data. In Fig. 5, the histograms of separation measures of
In SME, the margin is not fixed, but jointly estimated withtraining data are shown with different values. These sep-
the acoustic model parameters by using the GPD algoritharation measures are obtained when the accuracies in Table |
The variable) is used to control the relative weights of theare obtained. Compared to MIL\=0.2 does not change the
generalization term and the empirical risk term in the dfijec separation measures very much, except that the number of
function of SME [see (7)]. Usually, largerwill produce larger training utterances whose separation measures are lesththa
margin and more general model. We now study fdwalues: margin (1.00 in this case) is reduced. Hence, the genetializa
0.2, 1, 5, and 25. The acoustic model is trained from cle@apability of acoustic model with=0.2 is quite poor and this
data and the features are processed by MVN. leads to poor recognition performance at mismatched tgstin
The average recognition accuracies obtained by SME wihkenarios when SNR level is low as shown in Table 1. When
different A values are shown in Table Il. From the tableysing A values of 1, 5, and 25, SME improves the separation
it is observed that\=0.2 produces poor performance, whileneasures of training data significantly, and larggoroduces
the other three\ values produce similar results. FaE0.2, bigger improvement. However, the difference in recognitio
SME improves recognition performance significantly at higherformance of the three cases are quite insignificant. It is
SNR levels (clean, 20dB), but decreases performance at laigo observed that usingvalues of 1, 5, and 25 all produce
SNR levels (5dB, 0dB, -5dB). For the other thraevalues, better separation measure histogram than MCE. This explain
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TABLE Il TABLE IV
PERFORMANCE OFSME WITH RAW MFCC FEATURES ONAURORA-2 PERFORMANCE OFSME WITH MVN-PROCESSED FEATURES ON
TASK. RESULTS OF BOTH CLEAN AND MULTI-CONDITION TRAINING AURORA-2 TASK.
SCHEMES ARE SHOWN AT DIFFERENSNRLEVELS. ML REPRESENTS THE
MAXIMUM LIKELIHOOD BASELINE . Imp. REFERS TO THE RELATIVE WORD Clean Condition Multi-Condition
ERROR RATE REDUCTION ACHIEVED BYSME OVER ML BASELINE. SNR ML SME Tmp. ML SME mp.
Clean | 99.16 | 99.68 | 61.86 || 98.23 | 99.20 | 54.80
SNR Clean Condition Multi-Condition 20dB | 97.42 | 98.51 | 42.19 || 98.53 | 99.28 | 51.19
ML T SME | Tmp. ML | SME | Imp. 15dB | 95.17 | 96.85 | 34.76 || 97.70 | 98.93 | 53.71
Clean | 99.04 | 99.57 | 55.06 98.60 | 99.13 | 37.89 10dB 89.34 | 93.09 | 35.16 || 96.09 | 97.92 | 46.67
20dB 94.36 | 97.56 | 56.69 97.66 | 98.67 | 43.11 5dB 74481 82.93 ] 3312 || 90.71 | 94.02 | 35.63
15dB 85.58 | 92.99 | 51.35 96.69 | 98.05 | 41.17 0dB 4521 | 58.67 | 2457 || 74.26 | 79.28 | 19.49
10dB 66.82 | 77.36 | 3177 94.38 | 96.38 | 35.66 -5dB 17.81 | 24.90 | 8.63 40.87 | 45.43 | 7.70
5dB | 39.20 | 4850 | 1530 || 86.77 | 90.18 | 2581 [[0-20dB | 80.33 | 86.01 | 28.89 || 91.46 | 93.80 | 2842 |
0dB 17.14 | 23.44 | 7.60 59.46 | 66.51 | 17.39
-5dB 9.78 | 11.70| 213 2427 | 26.65 | 3.14

[0-20dB | 60.62 | 67.07 | 18.66 || 86.99 | 89.96 | 2282 |

mismatch between noisy test features and clean training fea
tures, SME produces higher improvement in low SNR levels
the better performance of SME than MCE whkis proper'y (SdB and beIOW). HOWeVer, the relative error rate reduchmon
chosen in Table 1. 20dB and 15dB are decreased. For multi-condition training,
we see better performance of SME in all SNR levels.

The experimental results show good interaction between
) i _ SME and MVN. After MVN, the global mean and variance

We first examine the performance of SME with raw MFCGf poth training and testing data become zero and one,
features. As the performance of SME is not very sensitiygspectively. Hence, the assumption of same distribution f
to the value ofA, we setA to be 5 for all following speech poth training and testing data in the statistical learnimepty

recognition experiments. The MFCC features used here §€jass violated. We expect SME to work well with other
not processed by any feature compensation methods. feature domain methods as well.

The performance of SME on Aurora-2 task is shown in
Table Ill. From the table, SME improves recognition accu- o
racy significantly for both clean and multi-condition trimig - SPeech Recognition Performance on Aurora-3
schemes. This shows the effectiveness of our approach thaiVe also evaluate our approach on Aurora-3 task, in which
improves model robustness by improving its generalizatidhe data were recorded in real noisy environments. Our eval-
capability. There are some differences between the twa-trauations are based on raw MFCC and MVN-processed MFCC
ing schemes in terms of relative error rate reduction. larclefeatures. The value of is 5 and not tuned.
condition training, SME performs better at high signaktuse The performance of SME with raw MFCC features on
ratio (SNR) levels (15dB and above) than at low SNR levelsurora-3 is shown in Table V. From the results, we have sev-
(5dB and below). This may be due to that the features at l@val observations. First, SME improves recognition aaoura
SNR levels are too different from the clean training feagurefor all cases except for the high-mismatch (HM) of German.
therefore, even more general model is not able to perforfnis shows that by making the model more general, better
well. In multi-condition training, as the training data lnde performance can be obtained in realistic tasks. Second, SME
noisy data down to 5dB, we see more even improvementsustally produces higher relative error rate reduction irreno

D. Speech Recognition Performance on Aurora-2

all SNR levels. matched cases. In most cases, the improvement for wellrmatc
(WM) is always the highest, followed by medium-mismatch
E. Interaction with MVN (MM), and improvement is usually the lowest for HM. This is

A h di di . i th t_f%gﬁfause in more mismatch training-testing cases, what SME
S W€ have dISCUSsed In previous sections, one MEorelipal s fom the training data is less relevant to the recmgni

difficulty in applying SME to noisy sp.eech.recl:ogr?ition i; th%f test data. The mismatch in HM may be beyond the
mismatch between training and testing distributions. lis thgeneralization capability of the SME-trained acoustic elod

Se.Ct'O”’ we will study fch_e effect .Of reducing tram_mg-tagt to tolerate. Similar results are observed in Aurora-2, wher
mismatch on SME training. A simple and effective featu}r%'.l

L ) erformance at very low SNR levels is usually less improved
normahzatlon mgthod, MVN [10], is used to process poth the e to the high level of mismatch.
training and testing features before model training antings

. . The performance of SME with MVN-processed MFCC
Each dimension of the_ 39 _MFCC features are processed tures is shown in Table VI. Similar to results in Table V,
utterance-based MVN individually.

. . ME improves recognition accuracies significantly. This f
The performance of the combined system is shown 5 IMprov gni uract gnit y- e U

{Her manifested synergistic interaction between MVN and
Table IV. From the table, we observe about 28% relative err E ynerg

rate reduction for both clean and multi-condition trainirig

we compare the results in Table IV and those in Table IlI, we
can see that SME gains further performance when working
with MVN in terms of average relative error rate reduction. In this paper, we studied the effect of acoustic model
For example, for clean condition training, as MVN reduces tlgeneralization capability on robust speech recogniticksa

V. CONCLUSIONS
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TABLE V

PERFORMANCE OFSME WITH RAW MFCC FEATURES ONAURORA-3 TASK.

THE THREE TRAINING SCHEMES ARE WELL-MATCHED (WM),

MEDIUM-MISMATCH (MM) AND HIGH-MISMATCH (HM). IN AVERAGED RESULTS THE WEIGHTS OFWM, MM AND HM ARE 40%), 35%AND 25%,
RESPECTIVELY

Scheme Finnish Spanish German Danish Italian
ML SME Tmp. ML SME | Tmp. ML SME Tmp. ML SME Tmp. ML SME Tmp.
WM 92.00 | 96.97 | 6213 || 86.08 | 94.69 | 61.85 || 90.62 | 92.59 | 21.00 || 77.92 | 89.24 | 51.28 |[ 94.70 | 97.02 | 43.77
MM 69.36 | 78.39 | 290.47 || 73.28 | 8453 | 4210 [[ 79.28 | 80.97 | 8.16 53.11] 64.41] 2409 || 85.30 | 86.38| 7.35
HM 42.61 | 56.47 | 24.15 || 41.29 | 54.05| 21.73 || 72.66 | 72.66 | 0.00 38.01 | 43.14 | 828 40.58 | 45.62 | 8.48
[ Avg. [ 71.73]80.34] 3047 ][ 70.40] 80.97 [ 3572 ][ 82.16 [ 83.564 7.73 ][ 59.26 [ 69.02 [ 23.97 ]| 77.88 ] 80.45] 11.60 |
TABLE VI
PERFORMANCE OFSME WITH MVN-PROCESSEDMFCC FEATURES ONAURORA-3 TASK.
Scheme Finnish Spanish German Danish Italian
ML SME Tmp. ML SME | Tmp. ML SME Tmp. ML SME Tmp. ML SME | Tmp.
WM 89.24 | 97.82 | 7974 || 93.16 | 96.35 | 46.64 || 93.01 | 94.27 | 18.03 || 85.12 | 91.82 | 45.03 |[[ 94.59 | 97.79 | 59.15
MM 76.68 | 89.12 | 53.34 || 86.55| 89.28 [ 20.30 || 84.63 | 85.21 | 3.77 62.71| 71.47 | 23.49 [[ 82.26 | 90.81 | 48.20
HM 79.65 | 82.90 | 1597 || 81.65| 83.31 | 9.05 86.63 | 86.63 | 0.00 62.38 | 72.49 | 26.88 || 81.02 | 83.99 | 15.65
[ Avg. [82.45] 91.05] 4898 ][ 87.97] 90.62 [ 22.00 || 88.48 [ 89.19] 614 [[ 7159 79.87 [ 29.12 ][ 86.88 [ 91.90 [ 38.23 |

Specifically, SME is used to increase the separation measure]
of training data to be larger than the margin, and therefore
improve the generalization capability of the model. Expe(rji10
mental results confirmed that by making the acoustic model
more general, speech recognition can tolerate certairl leve
of mismatch between training and testing data. This sho
another way of improving system robustness other thantfeatu
compensation and model adaptation methods. In addition, {#&
observed that SME is more effective in modest mismatched
scenarios than severe mismatched scenarios. Furthermere,
showed that feature domain method MVN works well togeth&¥3]
with SME, since MVN reduces the mismatch between the
training and testing data such that SME-trained acoustidaino 14]
is able to better tolerate the mismatch. We also expectrbette
performance could be obtained when SME is combined with
other noise robust methods. Currently, we are applying SME;

to large vocabulary tasks such as Aurora-4.
[16]
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