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.Iin“logy are not just “global warming"

* The term “global warming” < What is actually happening

implies . .. IS . ..

 uniform across the planet * highly nonuniform

* mainly about temperature * not just about temperature,

+ gradual but especially about water

» quite possibly benign * rapid compared to capacities

for adjustment
* harmful for most places and
times

We should call it “global climate disruption® . .

Presidential Science Advisor



http://www.whitehouse.gov/sites/default/files/microsites/ostp/jph-chicago-04212010.pdf
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The Fourth Paradigm

- An “exaflood” of observational data PARADIGCM
requires a new generation of
scientific computing tools to

manage, visualize and analyze them

DATA-INTENSIVE SCIENTIFIC DISCOVERY

http://research.microsoft.com/en-us/collaboration/fourthparadigm/
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Antarctic ground-based observations since 1957 Satellite coverage


http://www.nap.edu/catalog.php?record_id=11991
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Internal tlde mformatlon 1975 Internal tides from altimetry



Al The Fourth Paradigm, an emerging science of
environmental applications

1. Thousand years ago —experimental 1. 1800s —» ~1990 — discipline oriented
science o geology, atmospheric science, ecology,
» Description of natural phenomena etc.
2. Last few hundred years —theoretical 2. 1980s — present — Earth System Science
science  interacting elements of a single
 Newton’s Laws, Maxwell’s Equations. .. complex system (Bretherton)
3. Last few decades — computational « large scales, data intensive
science 3. Emerging today — knowledge created to
« Simulation of complex phenomena target practical decisions and actions
4. Today — data-intensive science * e.g. climate change

(from Tony Hey) « large scales, data intensive



Wl-fferentﬂ applications science?

Core characteristics of
environmental applications
science

Need driven vs curiosity driven
Externally constrained
Consequential and recursive
Useful even when incomplete
Scalable

Robust

Data intensive

New knowledge types and new

tools for acquiring knowledge

Remote sensing
Low-cost sensors and telemetry

Social data to analyze decision
making

Cyberinfrastructure
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“We seek solutions. We don't seek—dare I say
this?—just scientific papers anymore”

Steven Chu
Nobel Laureate
US Secretary of Energy
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. Manual measurement of SWE (snow water
equivalent), started in the Sierra Nevada in 1910
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Snow course Rubicon Valley, elev 1707m (American R)
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Example forecast, April 2010

* American River below Folsom Lake, April-July

unimpaired runoff (units are km3)

50-yr Max Min This % of 80%

mean year avg prob
range

1.530 | 3.792 | 0.282 | 1.295 | 85% 0.95-

2.10
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We manage water poory..

We do not predict and manage water and its constituents well

« Despite large investments, we suffer from droughts, floods, stormwater,
erosion, harmful algal blooms, hypoxia, and pathogens with little warning or
prevention

Current empirical methods were developed over a period when human
impacts were isolated and climate trends slower

 Drivers are climate change, population growth and sprawl, land use
modification

« Milly et al., Science 2008: Stationarity is dead: whither water management?

We need to better understand how/when to adapt, mitigate, solve, and
predict

* More physically based, less empirical, methods are needed



e
The water information value ladder

Forecasting

Reporting

Analysis Done poorly

Done poorly to moderately

Quality assurance

Collation Sometimes done well, by many groups,

- but could be vastly improved
Monitoring

Slide Courtesy CSIRO, BOM, WMO
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ctional snow-covered area, Sierra

MODIS, 19 Jan 2008

Fractional snow-covered area

Bands 2,4,3 (RGB)
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Snow is a collection of
scattering grains

* One of my heroes, Moyseés
Nussenzveig, born Sao
Paulo 1933, prof at Univ.
Fed. do Rio de Janeiro.
With Wiscombe developed
complex angular
momentum scattering.
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€ Hydroseek - Search engine for Hydrologists - Windows Internet Explorer
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Information praducts, hydrologic example

MODIS
spectral
radiance

Atmospheric
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| ite change?
Whattodo about cimate change?

There are only 3 options

* Mitigate — to avoid the unmanageable

* reduce pace & magnitude of changes in global climate being caused by
human activities

« Adapt - to manage the unavoidable

* reduce adverse impacts to humans & ecosystems that result from climate
change and related changes

 Suffer the consequences
« from adverse impacts that are neither mitigated nor adapted to

from John Holdren, US
Presidential Science Advisor
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Regional climate prediction

« Adaptation is local

* Problems w downscaling, especially in mountains
Precipitation

« Especially winter precipitation

Response of vegetation

* Photosynthesis in a warmer climate

 Fires because plants are drier with more ET

Ice sheet behavior

Schiermeier, 2010, Nature

“This climate of
suspicion we're
working in is insane.
It's drowning our

ability to soberly
communicate gaps in
our science.”

* Gavin Schmidt



Precipitation ( mm / day )

Month

Precipitation: mean of 15 models (red) vs
observations (green)

Vertical bars are £1 standard deviation of model monthly results

Coquard et al., 2004, Climate Dynamics

Temperature (C)

Temperature: mean of 15 models (red) vs observations
and reanalyses
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Colggthei

“Broaden the field . . . many intellectual
opportunities at the intersection of CS&E
and other problem domains”

Predictions about the data deluge have
come to pass

Data collection often separated from their
analyses, so infrastructure needed

Science is increasingly collaborative, hence
the need to support integration of
disparate, distributed data with disparate
models, among collaborators who are not
co-located
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Arcifemerber Grays Lavs

(Szalay & Blakeley, in The Fourth Paradigm, 2009)
Scientific computing is becoming increasingly data intensive
The solution is in a “scale-out” architecture

Bricks with local CPU and part of the data
Queries across heavily partitioned data not easy

Bring computations to the data, rather than data to the
computations

You need to enable the user to design and run operations at the data

Start the design with the “20 queries”

If you can deal with the 20 most important, you can probably deal with the
next 200

Go from “working to working [a little better]”

No giant leaps without intervening milestones



, from creation t%curation

Data
Acquisition
and
Modeling

Archiving
and
Preservation

Collaboration
and
Visualization

Analysis and Disseminate
Data Mining and Share

The science information user:

x . ! Data
« I wantreliable, timely, usable science Acquis‘ijtion
an
information products Modeling

The funding agencies and the science

community: Archiving

and
Preservation

and Share

« We want data from a network of
authors

Disseminate

The science information author:

« Twant to help users (and build my ’SZ?a'y.ff.?n?.'IS

citation index)
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