Microsoft® Research

Faculty Summit: §

b

Microsoft” Research
Faculty Summit2010 /

Cooperative Debugging With
One Million of Your Closest Friend

.
Software in its Natural Environment

» Users vastly outnumber testers
* 1 million runs of Microsoft Word per hour
» Real-world executions are most important
* 1% of software errors cause 50% of user crashes
» Post-deployment bug hunting

* Collect feedback data & mine for bug causes
« Empirical and approximate, not exhaustive or absolute

Sampler clle

Application

Program
Source

Compiler

Top bugs with
likely causes
=y

Statistical
Debugging

Program

Source

Top bugs with
likely causes
=y

Sampler

‘ Compiler

Statistical

Debugging

NalleJellgfe!
Application

Returned Values Are Interesting

n = fprintf(..);

* Did you know that fprintf() returns a value?

* Do you know what the return value means?

* Do you remember to check it?

Returned Value Predicate Counts

n = fprintf(..);
if (n < @) ++count[0];

if (n == @) ++count[1];

if (n > ©) ++count[2];

« Count how often n is negative/zero/positive

« Syntax yields instrumentation site
« Everywhere, even if programmer forgot to check

 Site yields predicates on program behavior

Many Other Behaviors of Interest

* Directions of branches

* assert statements

« Unusual floating point values

« Coverage of modules, functions, basic blocks, ...
« Reference counts: negative, zero, positive, invalid

e More ideas? Toss them all into the mix!

L)

Summarization and Reporting

e QObservation stream =2 observation count

« How often is each predicate observed true?
« Removes time dimension, for good or ill

« Sparsely sampled for performance & privacy

* Will not discuss this in detail today

* Feedback reportis:

1. Vector of sampled predicate counters
2. Success/failure outcome label

Playing the Numbers Game

Program
| Source

Compiler

Top bugs with Statistical
likely causes Debugging

- ___________4

Nalle]ellgle!
Application

Example of Diagnostic Output

Initial Effective Predicate

e I i< 0

BN | BN | maxlen > 1900

I L o + 8 > buf size is TRUE

* 3 bug predictors from 156,476 initial predicates

« Compact visualization of many statistical measures

 Big red bar = strong predictor of common bug!

« Each predicate identifies a distinct crashing bug

Delta Latent Dirichlet Allocation(ALDA)

;

AV \

' +0; N+

i Wi i Ny+Np o,
\n_k,*+zj,,8j,/\n_k,*+zi, o
p(w,z) = p(w|z)p(2)

pw|2) =TT ps 18] 4" dg

p(z, =1|z_ ,w,0) oc

p@) =TT pgs 1) T " ds

Delta Latent Dirichlet Allocation(ALDA)

(\/ A

' +0; N+

i Wi i Ny+Np o,
\n_k,*+zj,,6j,)\n_k,*+zi, o
p(w,z) = p(w|z)p(z)

pw|2) =T][p(s | A] 4" dg

p(z, =1|z_ ,wW,0) oc

p@) =TT p(gs)] [4™ d:

Delta Latent Dirichlet Allocation(ALDA)

(\/)

i i d 0
p(z, =ilz ,,W,0) Vi TP Mg+
kK — kW, Y)

Let's,not Talk AbOUEthis
right. Q)Qfﬂ p@\lﬁ[4, dg

p@) =TT pgs 1) T " ds

\lutshell
.

Novel variant on text-document topic analysis

* Program runs as “documents”
* Program behaviors as “words,” most of which are correct

Failing runs draw upon reserved failure “topics”

* Failure-topic “keywords"” point to root causes of failures

onginal: ol [l I 18 (I ICH 1N I | 60 D Y
o ANHINESE0EED
son - [2 | B

Limitations of Simple Predicates’

Each predicate partitions runs into 2 sets:

e Runs where it was true
e Runs where it was false

Can accurately predict bugs that match this partition

Unfortunately, some bugs are more complex

« Complex border between good & bad
« Requires richer language of predicates

Motivation; Bad Pointer Errors

if (o + s > buf size) return;

n->entries[i].data = malloc(s);

* Crash on later use of n->entries[i].data

Scalabllity Challenges and SO|lj

Too many compound pairings, even if inferred offline

* Quadratic conjunctions & disjunctions of two predicates
e 20 minutes for ~500 predicates, ~5,000 runs
* Pruning optimizations needed!

Discard if too far apart in program

* Limit: 5% of program dependence graph

Compute score upper bound and discard if too low

« "Too low" = lower than constituent simple predicates
« Reduces O(runs) to O(1) per complex predicate

Evaluation: Kinds of Top Predicates

100%

2

c 80%

3

S

2 60%

o

o

& 40% B Simple

c

§ M Disjunction
20% - -

a 7 B Conjunction
0%

Application

Evaluation; Effectiveness of Pru

100%
80%

60%
40% M Prune by distance
B Prune by score

20% B Compute but discard

B Compute and retain

Fraction of Complex Predicates

0%

Analysis time:

from ~20 mins
down to ~1 min

Application

Putting Predictors in Context

Predicates

Program ljelellyle
Source Application

Top bugs with Statistical |y
likely causes Debugging :
- 4

S

Visual Studio Integration

« Holmes: automated statistical debugging for .NET
* Free download from Microsoft Research

* Run test suite & analyze results

* Visualize and explore buggy paths

Holmes
Projects: | Local Solution ~| Builds: | Latest Build from Local Solution ~| Test Runs: | kapilv@KAPILVI 2009-11-12 22:52: ~| [{ll | 3] A «7

Analyze

Source File Function Name Confidence
Chsd\codebodholmes\Test\Json35r5\Src\ Newtonsoft.JsonsonValidatingReader.cs Mewtonsoft.Json JsonValidatingReader:Read() [
Chsdicodeboxiholmes\ Test\Json35r5\SrchNewtonsoft. JsonLing\Container.cs Newtonsoft.Json.Ling.JContainenEnsureParentToken(object32-» class256) [ChibdrenElctension vl

Visual Studio Integration

JProperty.cs IContainer.cs JsonValidatingReader.cs 3¢

“#:Newtonsoft.Json.JsonValidatingReader - | “%Read()

return false;

return true;

J/ first time Read has been called. build model

case JsonToken.S5tartObject:
ProcessValue();
JsonSchemaModel objectSchema = (ValidateObject(CurrentMemberSchema))
? CurrentMemberSchema
:onull;
Push{new SchemaScope(JTokenType.0Object, objectSchema));
break;

case JsonToken.StartArray:

? CurrentMemberSchema
null;

case JsonToken.StartConstructor:

- .o - - Fm— - - - B -

00% -|«

Killing Bugs: Shotgun or Rifle?

« Vast majority of code is correct

* One experiment: 0.004% of predicates capture bugs
« Saps performance, wastes user & developer resources

« Massive, static instrumentation is too blunt

* Bug hunting with a shotgun

« (Can we be bug snipers instead?

« Highly selective instrumentation, guided by feedback
 Binary rewriter to steer instrumentation through code
» Tteratively follow trail of bugs back to root causes

[terative Forward Search

CDG
CFG L
T F K/ \J
R R

* Blocks 2, 3, 4 and 5 dominated by faulty edge

« Butonly 2, 3 immediately dominated

Broader View of CDG

‘ CDG

explored

O O

unexplored

Impact on Selectivity and Perfort

« Explore ~9% of large programs on average

bash, bc, ccrypt, exif, gcc

Tens to hundreds of adaptation rounds

Sparsest Possible
Program Static Sampling

bc 13% 31%
gcc 66% 629%
gzip 57% 246%
Overall 45% 302%

Binary Instrumentation
Complete

Adaptive

0.6%
0.1%

2%
0.9%

Coming Soon: Concurrency Bué's

 Detect unusual thread interactions:

 Function reentrance
« Non-atomic access or update

» Deployable overhead via sparse sampling

 Rich statistical debugging data source

« (Catch races, atomicity violations, other bugs
« Statistical methods not fooled by benign races

L essons Learned

e (Can learn a lot from actual executions

« Users are running buggy code anyway
« We should capture some of that information

» Great potential in hybrid approaches

» Dynamic: reality-driven debugging
» Statistical: best-effort with uncertainty
» Static: use program analysis to fill in the gaps

Vision for Statistical Debugging®

Bug triage that directly reflects reality

Learn the most, most quickly, about the bugs that happen most often

Variability is a benefit rather than a problem

Results grow stronger over time

Find bugs while you sleep!

Join the Cause!

The Cooperative Bug Isolation Project
http://www.cs.wisc.edu/cbi/

The resources available for testing and verifying software are always limited,
and through sheer numbers an application’s user community will uncover
many flaws not caught during development. The Cooperative Bug Isolation
Project (CBI) marshals large user communities into a massive distributed
debugging army to help programmers find and fix problems that appear
after deployment. Dynamic instrumentation based on sparse random
sampling provides our raw data; statistical machine learning techniques mine
this data for critical bug predictors; static program analysis places bug
predictors back in context of the program under study. We discuss CBI's
dynamic, statistical, and static views of post-deployment debugging and
show how these different approaches join together to help improve software
quality in an imperfect world.

Ben Liblit is an Assistant Professor in the Computer Sciences Department of
the University of Wisconsin—Madison. Professor Liblit's research interests
include programming languages and software engineering generally, with

particular emphasis on combining machine learning with static and dynamic
analysis for program understanding and debugging.

Professor Liblit worked as a professional software engineer for four years
before beginning graduate study. His experience has inspired a research style
that emphasizes practical, best-effort techniques that cope with the ugly
complexities of real-world software development. Professor Liblit completed
his Ph.D. in 2004 at UC Berkeley with advisor Alex Aiken, and received the
2005 ACM Doctoral Dissertation Award for his work on post-deployment
statistical debugging.

