Microsoft® Research

Faculty Summit2010

A New Approach to Concurrency a
Parallelism (Part 1)

Microsoft patterns & practices ™

“Save time and reduce risk on your software development projects by
incorporating patterns & practices, Microsoft's applied engineering
guidance that includes both production quality source code and

documentation.”

http://msdn.com/practices/

http://msdn.com/practices/

Introduction

« Why we should care about parallel programming
* Where to start
« Patterns for parallelism

 Conclusions

Why We Should Care?

10,000,000 |_ > , Then:
Dual-Core Itanium 2
1,000,000 4+ 1 DL T] = / Faster ClOCkS
T el CruU Iirerus - =
(sourges: Intel, Wikipedia, K. Olukotun) "
_Pentium4 >

Now:
More cores

~

End of the

10,000

| Pehtium

[

1,000

100

N

| 38
10)
~% ..
_—

’ -/‘ o e [Free Lunch

® o @ A Power (W)

& Perf/Clock {ILP}

o [| |
1970 1975 1980 1985 1990 1995 2000 2005 2010

: -
The End of The Free Lunch |

» Although driven by hardware changes,
the parallel revolution is primarily a software revolution.

 Parallel hardware is not “more of the same.”
« Software is the gating factor.
« Software requires the most changes to regain the “free lunch'”

« Hardware parallelism is coming,
more and sooner than most people yet believe.

Where Should I Start?

If you talk to developers you'll hear...

« "Avoid multithreaded code”

« "Parallel programming is hard”

« "It's for the experts”

* "Where's my magic parallelizing compiler?”

How do we help them succeed in this new parallel world?

Looked at;

* Our Pattern Language (OPL)
Berkeley, Illinois, Intel, Microsoft, Samsung, U. Victoria, U Florida, Bosch...

 Patterns for Parallel Programming
Timothy G. Mattson, Beverly A. Sanders, Berna L. Massingill

* White Papers from Microsoft & Intel

New frameworks & tools in Visual Studio 2010
» Task Parallel Library (TPL)

» Parallel Debugger

» Parallel Profiler

An Example: Adatum-Dashboard |

Let's look at a “real” application...

A Financial application for portfolio risk analysis
Look at large chunks of recent and historical data
Compare models with market conditions

Source code available: http://parallelpatterns.codeplex.com/

http://parallelpatterns.codeplex.com/

The Adatum Dashboard Scenafio

Ged NYSE 55&4 Nasdag | | Get Fed
Mavked Dot a MavkedData Tmapmda

| Mevge i Novimalize
MavkedData l MavkedDaa

(omatze] (e)

Mmmﬁﬂﬁ#ﬂl l Makedpnalysis
[Andgze | | create Vodel |
MaketAnalysis
tveate Model MavkedModel
MavkedModel

=

Finding Potential Parallelism

1 Intreduction

» Tasks vs. Data >
Data Parallelism Task Parallelism
» Control Flow 20 D c ZJ??;;.;{,“:
I controf flow only
i 2 Parallel Loops 3 Parallel Tasks E
) Contr0| and > Coordinated by control

flow and data flow

Data Flow

4 Parallel Aggregation 5 Futures 7 Pipelines

6 Dynamic Task Parallelism

. R w
Data Parallelism

« Data “chunk” size?
« Too big — under utilization
» Too small —thrashing

* Chunk layout?
» Cache and cache line size
» False cache sharing

« Data dependencies?

. R w
Task Parallelism

* Enough tasks?
« Too many — thrashing
» Too few — under utilization
« Work per task?
« Small workloads
» Variable workloads
« Dependencies between tasks?
« Removable

» Separable
« Read only or read/write

R —
Control and Data Flow

» Task constraints
 Temporal: A - B
« Simultaneous: A < B
* None:AB
* External constraints
« I/O read or write order
« Message or list output order
* Linear and irregular orderings
* Pipeline
* Futures
* Dynamic Tasks

Solution Forces

ke

* Flexibility:
« Easy to modify for different scenarios
* Runs on different types of hardware
 Efficiency:
« Time spent managing the parallelism vs. time gained from utilizing more
processors or cores

» Performance improves as more cores or processors are added — Scaling
« Simplicity:

» The code can be easily debugged and maintained

The Adatum Dash Scenario

Ged NYSE 55&4 Nasdag | | Get Fed
Mavked Dot a MavkedData Tmapmda

| Mevge i Novimalize
MavkedData l MavkedDaa

(omatze] (e)

Mmmﬁﬂﬁ#ﬂl l Makedpnalysis
[Andgze | | create Vodel |
MaketAnalysis
tveate Model MavkedModel
MavkedModel

=

The Futures Pattern

P]

. 1 Introduction

Data Parallelism Task Parallelism

1
I

= e o Em = = = == o= m= == o,

Coordinated by
controf flow only

. 3 Parallel Tasks

.- 2 Parallel Loops

T o = = = = =

1
L

Coordinated by control
flow and data flow

4 Parallel Aggregation

The Futures Pattern

“Does the ordering of steps in your
algorithm depend on data flow
constraints?”

» Directed Acyclic Graph
» Dependencies between tasks

* F4 depends on the result of F1 & F3 etc

« Also called “Task Graph”

Task Size and Granularity

« Variable size tasks — harder to balance

« Small tasks — more overhead; management and communication
« Large tasks — less potential for utilization

« Hardware specific — more tasks than cores

Course Grained Partition

Fine Grained Partition

Finer Grained Partition

Data Parallelism Patterns

. 1 Intreduction

Data Parallelism Task Parallelism

i1
I

== e = = e == = o= == ==

Coordinated by
controf flow only

. 3 Parallel Tasks

o -
T o = = = = =

Coordinated by control
flow and data flow

4 Parallel Aggregation 5 Futures 7 Pipelines

. & Dynamic Task Parallelism

- -~
The Parallel Loop Pattern |

“Do you have sequential loops where there's no communication
among the steps of each iteration?”

* A very common problem!

The Parallel Aggregation Pattern

“Do you need to summarize data by applying some kind of
combination operator? Do you have loops with steps that are not fully
independent?”

« (Calculate sub-problem
result per task

» Merge results later
» Reduces need for locking

|
|
|

“Reduction” or “map/reduce”

The Parallel Tasks Pattern

P]

. 1 Introduction

Data Parallelism Task Parallelism

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Coordinated by
controf flow only

.- 2 Parallel Loops

1
L

Coordinated by control
flow and data flow

. 7 Pipelines

. 4 Parallel Aggregation

. 6 Dynamic Task Parallelism

B e e e e — —

The Parallel Tasks Pattern

“Do you have specific units of works with
well-defined control dependencies?”

Partitioning

 How do we divide up the
workload?
* Fixed workloads
* Variable workloads

« Workload size
» Too large — hard to balance
* Too small — communication may dominate

Workload Balancing

Static allocation:

* By blocks

* By index (interleaved)

* Guided

Dynamic work allocation

* known and unknown task sizes
» Task queues

« Work stealing

The TPL does a lot of this work for you

Sharing State and Synchronization

* Don't share!

« Read only data
« Dataisolation

* Synchronization

Conclusions

Success =

Frameworks and runtimes

 Task Parallel Library for .NET

 Parallel Patterns Library & Asynchronous Agents Library for Visual C++
Tools

* Visual Studio 2010

Guidance!
e Patterns
« Examples

| .

|

Programming with Microsoft .NET:
Design Patterns for Decomposition and
Coordination on Multicore Architectures

Microsoft

Colin Campbell, Ralph Johnson, Ade Miller and Stephen Toub Wi I e AL
Foreword by Tony Hey PROGRAMMING

WITH

Dy MICROSOFT.NET

Goal: Help developers make the most of the new A oo
parallel features in Visual Studio 2010

on Multicore Architectures

\\\\\\\\\\\\\\

eeeeeee

Due for release late summer 2010.
http://parallelpatterns.codeplex.com/ —

patterns & practices

http://parallelpatterns.codeplex.com/

Our Book

* Introductory material

« Six key patterns

« Adapting OO patterns

« Debugging and profiling
« Technology Overview

P]

1 Introduction

Data Parallelism Task Parallelism

1
I

Coordinated by
controf flow only

2 Parallel Loops 3 Parallel Tasks

|

Coordinated by control
flow and data flow

4 Parallel Aggregation 5 Futures 7 Pipelines

6 Dynamic Task Parallelism

B e e e e — —

= e e e = o = = = o e = = = == == == == = e o Em = = = == o= m= == o,

-

Acknowledgements

« UPCRC Initiative

* Illinois
o Intel
UC Berkeley

» Microsoft Research
« Numerous others who provided feedback

Supporting Material

The Pipeline Pattern

. 1 Introduction

Data Parallelism Task Parallelism

1
I

= e o Em = = = == o= m= == o,

Coordinated by
controf flow only

.- 2 Parallel Loops . 3 Parallel Tasks

P]
T o = = = = =

1
L

Coordinated by control
flow and data flow

4 Parallel Aggregation 5 Futures 7 Pipelines

. 6 Dynamic Task Parallelism

The Pipeline Pattern

“Does your application perform a sequence of operations repetitively?
Does the input data have streaming characteristics?”

2 B B I

2 B
» B

The Producer/Consumer Patté'rn |

* Producers... produce!
Block when buffer full

« Consumers... consume!
Block when buffer empty

Workload Balancing

* Pipeline length
* Long - High throughput
» Short — Low latency
« Stage workloads
« Equal - linear pipeline
* Unequal — nonlinear pipeline

Passing Data Down the Pipe

« Shared queue(s)
Large queue items — under utilization
« Small queue items — locking overhead

Parallelism Opportunities

l Mmﬁﬂcquﬁi

Cveate Model

What About Recursive Problems?

« Many problems can be tackled using
recursion:
» Task based: Divide and Conquer
Data based: Recursive Data

Dynamic Task Parallelism

1 Introduction

Data Parallelism Task Parallelism

1
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

Coordinated by
controf flow only

2 Parallel Loops 3 Parallel Tasks

P]
T o = = = = =

|
1

Coordinated by control
flow and data flow

4 Parallel Aggregation 5 Futures 7 Pipelines

6 Dynamic Task Parallelism

- wm Em m mm Em em Em am Em am Em m mm o = mm wm Em am =

B o — o — — — —_— e e e — —_—— — —

The Dynamic Task Parallelism Pa I

“Does your algorithm divide the problem domain dynamically during
the run? Do you operate on recursive data structures such as graphs?”

Workload Balancing

» Deep trees — thrashing
« Limit the tree depth

 Shallow trees — under utilization
 Unbalanced Trees — under utilization

Other Resources

PATTERNS Books
FOR PARALLEL .
« Patterns for Parallel Programming — Mattson, Sanders &
Massingill

« Design Patterns — Gamma, Helm, Johnson & Vlissides
* Head First Design Patterns — Freeman & Freeman
« Patterns of Enterprise Application Architecture — Fowler

Research
A Pattern Language for Parallel Programming ver2.0
ParaPLOP - Workshop on Parallel Programming Patterns

My Blog: http://ademiller.com/tech/
(Decks etc.)

http://www.amazon.com/Patterns-Parallel-Programming-Timothy-Mattson/dp/0321228111
http://www.amazon.com/Patterns-Parallel-Programming-Timothy-Mattson/dp/0321228111
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/First-Design-Patterns-Elisabeth-Freeman/dp/0596007124
http://www.amazon.com/Patterns-Enterprise-Application-Architecture-Martin/dp/0321127420
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://parlab.eecs.berkeley.edu/wiki/patterns/patterns
http://www.upcrc.illinois.edu/workshops/paraplop09/index.html
http://ademiller.com/tech/

Microsoft® Research

Microsoft

