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ABSTRACT
Cloud data centers host diverse applications, mixing in the
same network a plethora of workflows that require small pre-
dictable latency with others requiring large sustained through-
put. In this environment, today’s state-of-the-art TCP proto-
col falls short. We present measurements of a 6000 server
production cluster and reveal network impairments, such as
queue buildup, buffer pressure, and incast, that lead to high
application latencies. Using these insights, propose a variant
of TCP, DCTCP, for data center networks. DCTCP leverages
Explicit Congestion Notification (ECN) and a simple multi-
bit feedback mechanism at the host. We evaluate DCTCP
at 1 and 10Gbps speeds, through benchmark experiments
and analysis. In the data center, operating with commodity,
shallow buffered switches, DCTCP delivers the same or bet-
ter throughput than TCP, while using 90% less buffer space.
Unlike TCP, it also provides hight burst tolerance and low la-
tency for short flows. While TCP’s limitations cause our de-
velopers to restrict the traffic they send today, using DCTCP
enables the applications to handle 10X the current back-
ground traffic, without impacting foreground traffic. Fur-
ther, a 10X increase in foreground traffic does not cause any
timeouts, thus largely eliminating incast problems.

1. INTRODUCTION
In recent years, data centers have transformed computing,

with large scale consolidation of enterprise IT into data cen-
ter hubs, and with the emergence of cloud computing service
providers like Amazon, Microsoft and Google. A consistent
theme in data center design has been to build highly avail-
able, highly performant computing and storage infrastruc-
ture using low cost, commodity components [18, 5]. A cor-
responding trend has also emerged in data center networks.
In particular, low-cost switches are common at the top of
the rack, providing up to 48 ports at 1Gbps, at a price point
under $2000 — roughly the price of one data center server.
Several recent research proposals envision creating econom-
ical, easy-to-manage data centers using novel architectures
built atop these commodity switches [3, 14, 17].

Is this vision realistic? The answer depends in large part
on how well the commodity switches handle the traffic of
real data center applications. In this paper, we focus on soft
real-time applications, such as web search, retail, advertis-
ing, and recommendation systems that have driven much of
the data center construction. We find that these applications
generate a diverse mix of short and long flows, and require
three things from the data center network: low latency for
short flows, high burst tolerance, and high utilization for
long flows.

The first two requirements stem from the Partition/Aggregate

(§2.1) workflow pattern that many of these applications use.
The soft real-time deadlines for end results translate into la-
tency targets for the individual tasks in the workflow. These
targets vary from ∼10ms to ∼100ms, and tasks not com-
pleted before their deadline are cancelled, affecting the fi-
nal result. Thus, application requirements for low latency
directly impact the quality of the result returned and thus
revenue. Reducing network latency allows application de-
velopers to shift more cycles to the algorithms that improve
relevance and end user experience.

The third requirement, high utilization for large flows,
stems from the need to continuously update internal data
structures of these applications, as the freshness of this data
also affects the quality of results. High throughput for long
flows that update the data is thus as essential as low latency
and burst tolerance.

In this paper, we make two major contributions:

1. We measure and analyze production data center traffic
that uses commodity switches (>150TB of compressed
data), collected over the course of a month from∼6000
servers (§2), extracting application patterns and needs
(in particular, low latency needs). Impairments that
hurt performance are identified, and linked to proper-
ties of the traffic and the switches.

2. We propose a TCP variant, DCTCP, which addresses
these impairments to meet the needs of applications
(§3). DCTCP uses Explicit Congestion Notification
(ECN), a feature already available in modern commod-
ity switches. We evaluate DCTCP at 1 and 10Gbps
speeds on ECN-capable commodity switches (§4). We
find DCTCP successfully supports 10X increases in
application foreground and background traffic in our
benchmark studies.

The measurements reveal that the data center’s traffic con-
sists of query traffic (2KB to 20KB), delay sensitive short
messages (100KB to 1MB), and throughput sensitive long
flows (1MB to 100MB). We find that the query traffic experi-
ences the incast impairment, discussed in [32, 15] in the con-
text of storage networks. However, the data also reveal new
impairments unrelated to incast: query and delay-sensitive
short messages experience long latencies due to long flows
consuming some or all of the available buffer in the switches.
Our key learning from these measurements is that to meet the
requirements of such a diverse mix of short and long flows,
switch buffer occupancies need to be persistently low, while
maintaining high throughput for the long flows. DCTCP is
designed to do exactly this.

DCTCP combines Explicit Congestion Notification (ECN)
with a novel control scheme at the sources. It extracts multi-
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Figure 1: Queue length measured on a Broadcom Triumph
switch. Two long flows are launched from distinct 1Gbps ports
to a common 1Gbps port. Switch has dynamic memory man-
agement enabled, allowing flows to a common receiver to dy-
namically grab up to 700KB of buffer.

bit feedback on congestion in the network from the single
bit stream of ECN marks. Sources estimate the fraction of
marked packets, and use that estimate as a signal for the ex-
tent of congestion. This allows DCTCP to operate with very
low buffer occupancies while still achieving high through-
put. Figure 1 illustrates the effectiveness of DCTCP in achiev-
ing full throughput while taking up a very small footprint in
the switch packet buffer, as compared to TCP.

While designing DCTCP, a key requirement was that it
be implementable with mechanisms in existing hardware —
meaning our evaluation can be conducted on physical hard-
ware, and the solution can be deployed to our data centers.
The industry reality is that after years of debate and consen-
sus building, a very small number of mechanisms, such as
basic RED and ECN, are realized in hardware.

We deliberately concentrate on the data center environ-
ment, and on TCP (which makes up 99.91% of the traffic
in our data centers). Our solution confronts the many dif-
ferences between the data center environment and wide area
networks (WANs), where most of the prior work on TCP
has focused (§5). For example, we observe empty queue
Round Trip Times (RTTs) to be consistently under 250 µs.
Further, applications have simultaneous needs for extremely
high bandwidths and very low latencies, and often there is
little statistical multiplexing: a single flow can dominate a
particular path.

At the same time, we leverage luxuries not available in
the WAN. The data center environment is largely homoge-
neous and under a single administrative control. Thus, back-
ward compatibility, incremental deployment and fairness to
legacy protocols are not major concerns. Connectivity to
the external Internet is typically managed through load bal-
ancers and application proxies that effectively separate inter-
nal traffic from external, so issues of fairness with conven-
tional TCP are irrelevant.

The TCP literature is vast, and there are two large fami-
lies of congestion control protocols that also attempt to con-
trol queue lengths: (i) Implicit delay-based protocols use in-
creases in RTT measurements as a sign of growing queueing
delay, and hence of congestion. These protocols rely heav-
ily on accurate RTT measurement, which is susceptible to
noise in the very low latency environment of data centers.

Aggregator

Aggregator

Worker Worker Worker WorkerWorker

Aggregator Aggregator

… …

…

request deadline= 250ms

deadline =50ms

deadline=10ms

Figure 2: The partition/aggregate design pattern

Small noisy fluctuations of latency become indistinguishable
from congestion and the algorithm can over-react. (ii) Active
Queue Management (AQM) approaches use explicit feed-
back from congested switches. The algorithm we propose is
in this family. Other approaches for obtaining short latencies
include QoS and dividing network traffic into classes. How-
ever, QoS requires application developers to agree on how
traffic is prioritized in a dynamic multi-application environ-
ment.

Having measured and analyzed the traffic in the cluster
and associated impairments in depth, we find that DCTCP
provides all the benefits we seek. DCTCP requires only 30
lines of code change to TCP, and the setting of a single pa-
rameter on the switches.

2. COMMUNICATIONS IN DATA CENTERS
To understand the challenges facing data center transport

protocols, we first describe a common application structure,
Partition/Aggregate, that motivates why latency is a critical
metric in data centers. We then measure the synchronized
and bursty traffic patterns that result, and we identify three
performance impairments these patterns cause.

2.1 Partition/Aggregate
The Partition/Aggregate design pattern shown in Figure 2

is the foundation of many large scale web applications. Re-
quests from higher layers of the application are broken into
pieces and farmed out to workers in lower layers. The re-
sponses of these workers are aggregated to produce a result.
Web search, social network content composition, and adver-
tisement selection are all based around this application de-
sign pattern. For interactive, soft-real-time applications like
these, latency is the key metric, with total permissible la-
tency being determined by factors including customer im-
pact studies [21]. After subtracting typical Internet and ren-
dering delays, the “backend” part of the application is typi-
cally allocated between 230-300ms. This limit is called an
all-up SLA.

Many applications have a multi-layer partition/aggregate
pattern workflow, with lags at one layer delaying the initi-
ation of others. Further, answering a request may require
iteratively invoking the pattern, with an aggregator making
serial requests to the workers below it to prepare a response.
(1 to 4 iterations are typical, though as many as 20 may oc-
cur.) For example, in web search, a query might be sent to
many aggregators and workers, each responsible for a dif-
ferent part of the index. Based on the replies, an aggre-
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gator might refine the query and send it out again to im-
prove the relevance of the result. Lagging instances of par-
tition/aggregate can thus add up to threaten the all-up SLAs
for queries. Indeed, we found that latencies run close to SLA
targets, as developers exploit all of the available time budget
to compute the best result possible.

To prevent the all-up SLA from being violated, worker
nodes are typically assigned tight deadlines, usually on the
order of 10-100ms. When a node misses its deadline, the
computation continues without that response, lowering the
quality of the result. Further, high percentiles for worker la-
tencies matter. For example, high latencies at the 99.9th per-
centile mean lower quality results or long lags (or both) for at
least 1 in 1000 responses, potentially impacting large num-
bers of users who then may not come back. Therefore, per-
centiles are typically tracked to 99.9th percentiles, and dead-
lines are associated with high percentiles. Figure 8 shows a
screen shot from a production monitoring tool, focusing on
a 5ms issue.

With such tight deadlines, network delays within the data
center play a significant role in application design. Many ap-
plications find it so hard to meet these deadlines using state-
of-the-art TCP that they often take on enormous amount of
complexity to get around it. For example, our application
reduces the amount of data each worker sends and employs
jitter. Facebook, reportedly, has gone to the extent of devel-
oping their own UDP-based congestion control [29].

2.2 Workload Characterization
We next measure the attributes of workloads in three pro-

duction clusters related to web search and other services.
The measurements serve to illuminate the nature of data cen-
ter traffic, and they provide the basis for understanding why
TCP behaves poorly and for the creation of benchmarks for
evaluating DCTCP.

We instrumented a total of over 6000 servers in over 150
racks. The three clusters support soft real-time query traffic,
integrated with urgent short message traffic that coordinates
the activities in the cluster and continuous background traf-
fic that ingests and organizes the massive data needed to sus-
tain the quality of the query responses. We use these terms
for ease of explanation and for analysis, the developers do
not separate flows in simple sets of classes. The instrumen-
tation passively collects socket level logs, selected packet-
level logs, and app-level logs describing latencies – a total of
about 150TB of compressed data over the course of a month.

Each rack in the clusters holds 44 servers. Each server
connects to a Top of Rack switch (ToR) via 1 Gbps Ethernet.
The ToRs are shallow buffered, shared-memory switches;
each with 4 MB of buffer shared among 48 1 Gbps ports
and two 10Gbps ports.

Query Traffic. Query traffic in the clusters follows the
Partition/Aggregate pattern. The query traffic consists of
very short, latency-critical flows, following a relatively sim-
ple pattern, with a high-level aggregator (HLA) partitioning
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Background Traffic

Figure 3: Time between arrival of new work for the Aggre-
gator (queries) and between background flows between servers
(update and short message).
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Figure 4: PDF of flow size distribution for background traffic.
PDF of Total Bytes shows probability a randomly selected byte
would come from a flow of given size.

queries to a large number of mid-level aggregators (MLAs)
that in turn partition each query over the 43 other servers
in the same rack as the mid-level aggregator. Servers act as
both MLAs and workers, so each server will be acting as
an aggregator for some queries at the same time it is acting
as a worker for other queries. Figure 3(a) shows the CDF
of time between arrivals of queries at mid-level aggregators.
The size of the query flows is extremely regular, with queries
from MLAs to workers being 1.6 KB and responses from
workers to MLAs being 1.6 to 2 KB.

Background Traffic. Concurrent with the query traffic
is a complex mix of background traffic, consisting of both
large and small flows. Figure 4 presents the PDF of back-
ground flow size, illustrating how most background flows are
small, but most of the bytes in background traffic are part of
large flows. Key among background flows are large, 5KB to
50MB, update flows that copy fresh data to the workers and
time-sensitive short message flows, 50KB to 1MB in size,
that update control state on the workers. Figure 3(b) shows
the time between arrival of new background flows. The inter-
arrival time between background flows reflects the superpo-
sition and diversity of the many different services supporting
the application: (1) the variance in interarrival time is very
high, with a very heavy tail; (2) embedded spikes occur, for
example the 0ms inter-arrivals that explain the CDF hugging
the y-axis up to the 50th percentile; and (3) relatively large
numbers of outgoing flows occur periodically, resulting from
workers periodically polling a number of peers looking for
updated files.

Flow Concurrency and Size. Figure 5 presents the CDF
of the number of flows a MLA or worker node participates in
concurrently (defined as the number of flows active during a
50 ms window). When all flows are considered, the median
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Figure 5: Distribution of number of concurrent connections.

number of concurrent flows is 36, which results from the
breadth of the Partition/Aggregate traffic pattern in which
each server talks to 43 other servers. The 99.99th percentile
is over 1,600, and there is one server with a median of 1,200
connections.

When only large flows (> 1MB) are considered, the de-
gree of statistical multiplexing is very low — the median
number of concurrent large flows is 1, and the 75th per-
centile is 2. Yet, these flows are large enough that they last
several RTTs, and can consume significant buffer space by
causing queue buildup.

In summary, throughput-sensitive large flows, delay sen-
sitive short flows and bursty query traffic, co-exist in a data
center network. In the next section, we will see how TCP
fails to satisfy the performance requirements of these flows.

2.3 Understanding Performance Impairments
We found that to explain the performance issues seen in

the production cluster, we needed to study the interaction
between the long and short flows in the cluster and the ways
flows interact with the switches that carried the traffic.

2.3.1 Switches
Like most commodity switches, the switches in these clus-

ters are shared memory switches that aim to exploit statistical
multiplexing gain through use of logically common packet
buffers available to all switch ports. Packets arriving on an
interface are stored into a high speed multi-ported memory
shared by all the interfaces. Memory from the shared pool
is dynamically allocated to a packet by a MMU. The MMU
attempts to give each interface as much memory as it needs
while preventing unfairness [1] by dynamically adjusting the
maximum amount of memory any one interface can take. If
a packet must be queued for an outgoing interface, but the in-
terface has hit its maximum memory allocation or the shared
pool itself is depleted, then the packet is dropped. Build-
ing large multi-ported memories is very expensive, so most
cheap switches are shallow buffered, with packet buffer be-
ing the scarcest resource.

2.3.2 Incast
As illustrated in Figure 6(a), if many flows converge on

the same interface of a switch over a short period of time, the
packets may exhaust either the switch memory or the maxi-
mum permitted buffer for that interface, resulting in packet
losses for some of the flows. This can occur even if the flows

= large flow = small flow

switch

Output queue(a) (b) (c)

Key:

Figure 6: Three ways in which flows interact on a multi-ported
switch that result in performance problems.aggregatorworker1worker2

0.0
…

0.8msqueries sent… 1.1ms 13.5ms 320.1msresponses sent…worker43 After loss, a timeout before retransmissionRTT + QueuedataTCP ACK
Figure 7: A real incast event measured in a production envi-
ronment. Timeline shows queries forwarded over 0.8ms, with
all but one response returning over 12.4ms. That response is
lost, and is retransmitted after RTOmin (300ms). RTT+Queue
estimates queue length on the port to the aggregator.

are small. This traffic pattern arises naturally from use of the
Partition/Aggregate design pattern, as the request for data
synchronizes the workers’ responses and creates incast [32]
at the queue of the switch port connected to the aggregator.

The incast research published to date [32, 15] involves
carefully constructed test lab scenarios. We find that incast-
like problems do happen in production environments and
they matter — degrading both performance and, more im-
portantly, user experience. The problem is that a response
that incurs incast will almost certainly miss the aggregator
deadline and be left out of the final results.

We capture incast instances via packet-level monitoring.
Figure 7 shows timeline of an observed instance. Since the
size of each individual response in this application is only
2KB (2 packets) 1, loss of a packet almost invariably results
in a TCP time out. In our network stack, the the time-out
timer (RTOmin) is 300ms. With these settings, whenever a
timeout occurs, that response almost always misses the ag-
gregator’s deadline.

Avoiding timeouts on worker responses is so important to
this application that the developers made two major changes
to avoid them. First, they deliberately limited the size of
the response to 2KB to improve the odds that all the re-
sponses will fit in the memory of the switch. Second, the
developers added application-level jittering [12] to desyn-
chronize the responses by deliberating delaying them by a
random amount of time (typically a mean value of 10ms).
The problem with jittering is that it reduces the response

1Each query goes to all machines in the rack, and each machine
responds with 2KB, so the total response size is over 86KB.
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Figure 8: Response time percentiles for a production appli-
cation having the incast traffic pattern. Forwarded requests
were jittered (deliberately delayed) over a 10 ms window until
8:30am, when jittering was switched off. The 95th and lower
percentiles drop 10x, while the 99.9th percentile doubles.

time at higher percentiles (by avoiding timeouts) at the cost
of increasing the median response time (due to added delay).
This is vividly illustrated in Figure 8, which shows the screen
capture of a monitoring tool in one of our data centers.

Proposals to decreaseRTOmin reduce the impact of time-
outs [32], but, as we show next, these proposals do not ad-
dress all important sources of latency.

2.3.3 Queue buildup
Long-lived, greedy TCP flows will cause the length of the

bottleneck queue to grow until packets are dropped, result-
ing in the familiar sawtooth pattern (e.g., Figure 1). When
long and short flows traverse the same queue, as shown in
Figure 6(b), two impairments occur. First, packet loss on the
short flows can cause incast problems as described above.
Second, there is a queue buildup impairment: even when no
packets are lost, the short flows experience increased latency
as they are in queue behind packets from the large flows. Ev-
ery worker in the cluster is handling both query traffic and
background traffic (large flows needed to update the data on
the workers), so this traffic pattern occurs very frequently.

As apparent from a closer look at Figure 7, arrivals of the
responses are distributed over ∼12ms. Since the total size
of all responses is only 43 × 2KB = 86KB — roughly 1ms
of transfer time at 1Gbps — it is surprising that there would
be any incast losses in such transfers. However, the key is-
sue is the occupancy of the queue caused by other flows -
the background traffic - with losses occurring when the long
flows and short flows coincide.

To establish that there are long flows impacting the la-
tency of query responses, we measured the RTT between
the worker and the aggregator: this is the time between the
worker sending its response and receiving a TCP ACK from
the aggregator labeled as “RTT+Queue” in Figure 7. We
measured the empty-queue intra-rack RTT to approximately
100 µs, while inter-rack RTTs are under 250 µs. This means
“RTT+queue” is a good measure of the the length of the
packet queue headed to the aggregator during the times at
which the aggregator is collecting responses. The CDF in
Figure 9 is the distribution of queue length for 19K measure-
ments. It shows that 90% of the time a response packet sees
< 1ms of queueing, and 10% of the time it sees between

Figure 9: CDF of RTT to the aggregator. 10% of responses
see an unacceptable queuing delay of 1 to 14 ms caused by long
flows sharing the queue.

1 and 14ms of queuing (14ms is the maximum amount of
dynamic buffer).

Given the interactions of partition/aggregate and the tight
SLAs on workers, these 1 to 14 ms delays are intolerable.
Note also that this delay is unrelated to incast. No packets
being lost, so reducingRTOmin will not help. Further, there
need not even be many synchronized short flows. Since the
latency is caused by queueing, the only solution is to reduce
the size of the queues.

2.3.4 Buffer pressure
Given the mix of long and short flows in data centers as

exemplified by the application we studied, it is very com-
mon for short flows on one port to be impacted by activity
on any of the many other ports, as depicted in Figure 6(c).
Surprisingly, the loss rate of short flows in this traffic pat-
tern depends on the number of long flows traversing other
ports. The explanation is that activity on the different ports
is coupled by the shared memory pool.

The long, greedy TCP flows build up queues on their in in-
terfaces. Since buffer space is a shared resource, the queue
build up reduces the amount of buffer space available to ab-
sorb bursts of traffic from Partition/Aggregate traffic. We
term this impairment buffer pressure. The result is packet
loss and timeouts, as in incast, but without requiring syn-
chronized flows.

3. THE DCTCP ALGORITHM
The design of DCTCP is motivated by the performance

impairments described in § 2.3. The main goal of DCTCP is
to achieve high burst tolerance, low latency, and high through-
put, with commodity shallow buffered switches. To this end,
DCTCP is designed to operate with very small queue occu-
pancies, without loss of throughput.

DCTCP achieves these goals primarily by reacting to con-
gestion in proportion to the extent of congestion. DCTCP
uses a very simple marking scheme at switches that sets the
Congestion Experienced (CE) codepoint of packets as soon
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Figure 10: DCTCP’s AQM scheme is a variant of RED: Low
and High marking thresholds are equal, and marking is based
on the instantaneous queue length.

as the buffer occupancy exceeds a fixed small threshold. The
DCTCP source reacts by reducing the window by a factor
that depends on the fraction of marked packets: the larger
the fraction, the bigger the decrease factor. The details of
the algorithm are in § 3.1.

It is important to note that the key contribution here is
not the control law itself. It is the act of deriving multi-bit
feedback from the information present in the single-bit se-
quence of marks. Other control laws that act upon this infor-
mation can be derived as well. Since DCTCP requires the
network to provide only single-bit feedback, we are able to
re-use much of the ECN machinery that is already available
in modern TCP stacks and switches.

We note that the idea of reacting in proportion to the ex-
tent of congestion is also used by delay-based congestion
algorithms [6, 31]. Indeed, one can view path delay in-
formation as implicit multi-bit feedback. However, at very
high data rates and with low-latency network fabrics, sens-
ing the queue buildup in shallow-buffered switches can be
extremely noisy. For example, a 10 packet backlog consti-
tutes 120 µs of queuing delay at 1 Gbps, and only 12 µs at
10 Gbps. The accurate measurement of such small increases
in queueing delay is a daunting task for today’s servers.

The need for reacting in proportion to the extent of con-
gestion is especially acute in the absence of large-scale sta-
tistical multiplexing. Standard TCP cuts its window size by
a factor of 2 when it receives ECN notification. In effect,
TCP reacts to presence of congestion, not to its extent 2.
Dropping the window in half causes a large mismatch be-
tween the input rate to the link and the available capacity. In
the high speed data center environment where only a small
number of flows share the buffer (§ 2.2), this leads to buffer
underflows and loss of throughput.

3.1 Algorithm
The DCTCP algorithm has three main components:

(1) Simple Marking at the Switch: DCTCP employs a
very simple active queue management scheme, shown in
Figure 10. There is only a single parameter, the marking
threshold, K. An arriving packet is marked with the CE
codepoint if the queue occupancy is greater than K upon
its arrival. Otherwise, it is not marked. The design of the
DCTCP marking scheme is motivated by the need to min-
2Other variants which use a variety of fixed factors and/or other
fixed reactions have the same issue.

CE = 0 CE = 1

Send 1 ACK for 
every m packets 

with ECN=0

Send 1 ACK for 
every m packets 

with ECN=1

Send immediate 
ACK with ECN=0

Send immediate 
ACK with ECN=1

Figure 11: Two state ACK generation state machine.

imize queue buildup. DCTCP aggressively marks packets
when a queue overshoot is sensed. This allows sources to be
notified of the queue overshoot as fast as possible.

Figure 10 shows how the RED marking scheme (imple-
mented by most modern switches) can be re-purposed for
DCTCP. We simply need to set both the low and high thresh-
olds to K, and mark based on instantaneous, instead of av-
erage queue length.
(2) ECN-Echo at the Receiver: The only difference be-
tween a DCTCP receiver and a TCP receiver is the way
information in the CE codepoints is conveyed back to the
sender. RFC 3168 states that a receiver sets the ECN-Echo
flag in a series of ACK packets until it receives confirma-
tion from the sender (through the CWR flag) that the con-
gestion notification has been received. A DCTCP receiver,
however, tries to accurately convey the exact sequence of
marked packets back to the sender. The simplest way to do
this is to ACK every packet, setting the ECN-Echo flag if
and only if the packet has a marked CE codepoint.

However, using Delayed ACKs is important for a variety
of reasons, including reducing the load on the data sender.
To use delayed ACKs (one cumulative ACK for every m
consecutively received packets 3), the DCTCP receiver uses
the trivial two state state-machine shown in Figure 11 to de-
termine whether to set ECN-Echo bit. The states correspond
to whether the last received packet was marked with the CE
codepoint or not. Since the sender knows how many pack-
ets each ACK covers, it can exactly reconstruct the runs of
marks seen by the receiver.
(3) Controller at the Sender: The sender maintains a run-
ning estimate of the fraction of packets that are marked,
called α, which is updated once for every window of data
(roughly one RTT) as follows:

α← (1− g)× α+ g × F (1)

where F is the fraction of packets that were marked in the
last window of data, and 0 < g < 1 is the weight given to
new samples against the past in the estimation of α.

Note that α is a real number between 0 and 1. Given that
the sender receives marks for every packet when the queue
length is higher thanK and does not receive any marks when
the queue length is below K, the formula shown above im-
plies that α is the probability 4 that the queue is greater than
K. Essentially, α close to 0 indicates low, and α close to 1
indicates high levels of congestion.

3Typically, one ACK every 2 packets
4More accurately, an estimate of the probability.
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Prior work on congestion control in the small buffer regime
have argued that at high line rates, queue size fluctuations
become so fast that you cannot control the queue size, only
its distribution [25, 20]. The physical significance of α is
well aligned with this intuition: it represents a single point
of the queue size distribution at the bottleneck link.

The only difference between a DCTCP sender and a TCP
sender is in how each reacts to receiving an ACK with the
ECN-Echo flag set. All other features of TCP such as slow
start, additive increase in congestion avoidance, or recovery
from packet lost are left unchanged. While TCP always cuts
its window size by a factor of 2 in response a marked ACK,
DCTCP uses α to cut its window size as follows5:

cwnd← cwnd× (1− α/2) (2)

Thus, when α is near 0 (low congestion), the window is
slightly reduced. In other words, DCTCP senders start gen-
tly reducing their window as soon as the queue exceeds K.
This is how DCTCP maintains low queue length, while still
ensuring high throughput. When congestion is high (α = 1),
DCTCP cuts its window in half, just like TCP.

3.2 Benefits
DCTCP alleviates the three impairments discussed in § 2.3

as follows.
Queue buildup: DCTCP senders start reacting as soon
as queue length on an interface exceeds K. This reduces
queueing delays on congested switch ports, which minimizes
the impact of long flows on the completion time of small
flows. Also, more buffer space is available as headroom
to absorb transient micro-bursts, greatly mitigating costly
packet losses that can lead to timeouts.
Buffer pressure: DCTCP also solves the buffer pressure
problem because a congested port’s queue length does not
grow exceedingly large. Therefore, in shared memory switches
a few congested ports will not exhaust the buffer resources
harming flows passing through other ports.
Incast: The incast scenario, where a large number of syn-
chronized small flows hit the same queue, is the most dif-
ficult to handle. If the number of small flows is so high
that even 1 packet from each flow is sufficient to overwhelm
the buffer on a synchronized burst, then there isn’t much
DCTCP—or any congestion control scheme that does not
attempt to schedule traffic—can do to avoid packet drops.

However, in practice, each flow has several packets to
transmit, and their windows build up over multiple RTTs.
It is often bursts in subsequent RTTs that lead to drops. Be-
cause DCTCP starts marking early (and aggressively - based
on instantaneous queue length), DCTCP sources receive enough
marks during the first one or two RTTs to tame the size of
follow up bursts, preventing buffer overflows.

3.3 Analysis
5Both TCP and DCTCP cut their window size at most once per
window of data [26]

K 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Figure 12: DCTCP queue size sawtooth parameters.

We now analyze the steady state behavior of the DCTCP
control loop. We considerN long-lived flows with identical6

round-trip times, sharing a single bottleneck link of capacity
C. We further assume that the N flows are synchronized;
i.e., their “sawtooth” window dynamics are in-phase. This
assumption is only realistic when N is small; however, this
is the case we care about most in data centers (§ 2.2).

Under these assumptions, it is not difficult to see that the
queue size dynamics converges to a sawtooth process. We
are interested in computing the following quantities which
completely specify the sawtooth (see Figure 12): the maxi-
mum queue size (Qmax), the amplitude of queue oscillations
(A), and the period of oscillations (TC).

These quantities can be computed by observing that with
synchronized senders, the queue size overshoots K for ex-
actly one RTT , at which time all senders receive feedback
and reduce their window sizes. Moreover, each sender con-
tributes one packet to the overshoot. These facts lead to a
fixed point equation for computing α, from which the entire
dynamics is specified. We omit details of the derivation in
the interest of space, and only state the results:

Qmax = K +N (3)

A ≈ 1

2

√
2N(C ×RTT +K) (4)

TC ≈
1

2

√
2(C ×RTT +K)/N (in round-trip times)

(5)

We have evaluated the accuracy of the above results us-
ing detailed NS-2 simulations in a variety of scenarios. Our
results (omitted due to lack of space) show that the analysis
is indeed a fairly accurate prediction of the actual dynamics,
especially when N is small (less than 10).

Because of the synchronization assumption, Equations (3)
and (4) provide a worst case bound on the maximum queue
overshoot, and the amplitude of queue size (queue size sta-
bility) [4], as has been verified by simulation. However, even
with this worst case analysis, we will show that DCTCP can
begin marking packets at (1/7)th of the bandwidth-delay
product without losing throughput.

3.4 Guidelines for choosing parameters.
Equations (3), (4), and (5) can be used to derive the con-

ditions under which there is no queue underflow (i.e. no loss
of throughput), and the estimation of α spans at least one
6While this assumption is often used to simplify analysis, given the
uniform low latencies in the data center, it actually fairly realistic
in this context.
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Figure 13: DCTCP and TCP/PI with two long-lived flows.

congestion episode. This leads to the following guidelines
for choosing the two parameters of DCTCP:

K >
C ×RTT

7
(6)

g <
1.386√

2(C ×RTT +K)
(7)

where C is in packets/second, RTT is in seconds, and K is
in packets.

3.5 Discussion
AQM is not enough: Before designing DCTCP, we evalu-
ated Active Queue Management (AQM) schemes like RED 7

and PI [19] that do not modify TCP’s congestion control
mechanism. We found they do not work well when there
is low statistical multiplexing and traffic is bursty—both of
which are true in the data center. Essentially, because of
TCP’s conservative reaction to congestion indications, any
AQM scheme operating with TCP in a data-center-like envi-
ronment requires making a tradeoff between throughput and
delay [9]: either accept large queue occupancies (and hence
delay), or accept loss of throughput.

We will examine performance of RED (with ECN) in some
detail in § 4, since our testbed switches are RED/ECN-capable.
We have evaluated other AQM schemes such as PI exten-
sively using NS-2. PI tries to regulate queue size near a de-
sired reference value qref , which makes it easy to compare
to DCTCP. Figure 13 shows the total throughput achieved
by two flows on a 10 Gbps bottleneck with a 500 µs round-
trip time. The buffer size and DCTCP marking threshold
are respectively 100 and 40 packets. For PI, we set qref
to 40 packets and choose the rest of the parameters based on
Proposition 2 in [19]. We see that TCP/PI suffers from queue
underflows and a loss of utilization. We repeated the experi-
ment for lager N , and found that while utilization improved,
queue oscillations get worse, which can hurt the latency of
time-critical flows.
Convergence and Synchronization: In both analysis and
experimentation, we have found that DCTCP achieves both
high throughput and low delay, all in an environment with
low statistical multiplexing. In achieving this, DCTCP trades
off convergence time; the time required for a new flow to
grab its share of the bandwidth from an existing flow with a
large window size. This is expected since a DCTCP source
7We always use RED with ECN: i.e. random early marking, not
random early drop. We call it RED simply to follow convention.

must make incremental adjustments to its window size based
on the accumulated multi-bit feedback in α. The same trade-
off is also made by a number of new TCP variants [22, 23].

We posit that this is not a major concern in data centers.
First, data center round-trip times are only a few 100 µsec,
2 orders of magnitudes less than RTTs in the Internet. Since
convergence time for a window based protocol like DCTCP
is proportional to the RTT, the actual differences in time
caused by DCTCP’s slower convergence compared to TCP
are not substantial. Simulations show that the convergence
times for DCTCP is on the order of 20-30 ms at 1Gbps, and
80-150 ms at 10 Gbps, a factor of 2-3 more than TCP 8.
Second, in a data center dominated by microbursts, which
by definition are too small to converge, and big flows, which
can tolerate a small convergence delay over their long life-
times, convergence time is the right metric to yield.

Another concern with DCTCP is that the “on-off” style
marking (Figure 10) can cause synchronization between flows.
However, DCTCP’s reaction to congestion is not severe, so
it is less critical to avoid synchronization [10].
Practical considerations: While the recommendations of
§ 3.4 work well in simulations, some care is required before
applying these recommendations in real networks. The anal-
ysis of the previous section is for idealized DCTCP sources,
and does not capture any of the burstiness inherent to actual
implementations of window-based congestion control pro-
tocols in the network stack. For example, we found that at
10G line rates, hosts tend to send bursts of as many as 30-40
packets, whenever the window permits them to do so. While
a myriad of system details (quirks in TCP stack implemen-
tations, MTU settings, and network adapter configurations)
can cause burstiness, optimizations such as Large Send Of-
fload (LSO), and interrupt moderation increase burstiness
noticeably 9. One must make allowances for such bursts
when selecting the value of K. For example, while based
on (6), a marking threshold as low as 20 packets can be
used for 10 Gbps, we found that a more conservative mark-
ing threshold larger than 60 packets is required to avoid loss
of throughput. This excess is in line with the burst sizes of
30-40 packets observed at 10Gbps.

Based on our experience with the intrinsic burstiness seen
at 1Gbps and 10Gbps, and the total amount of available buffer-
ing in our switches, we use the marking thresholds of K =
20 packets for 1Gbps and K = 65 packets for 10 Gbps ports
in our experiments, unless otherwise noted, g is set to 1/16
in all experiments.

4. RESULTS
This section is divided in three parts. First, using carefully

designed traffic patterns, we examine the basic properties of
the DCTCP algorithm, such as convergence, fairness, and
behavior in a multi-hop environment. Second, we show a
8For RTTs ranging from 100µs to 250µs.
9Of course, such implementation issues are not specific to DCTCP
and affect any protocol implemented in the stack.
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Ports Buffer ECN
Triumph 48 1Gbps, 4 10Gbps 4MB Y
Scorpion 24 10Gbps 4MB Y
CAT4948 48 1Gbps, 2 10Gbps 16MB N

Table 1: Switches in our testbed

series of microbenchmarks that explain how DCTCP ame-
liorates the specific performance impairments described in
§2.3. Finally, we evaluate DCTCP using a benchmark gener-
ated from our traffic measurements. No simulations are used
in this section. All comparisons are between a full imple-
mentation of DCTCP and a state-of-the-art TCP New Reno
(w/ SACK) implementation. Unless otherwise noted, we use
the parameter settings discussed at the end of § 3.

Our testbed consists of 94 machines in three racks. 80
of these machines have 1Gbps NICs, and the remaining 14
have 10Gbps NICs. The CPU and memory of these ma-
chines were never a bottleneck in any of our experiments.
We connect these machines together in a variety of configu-
rations using the set of switches shown in Table 1. CAT4948
is a Cisco product, the rest are from Broadcom. The Triumph
and Scorpion are “shallow buffered,” while the CAT4948 is
a deep-buffered switch. Except where noted, the switches
used their default dynamic buffer allocation policy.

4.1 DCTCP Performance
The experiments in this subsection are microbenchmarks,

with traffic patterns specifically designed to evaluate partic-
ular aspects of DCTCP’s performance.
Throughput and queue length: We begin by evaluating
whether DCTCP achieves the same throughput as TCP on
long-lived flows when recommended values of K are used.
To determine this, we use machines connected to the Tri-
umph switch with 1Gbps links. One host is a receiver; the
others are senders. The senders establish long-lived connec-
tions to the receiver and send data as fast as they can. During
the transfer, we sample the instantaneous queue length at the
receiver’s switch port every 125 milliseconds. We repeat the
experiment for both DCTCP and TCP. For DCTCP, we set
K = 20, as recommended before. For TCP, the switch oper-
ates in standard, drop-tail mode.

We find that both TCP and DCTCP achieve the maximum
throughput of 0.95Gbps, and link utilization is nearly 100%.
The key difference is queue length at the receiver interface.
The CDF in Figure 14 shows that DCTCP queue length is
stable around 20 packets (i.e., equal to K + n, as predicted
in § 3), while the TCP queue length is 10X larger and varies
widely. In fact, Figure 1 is based on the data from this ex-
periment. It shows the time series of queue length (with 2
flows) for a representative period. The sawtooth behavior
of TCP is clearly visible. The upper limit for TCP’s queue
length is dictated by the switch’s dynamic buffer allocation
policy, which will allocate up to ∼700KB of buffer to a sin-
gle busy interface if no other port is receiving traffic. In
contrast, DCTCP maintains a stable, low queue length.

We also tried various other values ofK, and found that the
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Figure 16: DCTCP versus RED at 10Gbps

performance is insensitive to value of K at 1Gbps, even for
values as low as K = 5. We then repeated the experiment
with 10Gbps link. Figure 15 shows the throughput results.
Once the value of K exceeds the recommended value of 65,
DCTCP gets the same throughput as TCP, and is no longer
sensitive to the value of K.
RED: In §3, we argued that even AQM schemes like RED
would show queue length oscillations, as these oscillations
stem from the way TCP adjusts its window in response to
congestion indications. We also argued that DCTCP does
not suffer from this problem.

To verify this, we repeated the 10Gbps experiment. We
again ran DCTCP withK = 65. For TCP, the switch marked
packets using RED.10 It was difficult to set RED parame-
ters correctly: following the guidelines in [7] caused TCP
throughput to drop to 7.8Gbps (max p=0.1, weight=9, min th=50,
max th=150). To get a fair comparison with DCTCP, we in-
creased the value of the min th and max th RED parame-
ters until TCP achieved 9.2Gbps at min th = 150. Figure 16
shows the distribution of queue length observed at the re-
ceiver’s switch port.

We see that RED causes wide oscillations in queue length,
often requiring twice as much buffer to achieve the same
throughput as DCTCP. This transient queue buildup means
there is less room available to absorb microbursts, and we
will see the impact of this on our real benchmark in §4.3.
However, given the difficulty of setting RED parameters, we
use TCP with drop tail as the baseline for all other experi-
ments. The baseline also reflects what our production clus-
ters (§ 2) actually implement.

The key takeaway from these experiments is that with K
set according to the guidelines in §3.4, DCTCP achieves full
throughput, even at very small queue length. TCP with drop

10Our switches do not support any other AQM scheme. RED is
implemented by setting the ECN bit, not dropping.
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Figure 17: Convergence test

Triumph 2Triumph 1 Scorpion

S1: 10 senders

S2: 20 senders R2: 20 receivers

S3: 10 senders

R1

1Gbps

10 Gbps

Figure 18: Multi-hop topology

tail or RED causes queue lengths to oscillate widely.
Fairness and convergence: To show that DCTCP flows
quickly converge to their fair share, we set up 6 hosts con-
nected via 1Gbps links to the Triumph switch. K was set to
20. One of the hosts acts as a receiver, while the others act
as senders. We start a single long-lived flow, and then we se-
quentially start and then stop the other senders, spaced by 30
seconds. The timeseries depicting the overall flow through-
put is shown in Figure 17(a). As DCTCP flows come and go,
they quickly converge to their fair share. For comparison, the
corresponding timeseries for TCP is shown in Figure 17(b).
TCP throughput is fair on average, but has much higher vari-
ation. We have repeated this test with up to 90 flows, and we
find that DCTCP converges quickly, and all flows achieve
their fair share (Jain’s fairness index is 0.99). We make no
claims that DCTCP is fair to TCP, however DCTCP flows
can be isolated from TCP flows in the data center.
Multi-hop networks: To evaluate DCTCP performance
in a multi-hop, multi-bottleneck environment, we created
the topology in Figure 18. The senders in the S1 and S3
groups, totaling 20 machines, all send to receiver R1. The
20 senders in S2 each send to an assigned receiver in group
R2. There are two bottlenecks in this topology: both the
10Gbps link between Triumph 1 and the Scorpion and the
1Gbps link connecting Triumph 2 to R1 are oversubscribed.
The flows from the senders in group S1 encounter both these
bottlenecks. We find that with DCTCP, each sender in S1
gets 46Mbps and S3 gets 54Mbps throughput, while each
S2 sender gets approximately 475Mbps — these are within
10% of their fair-share throughputs. We find that TCP does
slightly worse: the queue length fluctuations at the two bot-
tlenecks cause timeouts for some of the TCP connections.
Detailed results are omitted for lack of space, but this exper-
iment shows that DCTCP can cope with the multiple bottle-
necks and differing RTTs that will be found in data centers.
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Figure 19: DCTCP performs better than TCP and then con-
verges at 35 senders (log scale on Y axis; 90% confidence inter-
vals for the means are too small to be visible).

4.2 Impairment microbenchmarks
We now show a series of microbenchmarks that show how

DCTCP addresses the impairments described in § 2.3.

4.2.1 Incast
In this section, we examine the first impairment in § 2.3:

incast [32, 15]. We compare the approach to incast used
in [32] (reducing the value of RTOmin) with DCTCP’s ap-
proach (avoiding timeouts, as explained in 3.2) in a variety
of incast-like traffic scenarios.
Basic incast: We start with an experiment that repeats the
conditions in [32]. Forty-one machines are connected to the
Triumph switch with 1Gbps links, and, to duplicate the prior
work, for this one experiment the dynamic memory alloca-
tion policy in the switch was replaced with a static allocation
of 100 packets to each port.

One machine acts as a client, others act as servers. The
client requests ("queries") 1MB/n bytes from n different servers,
and each server responds immediately with the requested
amount of data. The client waits until it receives all the re-
sponses, and then issues another, similar query. This pattern
is repeated 1000 times. The metric of interest is the com-
pletion time of the queries. The minimum query completion
time is around 8ms: the incoming link at the receiver is the
bottleneck, and it takes 8ms to deliver 1MB of data over a
1Gbps link. We carry out the experiment for both TCP and
DCTCP, and with two timeout values: the default 300ms,
and 10ms. The latter value is the tick granularity of our sys-
tem, so it is the smallest timeout value we can use without
major changes to timer handling, which risk increasing over-
heads from interrupts. For DCTCP, K is set to 20.

Figure 19(a) shows the mean query completion time. DCTCP
performs much better than both TCP variants — eventually
converging to equivalent performance as incast degree in-
creases. Figure 19(b) makes the reason evident by showing
the fraction of queries that suffered at least one timeout.11

TCP begins to suffer timeouts when the number of servers
exceeds 10 as no sender receives a signal to lower its sending
rate until enough packets are in flight to cause a full window
loss. DCTCP senders receive ECN marks, slow their rate,

11Each query elicits a response from several servers, any of which
can suffer a timeout. However, if multiple responses suffer time-
outs, the delay does not increase proportionately, since the re-
sponses are delivered in parallel.
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Figure 20: Many-to-one: With dynamic buffering, DCTCP
does not suffer problems at even high load.
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and only suffer timeouts once the number of senders is large
enough so that each sending (around) 2 packets exceeds the
static buffer size (35× 2× 1.5KB > 100KB).
Importance of dynamic buffering: The basic experiment
above used 100 packet buffers statically fixed at each port.
Would using the switch’s default dynamic buffer allocation
algorithm (§ 2.3.1) solve the incast problem? To answer
this question, we repeated the above experiment with dy-
namic buffering enabled. Given the poor performance of
TCP with 300ms timeout (top curve in Figure 19(a)), we use
RTOmin = 10ms here and for the rest of the paper)

Figure 20 shows that DCTCP no longer suffers incast time-
outs even when the number of servers grows to 40. On the
other hand, TCP continues to suffer from incast timeouts, al-
though the dynamic buffering algorithm mitigates the impact
by allocating as much as 700KB of buffer to the receiver’s
port (it does not allocate all 4MB for fairness). The allocated
buffer is sufficient for DCTCP to avoid timeouts even with a
large number of servers.
All-to-all incast: In the previous experiments, there was
only a single receiver. This is an easy case for the dynamic
buffer management to handle, as there is only one receiver,
so only one port gets congested. But what happens when
there are multiple simultaneous incasts going on, as occurs
in the production clusters? To investigate, we use the same
setup as before, except all 41 machines participate. Each
machine requests 25KB of data from the remaining 40 ma-
chines (total 1MB). In other words, 40 incast experiments
happen all at once. The CDF of the response time is shown in
Figure 21. We see that DCTCP keeps the demand on buffer
space low enough that the dynamic buffering is able to cover
all requests for memory and DCTCP suffers no timeouts at
all. TCP, on the other hand, performs poorly, because over
55% of the queries suffer from at least one timeout.
Other settings: We also investigated TCP and DCTCP’s

performance with incast traffic patterns in scenarios includ-
ing 10Gbps links and larger (10MB) and smaller response
sizes (100KB). The results are qualitatively similar to those
presented here. Repeating the experiments with our CAT4948
deep-buffered switch, we found a reduction in TCP’s incast
problem for small response sizes (< 1MB), but the problem
resurfaces for larger response sizes (10MB). DCTCP per-
forms well at all response sizes. Besides, the deep buffers
allow for larger queue buildups, which hurts performance of
other traffic — we examine this in detail in §4.3.

In summary, DCTCP handles incast without timeouts un-
til there are so many senders that the traffic sent in the first
RTT overflows the buffers. Its performance is further en-
hanced by the dynamic buffering offered by modern switches.

4.2.2 Queue buildup
The second impairment scenario in § 2.3 involves big and

small flows mixing in the same queue, with the queue build-
up caused by the big flow increasing the latency of the small
flows. To measure DCTCP’s impact on this impairment, we
connect 4 machines to the Triumph switch with 1 Gbps links.
One machine is a receiver and the other three are senders.
We start one big TCP flow each from two senders to the
receiver — the 75th percentile of concurrent connections
measured in our data center (Figure 5). The receiver then
requests 20KB chunks of data from the third sender. The
sender responds as soon as it gets the request, and the re-
ceiver sends the next request as soon as it finishes receiving
data. All communication is over long-lived connections, so
there is no three-way handshake for each request.

Figure 22 shows the CDF of request completion times for
1000 20KB transfers. DCTCP’s completion is much lower
than TCP’s: the median DCTCP delay is barely 1ms, while
the median TCP delay is about 19ms. No flows suffered
timeouts in this scenario, so reducing RTOmin would not
reduce the delay. Since the amount of data transferred is
small, the completion time is dominated by the round trip
time, which is dominated by the queue length at the switch.

Thus, DCTCP improves latency for small flows by reduc-
ing queue lengths, something reducing RTOmin does not
affect.

4.2.3 Buffer pressure
The third impairment scenario in § 2.3 involves flows on

one set of interfaces increasing the rate of packet loss on
other interfaces. Recall that these are shared-memory switches.
With TCP, long flows use up the shared buffer space, which
leaves less headroom to absorb incast bursts. DCTCP should
alleviate this problem by limiting the queue build up on the
interfaces used by long flows. To evaluate this, we connected
44 hosts to a Triumph switch with 1Gbps links. 11 of these
hosts participate in a 10-1 incast pattern, with 1 host acting
as a client, and 10 hosts acting as servers. The client re-
quested a total of 1MB data from the servers (100KB from
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Without background traffic With background traffic
TCP 9.87ms 46.94ms

DCTCP 9.17ms 9.09ms

Table 2: 95th percentile of query completion time.
DCTCP prevents background traffic from affecting per-
formance of query traffic. RTOmin = 10ms, K = 20.

each), repeating the request 10,000 times. We have seen
(Figure 20), that the switch can easily handle 10:1 incast
with both TCP and DCTCP, without inducing any timeouts.

Next, we use the remaining 33 hosts to start “background”
traffic of long-lived flows to consume the shared buffer. We
start a total of 66 big flows between the 33 hosts, with each
host sending data to two other hosts.12 Table 2 shows the
95th percentile of query completion times.

We see that with TCP, query completion time is substan-
tially worse in the presence of long-lived flows, while DCTCP’s
performance is unchanged. This performance difference is
due to timeouts: about 7% of queries suffer from timeouts
with TCP, while only 0.08% do so under DCTCP. Long-lived
flows get the same throughput under both TCP and DCTCP.

This experiment shows DCTCP improves the performance
isolation between flows by reducing the buffer pressure that
would otherwise couple them.

In summary, these microbenchmarks allow us to individ-
ually test DCTCP for fairness, high throughput, high burst
tolerance, low latency and high performance isolation while
running at 1 and 10Gbps across shared-buffer switches. On
all these metrics, DCTCP significantly outperforms TCP.

4.3 Benchmark Traffic
In the sections that follow, we evaluate how DCTCP would

perform under the traffic patterns found in production clus-
ters (§2.2). For this test, we use 45 servers connected to a
Triumph top of rack switch by 1Gbps links. An additional
server is connected to a 10Gbps port of the Triumph to act
as a stand-in for the rest of the data center, and all inter-rack
traffic is directed to/from this machine. This aligns with the
actual data center, where each rack connects to the aggrega-
tion switch with a 10Gbps link.

We generate all three types of traffic found in the clus-
ter: query, short-message, and background. Query traffic
is created following the Partition/Aggregate structure of the
real application by having each server draw from the inter-
arrival time distribution and send a query to all other servers
in the rack, each of which then send back a 2KB response
(45 × 2KB ≈ 100KB total response size). For the short-
message and background traffic, each server draws indepen-
dently from the interarrival time and the flow size distri-
butions, choosing an endpoint so the ratio of inter-rack to
intra-rack flows is the same as measured in the cluster.13 We

12Queue buildup only occurs when there is more than 1 flow, which
measurements of our cluster show happens 25% of the time (§ 2)

13Background flows have some structure (e.g., pattern of polling
other workers for updates), so using two independent distributions
instead of a joint distribution is an approximation.
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Figure 23: Completion time of background traffic. Note the
log scale on the Y axis.
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Figure 24: Completion
time: query traffic
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completion time: 10x back-
ground and 10x query

carry out these experiments using TCP and DCTCP, with
RTOmin set to 10ms in both. For DCTCP experiments, K
was set to 20 on 1Gbps links and to 65 on the 10Gbps link.
Dynamic buffer allocation was used in all cases. We gen-
erate traffic for 10 minutes, comprising over 200,000 back-
ground flows and over 188,000 queries.

Both query and short-message flows are time critical, their
metric of interest is completion time. The RTT (i.e. queue
length) and timeouts affect this delay the most. For large
flows in the background traffic (e.g., updates), the through-
put of the network is the main consideration.

Figure 23 shows the mean and 95th percentile of comple-
tion delay for background traffic, classified by flow sizes.
The 90% confidence intervals of the mean are too tight to be
shown. Short-messages benefit significantly from DCTCP,
as flows from 100KB-1MB see a 3ms/message benefit at the
mean and a 9ms benefit at 95th percentile. The background
traffic did not suffer any timeouts with either protocol in this
experiment. Thus, the lower latency for short-messages is
due to DCTCP’s amelioration of queue buildup.

Figure 24 shows query completion time statistics. DCTCP
performs better than TCP, especially at the tail of the distri-
bution. The reason is a combination of timeouts and high
queueing delay. With TCP, 1.15% of the queries suffer from
timeout(s). No queries suffer from timeouts with DCTCP.
Scaled traffic: The previous benchmark shows how DCTCP
performs on today’s workloads. However, as explained in
§2.3, the traffic parameters we measured reflect extensive
optimization conducted by the developers to get the exist-
ing system into the tight SLA bounds on response time. For
example, they restrict the size of query responses and update
frequency, thereby trading off response quality for response
latency. This naturally leads to a series of “what if” ques-
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tions: how would DCTCP perform if query response sizes
were larger? Or how would DCTCP perform if background
traffic characteristics were different? We explore these ques-
tions by scaling the traffic in the benchmark, while keeping
the structure unchanged.

We begin by asking if using DCTCP instead of TCP would
allow a 10X increase in both query response size and back-
ground flow size without sacrificing performance. We use
the same testbed as before. We generate traffic using the
benchmark, except we increase the size of update flows larger
than 1MB by a factor of 10 (most bytes are in these flows,
so this effectively increases the volume of background traffic
by a factor of 10). Similarly, we generate queries as before,
except that the total size of each response is 1MB (with 44
servers, each individual response is just under 25KB). We
conduct the experiment for both TCP and DCTCP.

Additionally, for TCP, we tried two ways of fixing its per-
formance. First, we replaced the shallow-buffered Triumph
switch with the deep-buffered CAT4948 switch.14 Second,
instead of drop tail queues, we used RED with ECN. It was
as difficult to tune RED parameters at 1Gbps as it was pre-
viously at 10Gbps: after experimentation, we found that set-
ting min th = 20, max th = 60 and using [7] for the
remaining parameters gave the best performance.

Figure 25 shows the 95th percentile of response times
for the short messages (100KB-1MB) and the query traffic
(mean and other percentiles are qualitatively similar). The
results show DCTCP performs significantly better than TCP
for both update and query traffic. The 95th percentile of
completion time for short-message traffic improves by 14ms,
while query traffic improves by 136ms. With TCP, over 92%
of the queries suffer from timeouts, while only 0.3% suffer
from timeouts with DCTCP.

In fact, short message completion time for DCTCP is es-
sentially unchanged from baseline (Figure 23(b)) and, even
at 10X larger size, only 0.3% of queries experience timeouts
under DCTCP: in contrast TCP suffered 1.15% timeouts for
the baseline.15 Thus, DCTCP can handle substantially more
traffic without any adverse impact on performance.

Deep buffered switches have been suggested as a fix for
TCP’s incast problem, and we see this is true: on the CAT4948
less than 1% of the queries suffer from timeout with TCP,
and the completion time is comparable to DCTCP. However,
if deep buffers are used, the short-message traffic is penal-
ized: their completion times are over 80ms, which is sub-
stantially higher than TCP without deep buffers (DCTCP is
even better). The reason is that deep buffers cause queue
buildup.

We see that RED is not a solution to TCP’s problems ei-
ther: while RED improves performance of short transfers by
keeping average queue length low, the high variability (see
Figure 16) of the queue length leads to poor performance

14CAT4948 does not support ECN, so we can’t run DCTCP with it.
15Note that with 10X larger queries, the minimum query completion
time increases 10X.
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Figure 26: 95th percentile of completion time
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Figure 27: Fraction of queries that suffer at least one timeout

for the query traffic (95% of queries experience a timeout).
Another possible factor is that RED marks packets based on
average queue length, and is thus slower to react to bursts of
traffic caused by query incast.

These results make three key points: First, if our data
center used DCTCP it could handle 10X larger query re-
sponses and 10X larger background flows while performing
better than it does with TCP today. Second, while using deep
buffered switches (without ECN) improves performance of
query traffic, it makes performance of short transfers worse,
due to queue build up. Third, while RED improves perfor-
mance of short transfers, it does not improve the perfor-
mance of query traffic, due to queue length variability.
Benchmark variations: The intensity of our benchmark
traffic can be varied either by increasing the arrival rate of
the flows or by increasing their sizes. We explored both di-
mensions, but the results are similar, so we report primarily
on increases in flow sizes. Specifically, we report on the two
corners: scaling the background traffic while holding query
traffic to the original benchmark size, and vice versa.

Figure 26(a) shows that increasing the size of background
traffic hurts the performance of both short messages and query
traffic. As described in §4.2.2 and §2.3.4, big flows cause
both queue buildup delays and buffer pressure, which DCTCP
mitigates. Figure 27(a) shows how increasing background
traffic causes buffer pressure that causes query traffic time-
outs, but the impact on TCP is greater than DCTCP.

Figure 26(b) shows that increasing the size of the query
responses by a factor of 10 severely degrades the latency
of query traffic, with TCP. However, DCTCP handles the in-
creased traffic without significant impact on the performance
(compare Fig. 26(b) to Fig. 24). The reason is DCTCP re-
ducing incast timeouts: Figure 27(b) shows how for TCP the
fraction of queries that suffer timeouts grows quickly with
response size. After the response size exceeds 800KB, al-
most all queries suffer from timeouts.
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5. RELATED WORK
The literature on congestion control is vast. We focus

on recent developments most directly related to our work.
Application-level solutions to incast problem include jitter-
ing responses (§ 2.3.2) or batching responses in small groups.
These solutions avoid incast, but increase the median re-
sponse time. Recently, researchers have shown [32, 15] that
lowering the RTOmin to 1 ms, and using high-resolution re-
transmission timers alleviates the impact of incast-induced
timeouts. But this does not prevent queue buildup; and hence
does not address latency issues (§ 2.3). The solution is also
susceptible to lags in ramping up after the incast - since it do
not avoid timeouts, and window drops to 1. DCTCP, avoids
queue buildup, and hence prevents timeouts.

QCN [28] is being developed as an optional standard for
Ethernet. It seeks to do rate control in hardware, but suf-
fers because of lack of end-to-end information such as RTT.
QCN uses rate limiters on the NICs, which smooths variabil-
ity (akin to TCP pacing [2]), but adds hardware complexity,
and hence increased cost. To reduce cost, QCN rate lim-
iters must lump flows into (a single or few) flow sets, which
then share fate, leading to collateral damage to flows that
do not share bottleneck links with congested flows. More-
over, QCN cannot cross layer-3 boundaries, which abound
in many data centers today. Special transport schemes for
data centers or even optical networks like E-TCP [16] seek
to maintain high utilization in face of small buffers, deliber-
ately inducing loss, and not reacting to it. E-TCP does not
address delays experienced by short flows or incast.

Several TCP variants aim to reduce queue lengths at routers:
delay based congestion control (e.g., Vegas [6] and high speed
variants such as CTCP [31]), explicit feedback schemes (e.g.,
RCP [24] AQM schemes (e.g., RED [11] and PI [19]). In
data centers, queuing delays are comparable to sources of
noise in the system, hence do not provide a reliable conges-
tion signal. We have shown that AQM schemes like RED
and PI do not perform well in absence of statistical mul-
tiplexing. Schemes like RCP require switches to do more
complex operations, and are not commercially available.

DCTCP differs from one of the earliest ECN schemes,
DECbit [27], in the way AQM feedback is smoothed (fil-
tered) across time. In DECbit, the router averages the queue
length parameter over recent cycles, while DCTCP uses a
simple threshold and delegates the smoothing across time of
the feedback to the host (sender).

Much research has been devoted, with success, to improv-
ing TCP performance on paths with high bandwidth-delay
product, including High-speed TCP [8], CUBIC [30] and
FAST [33]. While many of these variants respond less drasti-
cally to packet loss, just like DCTCP does, they do not seek
to maintain small queue length and their analysis often as-
sumes a high degree of statistical multiplexing, which is not
the norm in a data center environment. In core networks,
with a high degree of statistical multiplexing, there has been
much compelling work on reducing buffer size [4, 13].

6. FINAL REMARKS
In this paper, we provided detailed traffic measurements

from a 6000 server data center cluster, running production
soft real time applications, and linked these to the behavior
of the commodity switches in use in the cluster. We found
that to meet the needs of the observed diverse mix of short
and long flows, switch buffer occupancies need to be persis-
tently low, while maintaining high throughput for the long
flows. A wide set of detailed experiments at 1 and 10Gbps
speeds showed that DCTCP does exactly this. DCTCP re-
lies on Explicit Congestion Notification (ECN), a feature
now available on commodity switches rolling out in 2010.
DCTCP succeeds through use of the multi-bit feedback de-
rived from the series of ECN marks, allowing it to react early
to congestion. We recommend enabling ECN and deploy-
ing DCTCP, to bring us one step closer to economical, high-
performance data center networks.
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