

Ben Liblit,
University of Wisconsin–Madison

Sampler

Predicates

Counts

& J/L
Statistical

Debugging

Top bugs with

likely causes

Sampler

Predicates

Statistical

Debugging

Top bugs with

likely causes
Counts

& J/L

n = fprintf(…);

• Did you know that fprintf() returns a value?

• Do you know what the return value means?

• Do you remember to check it?

n = fprintf(…);

if (n < 0) ++count[0];

if (n == 0) ++count[1];

if (n > 0) ++count[2];

• Count how often n is negative/zero/positive

• Syntax yields instrumentation site

• Everywhere, even if programmer forgot to check

• Site yields predicates on program behavior

• Directions of branches

• assert statements

• Unusual floating point values

• Coverage of modules, functions, basic blocks, …

• Reference counts: negative, zero, positive, invalid

• More ideas? Toss them all into the mix!

• Observation stream  observation count

• How often is each predicate observed true?

• Removes time dimension, for good or ill

• Sparsely sampled for performance & privacy

• Will not discuss this in detail today

• Feedback report is:

1. Vector of sampled predicate counters

2. Success/failure outcome label

Sampler

Predicates

Statistical

Debugging

Top bugs with

likely causes
Counts

& J/L

• 3 bug predictors from 156,476 initial predicates

• Compact visualization of many statistical measures

• Big red bar  strong predictor of common bug!

• Each predicate identifies a distinct crashing bug




















































 



 





N

i

d

n

di

D

d

d

W

j

i

n

ij

N

i

i

NN

i

o

i

i

k

o

i

d

ik

W

j

i

j

i

k

i

j

i

jk

kk

dpp

dpp

ppp

n

n

n

n
izp

d
i

i
j

bu k

kk

kk













)|()(

)|()|(

)()|(),(

),,|(

.

.

.

.

,*

,

,*

,

z

zw

zzwzw

owz




















































 



 





N

i

d

n

di

D

d

d

W

j

i

n

ij

N

i

i

NN

i

o

i

i

k

o

i

d

ik

W

j

i

j

i

k

i

j

i

jk

kk

dpp

dpp

ppp

n

n

n

n
izp

d
i

i
j

bu k

kk

kk













)|()(

)|()|(

)()|(),(

),,|(

.

.

.

.

,*

,

,*

,

z

zw

zzwzw

owz




















































 



 





N

i

d

n

di

D

d

d

W

j

i

n

ij

N

i

i

NN

i

o

i

i

k

o

i

d

ik

W

j

i

j

i

k

i

j

i

jk

kk

dpp

dpp

ppp

n

n

n

n
izp

d
i

i
j

bu k

kk

kk













)|()(

)|()|(

)()|(),(

),,|(

.

.

.

.

,*

,

,*

,

z

zw

zzwzw

owz

Let’s not talk about this

right now, OK?

• Novel variant on text-document topic analysis

• Program runs as “documents”

• Program behaviors as “words,” most of which are correct

• Failing runs draw upon reserved failure “topics”

• Failure-topic “keywords” point to root causes of failures

LDA:

∆LDA:

Original:

• Each predicate partitions runs into 2 sets:

• Runs where it was true

• Runs where it was false

• Can accurately predict bugs that match this partition

• Unfortunately, some bugs are more complex

• Complex border between good & bad

• Requires richer language of predicates

ptr = junk *ptr

 if (o + s > buf_size) return;

 …

 n->entries[i].data = malloc(s);

• Crash on later use of n->entries[i].data

• Too many compound pairings, even if inferred offline

• Quadratic conjunctions & disjunctions of two predicates

• 20 minutes for ~500 predicates, ~5,000 runs

• Pruning optimizations needed!

• Discard if too far apart in program

• Limit: 5% of program dependence graph

• Compute score upper bound and discard if too low

• “Too low” = lower than constituent simple predicates

• Reduces O(runs) to O(1) per complex predicate

0%

20%

40%

60%

80%

100%

P
e
rc

e
n

ta
g

e
 o

f
V

a
ri

a
n

ts

Application

Simple

Disjunction

Conjunction

0%

20%

40%

60%

80%

100%

F
ra

c
ti

o
n

 o
f

C
o

m
p

le
x

 P
re

d
ic

a
te

s

Application

Prune by distance

Prune by score

Compute but discard

Compute and retain

Sampler

Predicates

Statistical

Debugging

Top bugs with

likely causes
Counts

& J/L

• Holmes: automated statistical debugging for .NET

• Free download from Microsoft Research

• Run test suite & analyze results

• Visualize and explore buggy paths

• Vast majority of code is correct

• One experiment: 0.004% of predicates capture bugs

• Saps performance, wastes user & developer resources

• Massive, static instrumentation is too blunt

• Bug hunting with a shotgun

• Can we be bug snipers instead?

• Highly selective instrumentation, guided by feedback

• Binary rewriter to steer instrumentation through code

• Iteratively follow trail of bugs back to root causes

• Blocks 2, 3, 4 and 5 dominated by faulty edge

• But only 2, 3 immediately dominated

R3 R4

R2 R1

T F

F

F

T

T

T

F

CFG
CDG

CDG

explored

unexplored

• Explore  9% of large programs on average

• bash, bc, ccrypt, exif, gcc

• Tens to hundreds of adaptation rounds

Program
Sparsest Possible

Static Sampling

Binary Instrumentation

Complete Adaptive

bc 13% 31% 0.6%

gcc 66% 629% 0.1%

gzip 57% 246% 2%

Overall 45% 302% 0.9%

• Detect unusual thread interactions:

• Function reentrance

• Non-atomic access or update

• Deployable overhead via sparse sampling

• Rich statistical debugging data source

• Catch races, atomicity violations, other bugs

• Statistical methods not fooled by benign races

• Can learn a lot from actual executions

• Users are running buggy code anyway

• We should capture some of that information

• Great potential in hybrid approaches

• Dynamic: reality-driven debugging

• Statistical: best-effort with uncertainty

• Static: use program analysis to fill in the gaps

• Bug triage that directly reflects reality

• Learn the most, most quickly, about the bugs that happen most often

• Variability is a benefit rather than a problem

• Results grow stronger over time

• Find bugs while you sleep!

The Cooperative Bug Isolation Project

http://www.cs.wisc.edu/cbi/

The resources available for testing and verifying software are always limited,

and through sheer numbers an application’s user community will uncover

many flaws not caught during development. The Cooperative Bug Isolation

Project (CBI) marshals large user communities into a massive distributed

debugging army to help programmers find and fix problems that appear

after deployment. Dynamic instrumentation based on sparse random

sampling provides our raw data; statistical machine learning techniques mine

this data for critical bug predictors; static program analysis places bug

predictors back in context of the program under study. We discuss CBI’s

dynamic, statistical, and static views of post-deployment debugging and

show how these different approaches join together to help improve software

quality in an imperfect world.

Ben Liblit is an Assistant Professor in the Computer Sciences Department of

the University of Wisconsin–Madison. Professor Liblit’s research interests

include programming languages and software engineering generally, with

particular emphasis on combining machine learning with static and dynamic

analysis for program understanding and debugging.

Professor Liblit worked as a professional software engineer for four years

before beginning graduate study. His experience has inspired a research style

that emphasizes practical, best-effort techniques that cope with the ugly

complexities of real-world software development. Professor Liblit completed

his Ph.D. in 2004 at UC Berkeley with advisor Alex Aiken, and received the

2005 ACM Doctoral Dissertation Award for his work on post-deployment

statistical debugging.

