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n = fprintf(…); 

• Did you know that fprintf() returns a value? 

• Do you know what the return value means? 

• Do you remember to check it? 



n = fprintf(…); 

if (n < 0)  ++count[0]; 

if (n == 0) ++count[1]; 

if (n > 0)  ++count[2]; 

• Count how often n is negative/zero/positive 

• Syntax yields instrumentation site 

• Everywhere, even if programmer forgot to check 

• Site yields predicates on program behavior 



• Directions of branches 

• assert statements 

• Unusual floating point values 

• Coverage of modules, functions, basic blocks, … 

• Reference counts: negative, zero, positive, invalid 

• More ideas? Toss them all into the mix! 



• Observation stream  observation count 

• How often is each predicate observed true? 

• Removes time dimension, for good or ill 

• Sparsely sampled for performance & privacy 

• Will not discuss this in detail today 

• Feedback report is: 

1. Vector of sampled predicate counters 

2. Success/failure outcome label 
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• 3 bug predictors from 156,476 initial predicates 

• Compact visualization of many statistical measures 

• Big red bar  strong predictor of common bug! 

• Each predicate identifies a distinct crashing bug 
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Let’s not talk about this 

right now, OK? 



• Novel variant on text-document topic analysis 

• Program runs as “documents” 

• Program behaviors as “words,” most of which are correct 

• Failing runs draw upon reserved failure “topics” 

• Failure-topic “keywords” point to root causes of failures 

LDA: 

∆LDA: 

Original: 



• Each predicate partitions runs into 2 sets: 

• Runs where it was true 

• Runs where it was false 

• Can accurately predict bugs that match this partition 

• Unfortunately, some bugs are more complex 

• Complex border between good & bad 

• Requires richer language of predicates 



ptr = junk *ptr 

  if (o + s > buf_size) return; 

 … 

 n->entries[i].data = malloc(s); 

 

• Crash on later use of n->entries[i].data 



• Too many compound pairings, even if inferred offline 

• Quadratic conjunctions & disjunctions of two predicates 

• 20 minutes for ~500 predicates, ~5,000 runs 

• Pruning optimizations needed! 

• Discard if too far apart in program 

• Limit: 5% of program dependence graph 

• Compute score upper bound and discard if too low 

• “Too low” = lower than constituent simple predicates 

• Reduces O(runs) to O(1) per complex predicate 
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• Holmes: automated statistical debugging for .NET 

• Free download from Microsoft Research 

• Run test suite & analyze results 

• Visualize and explore buggy paths 





• Vast majority of code is correct 

• One experiment: 0.004% of predicates capture bugs 

• Saps performance, wastes user & developer resources 

• Massive, static instrumentation is too blunt 

• Bug hunting with a shotgun 

• Can we be bug snipers instead? 

• Highly selective instrumentation, guided by feedback 

• Binary rewriter to steer instrumentation through code 

• Iteratively follow trail of bugs back to root causes 



• Blocks 2, 3, 4 and 5 dominated by faulty edge 

• But only 2, 3 immediately dominated 
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• Explore  9% of large programs on average 

• bash, bc, ccrypt, exif, gcc 

• Tens to hundreds of adaptation rounds 

Program 
Sparsest Possible 

Static Sampling 

Binary Instrumentation 

Complete Adaptive 

bc 13% 31% 0.6% 

gcc 66% 629% 0.1% 

gzip 57% 246% 2% 

Overall 45% 302% 0.9% 



• Detect unusual thread interactions: 

• Function reentrance 

• Non-atomic access or update 

• Deployable overhead via sparse sampling 

• Rich statistical debugging data source 

• Catch races, atomicity violations, other bugs 

• Statistical methods not fooled by benign races 



• Can learn a lot from actual executions 

• Users are running buggy code anyway 

• We should capture some of that information 

• Great potential in hybrid approaches 

• Dynamic: reality-driven debugging 

• Statistical: best-effort with uncertainty 

• Static: use program analysis to fill in the gaps 



• Bug triage that directly reflects reality 

• Learn the most, most quickly, about the bugs that happen most often 

• Variability is a benefit rather than a problem 

• Results grow stronger over time 

• Find bugs while you sleep! 



The Cooperative Bug Isolation Project 

http://www.cs.wisc.edu/cbi/ 



The resources available for testing and verifying software are always limited, 

and through sheer numbers an application’s user community will uncover 

many flaws not caught during development. The Cooperative Bug Isolation 

Project (CBI) marshals large user communities into a massive distributed 

debugging army to help programmers find and fix problems that appear 

after deployment. Dynamic instrumentation based on sparse random 

sampling provides our raw data; statistical machine learning techniques mine 

this data for critical bug predictors; static program analysis places bug 

predictors back in context of the program under study. We discuss CBI’s 

dynamic, statistical, and static views of post-deployment debugging and 

show how these different approaches join together to help improve software 

quality in an imperfect world. 
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