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What 1s Cloud Computing?

* Next computing platform
* Client + Cloud
« All computing will be cloud computing

* Anything could be a client
« Conventional: PCs + phone + TV
« Single function: Kindle + car + appliance, ..
 New HW enables killer apps

e Platform as a service is just a component
« Amazon Web Services / Microsoft Azure / Google AppEngine
« On-demand, hosted, internet computing resources
« Commodification of distributed computing 5






Cloud Computing |

* Inherently distributed

Wide range of clients (single purpose —
rich)

“Unlimited” computation and data

Ubiquitous access to information and
computation



http://www.datacenterfm.com/index.htm
http://www.datacenterfm.com/index.htm
http://www.craftytv.com/
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Scale is Challenging

Service needs to handle the world
 Hundreds of millions of users

e Continuously available
 Built on unreliable, commodity platform
« Make money
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Generation 2/3 — Data Centers




Generation 2/3 — Data Centers ' -




Generation 3 - Chicago Data Center

— o g8 i
. -man-hours—of-la‘ |
' 3400 tons of steel

190 miles of conduit

2400 tons of copper

7.5 miles of chilled water piping 26,000 cubic yards of concrete



Generation 3 - Chicago Data M




New Programming Model, New Problems (and some old, unsolved :

4

Concurrency
Parallelism
Message passing
Distribution
High availability
Performance

Application partitioning

Defect detection High-level abstractions

13

.



Concurrency

Inherently concurrent programming
* Asynchronous, message-driven model
* Multiple requests streams

e Threads or events??

« Threads offer familiar sequential programming model
« But, state can change when thread is preempted (synchronization)
« Cost of thread and context switch limits concurrency

« Handlers fracture program control flow
« Logic split across event handlers
« Explicit manipulation of local state (no stack frames)

* Higher-level (state machine, Actor, ...) models?

» Lack of consensus inhibits research, development, reuse,
Interoperability

« Parallel programming, redux 14



Parallelism

Computers are parallel
« Increased performance + power efficiency

« Computers will be heterogeneous
« Multiple, non-isomorphic functional units

« Data centers are vast message-passing clusters
+ Availability and throughput

« Parallel programming is long-standing sore point for computer science
« State of the art: threads and synchronization (assembly language)
* No consensus on shared memory semantics

* New research on higher-level models is not panaceas

« Transactional memory
« Deterministic parallelism

« Radical proposal: abolish shared memory
« Message passing is inherent in distributed systems, so why 2 models?
« Shared memory is difficult and error prone

15



Message Passing

* Fundamental in distributed systems and better programming model
» Performance / correctness isolation
« Well-defined points of interaction
» Scalable

« More difficult to use

 Little language support
* Erlang integrates message with pattern matching
* Sing# channel contracts
* Sing# postbox semantics

* Message passing libraries
* Fundamental mismatch: asynchronous strange in a synchronous world
* Open problems
« Control structures for asynchronous messages
« Communications contracts
« Integration of messages in type system and memory model 16



Barrelfish OS

User space

Kernel space

CPU driver CPU driver

—>
{__Cache coherence_

Interrupts

CPU driver
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Domain Spanning Visualization

* First version:
« Centralized, poor scalability, but correct
1021 messages, 487 memory allocation RPCs

Core 16
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Improvements (3)

« Change the API

« Create domains on all cores at once
e /6 messages
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Distribution

Distributed systems are rich source of difficult problems
* Replication

» Consistency

e Quorum

«  Well-studied field with good solutions

« Qutsider’s perspective: research has focused on fundamental problems and
techniques used in real systems

« Common abstractions
* Replication
« Relaxed consistency
* Persistence
* How can these techniques be incorporated into programming model?
« Libraries
« Language integration
*  New models
20



Avalilability

Services must be highly available
« Blackberry/Google/... outage gets national media attention
« Affect millions of people simultaneously
« Service becomes part of national infrastructure

« High availability is challenge

 Starts with design and engineering

* Hard to eliminate all “single points of failure”

* Murphy’s law rules

« Antithetical to rapid software evolution

*  Programming models provide little support for systematic error handling

« Disproportionate software defects in error-handling code
« Afterthought
* Runin inconsistent state
« Difficult to test

« Erlang has systematic philosophy of fail and notify (but stateless)
« Could lightweight transactions simplify rollback for stateful languages?
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Performance

Performance is system-level concern
* Goes far beyond the code running on a machine
* Most performance tools focus on low-level detalls
« Current approach is wasteful and uncertain
« Build, observe, tweak, overprovision, pray
« Performance should be specified as part of behavior
« SLAs as well as pre-/post-conditions
* Need scalability
* Grow by adding machines, not rewriting software
« Architecture should be the starting point
* Model and simulate before building a system
« What is equivalent of Big-O notation for scalability?
« Adaptivity
« Systems need to be introspective and capable of adapting behavior to load

« e.g., simplify home page when load spikes, defer low-priority tasks, provision more
machines, ...
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Application Partitioning

» Static partition of functionality between client and server
« Clients have different architectures and capabilities
« Adapt to changing constraints (e.g., battery)
« Move computation to data, particularly when communications constrained
« Code mobility

« Exists in data center (VMs), why not across data center boundary?

* Currently, client and server are two fundamentally different
applications

 Evolution around interfaces

* Volta (Microsoft)
« Single program model, compiled for server and client

23
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Considerable progress in past decade on defect detection t00IS _ et e

« Tools focused on local properties (e.g., buffer overruns, test coverage, races, etc.)
« Little work on system-wide properties

Modular checking

« Whole program analysis expensive and difficult

* Not practical for services

« Assertions and annotations at module boundaries
« Can check global properties locally

* e.g. Rajamani & Rehof's Conformance Checking

New domain of defects

* Message passing

 Code robustness

« Potential performance bottlenecks 24



High-Level Abstractions

* Map-reduce and dataflow abstractions simplify large-scale data
analysis in data centers

« Convenient way to express problems
« Hide complex details (distribution, failure, restart)

« Allow optimization (speculation)
* Not appropriate for services

* Need abstractions for wider range of problems
« Interactive applications

25



. U s -
Clearly a Programming Problem

« At least for a language and tools researcher

When your only tool is a hammer, everything looks like a nail.

-- Paul Hilfinger (PhD advisor)
26



Orleans

* Goals
« Simple, widely accessible programming model
« Encourage use of scalable, resilient software architectures
« Raise level of abstraction (CLR — Windows = Orleans — Azure)

« Grains are unit of computation and data storage (Actors)
« (Can migrate between data centers
* Replication, consistency, persistence handled by runtime system

* One programming model for client and server
« Simplify development, debugging, performance tuning, etc.
« Single-source distributed programs (eg Volta)
* Enable code mobility
27



Orleans

Application
(Cloud Component ‘

Grain Activation

C | Grain
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Orleans Architecture

DC#

Geo-Distribution

Performance Monitoring

Internet Tools
Application

Orleans Runtime
Data Replication and Consistency

Adaptive Control

Runtime (Correctness) Monitoring Distributed Debugging

Deployment, Configuration, Maintenance

29




Orleans Programming Model

Channel Data Center 1
........... < >
lI. -

Data Center 2

Client

30



Data Model

Directory

Replication

31



Separation of Concerns

* Orleans runtime provides functionality common to cloud apps

 Building blocks of distributed systems
« Persistence
« Replication
« Consistency
« Configuration, versioning, deployment I:||:|I:I

« Monitoring, debugging, auditing
89—
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« How do we connect grains?

 Internal: grain creates channel
to another grain

« External: grain talks to port,
which is wired to port on
another grain

« Coordination language
describes wiring?

« Dataflow vs request-response
model

* What support do each need?

33
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L)

Continuous-running Systems

« Update code and data in place
« (Cannot stop system
e Rapid, frequent code releases
« Seamless evolution
« Multiple versions execute simultaneously

» Test during deployment
* Deployment not instantaneous

35



Cloud Tools

 Existing tools do not address problems of scale
* Debug 10K machines running 1M separate tasks

« Understanding performance of 10K machines and identifying performance
bottlenecks

« Monitor behavior of 10K machines to identify unexpected behavior, attacks,
HW failure

* Few concurrent or parallel defect detection tools

36



@)
=
@)
@)
)
O
(V)
o
()
=
)
(4V)
—
@,
O
©
O
O




Programming Languages Supp?)rt y

Existing languages provide little support for message passing
« Asynchronous stranger in a synchronous world

Failure handling is afterthought

« Disproportionate fraction of bugs in error handling code

* Run when state is inconsistent

 Difficult to test

Programming model/architecture as well as language

38




Geo-Distributing

« Complex tradeoffs

* Replicate data?

« Consistency issues

« Bandwidth cost
 Partition data?

« Partitioning criteria

« Migration
* Replicate computation?

« Consistency issues
« Inherent inefficiency

« What is goal of distribution?

39



Conclusion

* Cloud computing is more than VMs, data centers, web services, ...
* New form of computation

* Opportunity to correct problems with existing computing
« Cost, complexity, reliability, ...

« Exciting new challenges for the programming languages, compiler,
programming tools communities

40
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