Faculty Summit2010

Debugging in the (Very) Large: Ten Years of Implementation and Experience

Galen C. Hunt Principal Researcher Microsoft Corporation

Acknowledgements

Paper originally appeared in 22nd ACM Symposium on Operating Systems Principles

Co-authors (and system inventors):

- Kirk Glerum
- Kinshuman Kinshumann
- Steve Greenberg,
- Gabriel Aul
- Vince Orgovan
- Greg Nichols
- David Grant
- Gretchen Loihle

A Revelation

Software has bugs

Even **shipping** software

Even Microsoft's shipping software

Oh, and so does hardware (but we'll come back to that point later...)

Two Definitions

Bug: a **flaw** in program logic

```
#define MYVAR *(int*)random()
...
MYVAR = 5;
```

Error: a failure in execution caused by a bug

• run it 5,000 times, you'll get ~ 5000 errors

One bug may cause many errors

The Challenge

Microsoft ships software to 1 billion users,

how do we find out when things go wrong?

We want to

- fix bugs regardless of source
 - application or OS
 - software, hardware, or malware
- prioritize bugs that affect the most users
- generalize the solution to be used by any programmer

Reported Bugs

Error	Reporting Trigger
Kernel Crashes	Crash dump found in page file on boot
Application Crashes	Unhandled process exception
Application Hangs	Failure to process user input for 5 seconds
Service Hangs	Service thread times out
Installation Failures	OS or application installation fails
App. Compat. Issues	Program calls deprecated API
Custom Errors	Program calls WER APIs to report error
UI Delays	Timer assert takes longer than expected
Invariant Violations	Ship assert in code fails
Invariant Violations	Ship assert in code fails

Windows Error Reporting (WER)

WER by the Numbers

Billions	Error reports collected per year (App,OS,HW)
1 billion	Clients
100 million	Reports /day processing capacity
17 million	Programs with error reports in WER
Many 1000s	Bugs fixed
Over 700	Companies using WER
200	TB of Storage
60	Servers
10	Years of use
2	Servers to record every error received
1	# of programmers needed to access WER data

Outline

Introduction

How do we process billions of error reports?

Experiences fixing bugs from

- software
- hardware
- malware

Conclusion

Debugging in the Small...

In the Large without WER...

The Human Bottleneck

Can't hire enough technicians

Data is inaccurate

Hard to get additional data

No "global" baseline

Useless for heisenbugs

Need to remove humans

Goal: Fix the Data Collection Problem

Allow one service to record

- every error (application, OS, and hardware)
- on every Windows system
- Worldwide

Corollary:

that which we can measure, we can fix...

An Outlook Plug-in Example

plugin.dll:

```
#define MYVAR * (int*) random()
...
void foo(int i, int j)
{
    if (i & 1)
        memcpy(&MYVAR, j, 4);
    else
    ...
}
```

Debugging in the Large with WER...

!analyze

Engine for WER bucketing heuristics

Extension to the Debugging Tools for Windows

- input is a minidump, output is bucket ID
- runs on WER servers (and programmers desktops)
- http://www.microsoft.com/whdc/devtools

500 heuristics

grows ~ 1 heuristic/week

To Recap and Elaborate...

What I told you:

- client automatically collects a minidump
- sends minidump to servers
- !analyze **buckets** the error with similar reports
- increments the bucket count
- programmers prioritize buckets with highest count

Actually...

- only upload first few hits on a bucket, others just inc.
- programmers request additional data as needed

2-Phase Bucketing Strategy

```
Labeling (on client): bucketed by failure point
    outlook.exe,plugin.dll,v1.0.2305,0x23f5
    {program name},{binary},{version},{pc offset}
```

Classifying (on servers): re-bucketed toward root cause by **!analyze**

- consolidate version and replace offset with symbol outlook.exe, plugin.dll, memcpy
- find caller of **memcpy** (because it isn't buggy) outlook.exe, plugin.dll, **foo**
- etc.

SOSP paper contains much more detail on bucketing...

Bucketing Mostly Works

One bug can hit multiple buckets

- up to 40% of error reports memcpy (&MYVAR, j, 4);
 - one bucket when &MYVAR is illegal address
 - many others when &MYVAR is in a data section
- extra server load
- duplicate buckets must be hand triaged

Multiple bugs can hit one bucket

- up to 4% of error reports
- harder to isolate each bug

Solution: scale is our friend

Outline

Introduction

How do we process billions of error reports?

Experiences fixing bugs from

- software
- hardware
- malware

Conclusion

Top 20 Buckets for MS Word 2010

Fixing bugs in software

First use found >=**5-year old** heisenbugs in Windows

Windows Vista team **fixed 5,000 bugs** in beta

Anti-Virus vendor fixed top 20 buckets and dropped from 7.6% to 3.6% of all kernel crashes

Office 2010 team fixed 22% of reports in 3 weeks

And you can fix yours...

Hardware: Processor Bug

Other Hardware Bugs

SMBIOS

memory overrun in resume-from-sleep

Motherboard USB controller

only implemented 31 of 32 DMA address bits

Lots of information about failures due to

- overclocking
- hard disk controller resets
- substandard memory

Renos Malware

Other Things in the SOSP Paper

Bucketing details (Sec. 3)

Statistics-based debugging (Sec. 4)

Progressive data collection (Secs. 2.2 & 5.4)

Service implementation (Sec. 5)

WER experiences (Sec. 6)

OS Changes (Sec. 7)

Related work (Sec. 8)

Conclusion

Windows Error Reporting (WER)

- the first post-mortem reporting system with automatic diagnosis
- the largest client-server system in the world (by installs)
- helped 700 companies fix 1000s of bugs and billions of errors
- fundamentally changed SW development at MS

WER works because bucketing *mostly* works http://winqual.microsoft.com

"WER forced us to stop making [things] up."

Faculty Summit2010