Microsoft® Research

Faculty Summitz g

Microsoft® Research

Faculty Summit2010

Cloud Programming

What 1s Cloud Computing?

* Next computing platform
* Client + Cloud
« All computing will be cloud computing

* Anything could be a client
« Conventional: PCs + phone + TV
« Single function: Kindle + car + appliance, ..
 New HW enables killer apps

e Platform as a service is just a component
« Amazon Web Services / Microsoft Azure / Google AppEngine
« On-demand, hosted, internet computing resources
« Commodification of distributed computing 5

Cloud Computing |

* Inherently distributed

Wide range of clients (single purpose —
rich)

“Unlimited” computation and data

Ubiquitous access to information and
computation

http://www.datacenterfm.com/index.htm
http://www.datacenterfm.com/index.htm
http://www.craftytv.com/

Client SW

Client HW

App DC SW

DC OS

DC HW

Scale is Challenging

Service needs to handle the world
 Hundreds of millions of users

e Continuously available
 Built on unreliable, commodity platform
« Make money

Microsoft's Datacenter Evolu’ﬁ@' -

Generation 1 Generation 2 Generation 3 Generation 4
enter Co- Quincy and San Chicago and Dublin Modular
Antonio I - ~ Datacenter

—

S e
“(,\\ h‘dlli.-d'/_ R o AT
FaC|I|ty PAC

Server

Containers

Generation 2/3 — Data Centers

Generation 2/3 — Data Centers ' -

Generation 3 - Chicago Data Center

— o g8 i
. -man-hours—of-la‘ |
' 3400 tons of steel

190 miles of conduit

2400 tons of copper

7.5 miles of chilled water piping 26,000 cubic yards of concrete

Generation 3 - Chicago Data M

New Programming Model, New Problems (and some old, unsolved :

4

Concurrency
Parallelism
Message passing
Distribution
High availability
Performance

Application partitioning

Defect detection High-level abstractions

13

.

Concurrency

Inherently concurrent programming
* Asynchronous, message-driven model
* Multiple requests streams

e Threads or events??

« Threads offer familiar sequential programming model
« But, state can change when thread is preempted (synchronization)
« Cost of thread and context switch limits concurrency

« Handlers fracture program control flow
« Logic split across event handlers
« Explicit manipulation of local state (no stack frames)

* Higher-level (state machine, Actor, ...) models?

» Lack of consensus inhibits research, development, reuse,
Interoperability

« Parallel programming, redux 14

Parallelism

Computers are parallel
« Increased performance + power efficiency

« Computers will be heterogeneous
« Multiple, non-isomorphic functional units

« Data centers are vast message-passing clusters
+ Availability and throughput

« Parallel programming is long-standing sore point for computer science
« State of the art: threads and synchronization (assembly language)
* No consensus on shared memory semantics

* New research on higher-level models is not panaceas

« Transactional memory
« Deterministic parallelism

« Radical proposal: abolish shared memory
« Message passing is inherent in distributed systems, so why 2 models?
« Shared memory is difficult and error prone

15

Message Passing

* Fundamental in distributed systems and better programming model
» Performance / correctness isolation
« Well-defined points of interaction
» Scalable

« More difficult to use

 Little language support
* Erlang integrates message with pattern matching
* Sing# channel contracts
* Sing# postbox semantics

* Message passing libraries
* Fundamental mismatch: asynchronous strange in a synchronous world
* Open problems
« Control structures for asynchronous messages
« Communications contracts
« Integration of messages in type system and memory model 16

Barrelfish OS

User space

Kernel space

CPU driver CPU driver

—>
{__Cache coherence_

Interrupts

CPU driver

17

Domain Spanning Visualization

* First version:
« Centralized, poor scalability, but correct
1021 messages, 487 memory allocation RPCs

Core 16

16

14 F

12 = R VAR AR RN II ANE TN IR Bl_-llllnllllllhll TSR IR N LT AR m‘l“!. =Y

/I T TR

10
:
2 8
@ ;
8 X l. ., 27k Vo AN R WU ll.ﬂl.ll.hﬂll: Uy BB B S BN BRSPS BN ‘.i £ 200 Sl Sy RTE) eIl B LIEE BRI AN BR kT TRL I T N R TN R TR N T IJ 'MI
.2 » e - -iml VI)Y LT AR HATELRATE | oATH VAU aA T Do Ui P PIDE T I vl T A LTI m VU LT O oA STV ST Ve AW SURLBEIYS ¢ Ut il l“'.l"ﬁl?il‘tlitt 1T LI BT TIPS 0D e

iﬂi|| i fln‘l‘.“‘l BN IR RET TN B WO B R V0 ST WER T W A B T 0T ST BT A RE S Bl W A T) “:u.li‘;Illlli'I— 181 11 SN ‘.‘l ' T8 | “ l
WD ST WY LU & TS IL TR § Y v \ - ' l
PRSI : LN b I ST n’ II“
TS 52 TP R T PR 0 D VUMD SRS U b 0 IR 1 A5ARe

5l L Ll USTURSRE S (A TRVIS JURARR LS PR ATl e | B L s) I Uas MmN
TN L. S LT S U G T 1] TS SJ T 1 TRE 5 AN LI RE B RLIE Y e UL S

2 |11 S5 IESUE BV ; ! EE AV T e B R T S USRS L

AT L TR TR S TR W A G DT 4 TR T AT T30 B PO TR B 0 SR 00A S0 PV Wk gk Ui T U Pl

AN RALE |

| Ty

Improvements (3)

« Change the API

« Create domains on all cores at once
e /6 messages

16

T T T
14
12
N =,
- 10 N
2 MY
2 8 ~
o RN
= L
© & = N Y
\ TSN
== S Y] N
4 Y T —% v Y
RN
LN
2 5
3,
o |
o 500000 1e+06 1.50+06 2e+06 2.50+06

Timelcycles

—

2.5 million cycles (approx 1ms)

19

Distribution

Distributed systems are rich source of difficult problems
* Replication

» Consistency

e Quorum

« Well-studied field with good solutions

« Qutsider’s perspective: research has focused on fundamental problems and
techniques used in real systems

« Common abstractions
* Replication
« Relaxed consistency
* Persistence
* How can these techniques be incorporated into programming model?
« Libraries
« Language integration
* New models
20

Avalilability

Services must be highly available
« Blackberry/Google/... outage gets national media attention
« Affect millions of people simultaneously
« Service becomes part of national infrastructure

« High availability is challenge

 Starts with design and engineering

* Hard to eliminate all “single points of failure”

* Murphy’s law rules

« Antithetical to rapid software evolution

* Programming models provide little support for systematic error handling

« Disproportionate software defects in error-handling code
« Afterthought
* Runin inconsistent state
« Difficult to test

« Erlang has systematic philosophy of fail and notify (but stateless)
« Could lightweight transactions simplify rollback for stateful languages?

21

Performance

Performance is system-level concern
* Goes far beyond the code running on a machine
* Most performance tools focus on low-level detalls
« Current approach is wasteful and uncertain
« Build, observe, tweak, overprovision, pray
« Performance should be specified as part of behavior
« SLAs as well as pre-/post-conditions
* Need scalability
* Grow by adding machines, not rewriting software
« Architecture should be the starting point
* Model and simulate before building a system
« What is equivalent of Big-O notation for scalability?
« Adaptivity
« Systems need to be introspective and capable of adapting behavior to load

« e.g., simplify home page when load spikes, defer low-priority tasks, provision more
machines, ...

22

Application Partitioning

» Static partition of functionality between client and server
« Clients have different architectures and capabilities
« Adapt to changing constraints (e.g., battery)
« Move computation to data, particularly when communications constrained
« Code mobility

« Exists in data center (VMs), why not across data center boundary?

* Currently, client and server are two fundamentally different
applications

 Evolution around interfaces

* Volta (Microsoft)
« Single program model, compiled for server and client

23

)) = \/,.- <
Defect Detection AAS &
. . BN L
Considerable progress in past decade on defect detection t00IS _ et e

« Tools focused on local properties (e.g., buffer overruns, test coverage, races, etc.)
« Little work on system-wide properties

Modular checking

« Whole program analysis expensive and difficult

* Not practical for services

« Assertions and annotations at module boundaries
« Can check global properties locally

* e.g. Rajamani & Rehof's Conformance Checking

New domain of defects

* Message passing

 Code robustness

« Potential performance bottlenecks 24

High-Level Abstractions

* Map-reduce and dataflow abstractions simplify large-scale data
analysis in data centers

« Convenient way to express problems
« Hide complex details (distribution, failure, restart)

« Allow optimization (speculation)
* Not appropriate for services

* Need abstractions for wider range of problems
« Interactive applications

25

. U s -
Clearly a Programming Problem

« At least for a language and tools researcher

When your only tool is a hammer, everything looks like a nail.

-- Paul Hilfinger (PhD advisor)
26

Orleans

* Goals
« Simple, widely accessible programming model
« Encourage use of scalable, resilient software architectures
« Raise level of abstraction (CLR — Windows = Orleans — Azure)

« Grains are unit of computation and data storage (Actors)
« (Can migrate between data centers
* Replication, consistency, persistence handled by runtime system

* One programming model for client and server
« Simplify development, debugging, performance tuning, etc.
« Single-source distributed programs (eg Volta)
* Enable code mobility
27

Orleans

Application
(Cloud Component ‘

Grain Activation

C | Grain

—“=& Promise

- Library

Application

(Client Component

Clients

- o S

Orleans Architecture

DC#

Geo-Distribution

Performance Monitoring

Internet Tools
Application

Orleans Runtime
Data Replication and Consistency

Adaptive Control

Runtime (Correctness) Monitoring Distributed Debugging

Deployment, Configuration, Maintenance

29

Orleans Programming Model

Channel Data Center 1
........... < >
lI. -

Data Center 2

Client

30

Data Model

Directory

Replication

31

Separation of Concerns

* Orleans runtime provides functionality common to cloud apps

 Building blocks of distributed systems
« Persistence
« Replication
« Consistency
« Configuration, versioning, deployment I:||:|I:I

« Monitoring, debugging, auditing
89—

32

« How do we connect grains?

 Internal: grain creates channel
to another grain

« External: grain talks to port,
which is wired to port on
another grain

« Coordination language
describes wiring?

« Dataflow vs request-response
model

* What support do each need?

33

CC Application Litecycle

Use

Activation

7
=Y

Development

-

L, » 95 E

)
» /\) *}3

1| =

Deployment
=P t

34

L)

Continuous-running Systems

« Update code and data in place
« (Cannot stop system
e Rapid, frequent code releases
« Seamless evolution
« Multiple versions execute simultaneously

» Test during deployment
* Deployment not instantaneous

35

Cloud Tools

 Existing tools do not address problems of scale
* Debug 10K machines running 1M separate tasks

« Understanding performance of 10K machines and identifying performance
bottlenecks

« Monitor behavior of 10K machines to identify unexpected behavior, attacks,
HW failure

* Few concurrent or parallel defect detection tools

36

@)
=
@)
@)
)
O
(V)
o
()
=
)
(4V)
—
@,
O
©
O
O

Programming Languages Supp?)rt y

Existing languages provide little support for message passing
« Asynchronous stranger in a synchronous world

Failure handling is afterthought

« Disproportionate fraction of bugs in error handling code

* Run when state is inconsistent

 Difficult to test

Programming model/architecture as well as language

38

Geo-Distributing

« Complex tradeoffs

* Replicate data?

« Consistency issues

« Bandwidth cost
 Partition data?

« Partitioning criteria

« Migration
* Replicate computation?

« Consistency issues
« Inherent inefficiency

« What is goal of distribution?

39

Conclusion

* Cloud computing is more than VMs, data centers, web services, ...
* New form of computation

* Opportunity to correct problems with existing computing
« Cost, complexity, reliability, ...

« Exciting new challenges for the programming languages, compiler,
programming tools communities

40

Microsoft

© 2010 Microsoft Corporation. All rights reserved. Microsoft, Windows, Windows Vista and other product names are or may be registered trademarks and/or trademarks in the U.S. and/or other countries.
The information herein is for informational purposes only and represents the current view of Microsoft Corporation as of the date of this presentation. Because Microsoft must respond to changing market conditions, it should not be interpreted to be a commitment on the part of
Microsoft, and Microsoft cannot guarantee the accuracy of any information provided after the date of this presentation.
MICROSOFT MAKES NO WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS PRESENTATION.

