
A Multiplicative Weights Mechanism for Privacy-Preserving Data Analysis

Moritz Hardt
Center for Computational Intractability

Department of Computer Science
Princeton University

Email: mhardt@cs.princeton.edu

Guy N. Rothblum
Center for Computational Intractability

Department of Computer Science
Princeton University

Email: rothblum@alum.mit.edu

Abstract—We consider statistical data analysis in the in-
teractive setting. In this setting a trusted curator maintains
a database of sensitive information about individual partici-
pants, and releases privacy-preserving answers to queries as
they arrive. Our primary contribution is a new differentially
private multiplicative weights mechanism for answering a large
number of interactive counting (or linear) queries that arrive
online and may be adaptively chosen.

This is the first mechanism with worst-case accuracy guar-
antees that can answer large numbers of interactive queries
and is efficient (in terms of the runtime’s dependence on the
data universe size). The error is asymptotically optimal in its
dependence on the number of participants, and depends only
logarithmically on the number of queries being answered. The
running time is nearly linear in the size of the data universe.

As a further contribution, when we relax the utility require-
ment and require accuracy only for databases drawn from a
rich class of databases, we obtain exponential improvements
in running time. Even in this relaxed setting we continue to
guarantee privacy for any input database. Only the utility
requirement is relaxed. Specifically, we show that when the
input database is drawn from a smooth distribution — a
distribution that does not place too much weight on any single
data item — accuracy remains as above, and the running time
becomes poly-logarithmic in the data universe size.

The main technical contributions are the application of
multiplicative weights techniques to the differential privacy
setting, a new privacy analysis for the interactive setting, and
a technique for reducing data dimensionality for databases
drawn from smooth distributions.

I. INTRODUCTION

Statistical analysis of sensitive information about indi-
viduals comes with important benefits. However, since the
results of the analysis are often made public, these benefits
might come at a serious cost to the privacy of individuals’
sensitive data. A recent line of work, starting with the
seminal works of Dinur and Nissim [3] and Dwork and
Nissim [9] aims to provide a rigorous mathematical founda-
tion for protecting the privacy of individuals in the setting
of statistical analysis. This research has yielded the robust
privacy guarantee of differential privacy, due to Dwork et
al. [5], which guarantees that the outcome of the analysis on
adjacent databases (databases that differ only in one partic-
ipant’s information) is “very similar” (in a strong sense). In
particular, differential privacy guarantees that participation

in the analysis does not incur significant additional risk for
individuals (vs. non-participation). Throughout this paper
and most of the prior work, the focus is on the setting where
a trusted curator, holding a database of potentially sensitive
information about n individuals, wishes to release statistics
about the data while protecting individuals’ privacy.

A central question in this line of research regards the
tradeoff between utility and privacy. Namely, what kinds of
statistical queries can be answered, and with what accuracy,
while protecting the privacy of individuals? Early results
seemed mixed: on one hand, moderate numbers of queries
(smaller than the number of individuals in the database)
could be answered with differential privacy and excellent
accuracy by adding independent noise to the answers [3],
[9], and a growing body of subsequent work. On the other
hand, it was shown that there exist specific families of simple
queries such that answering “too many” of the queries (more
than the database size) with “overly accurate” responses
(smaller error than the sampling error1) leads to blatant
privacy violations [3], [6], [11]. Still, these negative results
left open the possibility that very rich statistical analyses,
say answering huge families of queries, could be run in
a privacy-preserving way, as long as their accuracy was
slightly worse than the sampling error.

Non-interactive mechanisms: A beautiful work of
Blum, Ligett and Roth [2] showed that huge numbers of
queries could in fact be answered in a privacy-preserving
way. They considered counting queries: counting what frac-
tion (between 0 and 1) of the participants in the analysis
satisfy some property, where the “property” is taken to be a
boolean predicate over the data universe U . They designed
a privacy-preserving mechanism where for any set C of
counting queries specified non-interactively (i.e. in advance),
the error scales only logarithmically with the number of
queries being answered. Specifically, the error’s dependence
on the database size n and query set size k was roughly
(1/n1/3) · log k (we ignore for now, and throughout the

1The “sampling error” we refer to throughout the introduction is the error
incurred by inferring statistical information about an underlying distribution
of the population from n samples. This error is inherent to statistical data
analysis. In fractional additive terms, the sampling error is asymptotically
roughly Õ(1/

√
n) w.h.p.

introduction, the constants and the many other parameters
in the error expression). Moreover, the mechanism’s output
was a synthetic database: a (privacy-preserving) database of
entries from the data universe U , where for each counting
query the fraction of participants who satisfy it in the input
and output database is within the error bound. This is
a useful output format, as it is compatible with existing
tools for analyzing databases and guarantees consistency.
While this result showed that (information theoretically at
least) massive query sets could be answered in a privacy
preserving way, it suffered from several disadvantages. First,
this was a non-interactive mechanism: the query set had
to be specified in advance, whereas previous mechanisms
such as [9] were interactive, and allowed for answering
arbitrary queries specified in an interactive and adaptive
manner.2 Moreover, the mechanism’s error was significantly
larger than the 1/

√
n sampling error. This meant that, for

fixed fractional accuracy, the number of participants in a
data analysis needed to be significantly higher. Finally, the
running time was very high: super-polynomial in the size
N = |U | of the data universe, and in k, the query set size.

These last two concerns were considered in a work of
Dwork et al. [8]. They gave a non-interactive mechanism,
whose running time was polynomial in N and k, where the
error’s dependence on the query set size grew (roughly) as
(1/
√

n) · ko(1). This output was also a synthetic database.
They showed that, under strong enough (exponential) cryp-
tographic hardness assumptions, no general mechanism for
answering counting queries that outputs synthetic data could
have sublinear running-time in N or in k. In later work,
Dwork, Rothblum and Vadhan [10] obtained a mecha-
nism with similar running time whose error was (1/

√
n) ·

polylogk. Moreover, they showed how to obtain similar
error bounds for arbitrary low-sensitivity queries (previous
work was restricted to counting queries), for general queries
the running time was no longer polynomial in N and k.
Both of these mechanisms provide a slightly relaxed privacy
guarantee known as (ε, δ)-differential privacy [5].

Interactive Mechanisms: For the interactive setting,
where the queries are specified in an interactive and adaptive
manner, it remained unclear whether large numbers of
queries could be answered accurately in a privacy-preserving
way. In a beautiful recent work, Roth and Roughgarden [13]
presented a new mechanism for answering interactive count-
ing queries, whose error scaled as (1/n1/3) · polylog(k).
They gave a super-polynomial time (in N and k) mechanism,
and a separate polynomial-time mechanism that guaranteed
similar error bound w.h.p. over a database drawn from a
random distribution.

2Note that in this setting, all other things being equal, an interactive
mechanism is preferable to a non-interactive one: if we have an interactive
mechanism, even if the queries are all specified in advance, we can still run
the interactive mechanism on the queries, one by one, and obtain privacy-
preserving answers to all of them.

Several important questions remained unanswered, even
for the case of counting queries:

1) Is there a polynomial-time interactive mechanism (i.e.,
one that runs in time poly(N) on each of the k
queries) with non-trivial error on all databases?

2) Could its error scale to the sampling error 1/
√

n

and grow only logarithmically with the number of
queries k?

3) Given the negative results of [8], we cannot hope
for sub-linear running time in N . Do there exist
mechanisms that match or nearly-match this hardness
result?

4) What are open avenues for side-stepping the negative
results of [8]? Namely, are there meaningful relax-
ations that permit mechanisms whose running time is
sub-linear or even poly-logarithmic in N?

A. This Work
Our main contribution is a new privacy-preserving interac-

tive mechanism for answering counting queries, which we
will refer to as the private multiplicative weights (PMW)
mechanism. It allows us to give positive answers to the
first three questions above, and to make partial progress
on the last question. We proceed with a summary of our
contributions. Throughout this section, when we refer to a
mechanism’s running time as being polynomial or linear,
we are measuring the running time as a function of the
data universe size N (which may be quite large for high-
dimensional data).

Linear-Time Interactive Mechanism: The PMW mech-
anism runs in linear-time and provides a worst-case accu-
racy guarantees for all input databases. The mechanism is
presented Figure 1, its performance stated in the theorem
below. The proof is in Section IV. See Section III for the
formal definitions of accuracy and differential privacy for
interactive mechanisms.

Theorem I.1. Let U be a data universe of size
N . For any k, ε, δ, β > 0, the Private Multiplica-
tive Weights Mechanism of Figure 1, is an (ε, δ)-
differentially private interactive mechanism. For any
database of size n, the mechanism is (α, β, k)-accurate
for (adaptive) counting queries over U , where α =
O

(
ε−1n−1/2 · log(1/δ) log1/4(N) · (log k + log(1/β))

)
.

The running time in answering each query is N ·poly(n) ·
polylog(1/β, 1/ε, 1/δ) .

The error (as a function of n and k) grows roughly as
(1/
√

n) · log k. In particular, this shows that even in the
interactive setting, differential privacy permits error (beyond
the 1/

√
n lower bound of [3]) that grows only logarithmi-

cally with the number of queries being answered. Moreover,
the running time is only linear in N (for each of the k
queries), nearly tight with the cryptographic hardness results
of [8]. Previous work (even in the non-interactive setting)

had higher polynomial running time. Finally, we remark that
this mechanism can also be used to generate a synthetic
database with similar error and running time bounds (in the
non-interactive setting), see below for this extensions.

Relaxed Notions of Utility: To answer Question 4 that
was raised in the introduction, we begin with a discussion
of the negative results of [8] and possible avenues for side-
stepping them. The negative results for producing synthetic
data can be side-stepped by a mechanism whose output has
a different format. This is a promising avenue, but synthetic
data is a useful output format. It is natural to try to side-
step hardness while continuing to output synthetic data. One
possibility is working for restricted query classes, but recent
work of Ullman and Vadhan [14] shows hardness even for
very simple and natural query classes such as conjunctions.
In the known hardness results, however, the databases (or
rather database distributions) that are hard to sanitize are
(arguably) “unnatural”, containing cryptographic data in [8]
and PCP proofs for the validity of digital signatures in [14].
Thus, a natural approach to side-stepping hardness is relax-
ing the utility requirement, and not requiring accuracy for
every input database.

A mechanism that works only for some input databases
is only as interesting as the class of databases for which
accuracy is guaranteed. For example, getting accuracy w.h.p.
for most databases is simple, since (speaking loosely and
informally) most databases behave like a uniformly random
database. Thus, we can get privacy and accuracy by ignoring
the input database (which gives perfect privacy) and answer-
ing according a new database drawn uniformly at random
(which, for most input databases, will give fairly accurate
answers).

Smooth databases and sublinear time: We consider ac-
curacy guarantees for the class of (pseudo)-smooth databases.
Intuitively, we think of these as databases sampled i.i.d. from
smooth underlying distributions over the data universe U .
I.e., underlying distributions that do not put too much weight
on any particular data item (alternatively, they have high
min-entropy). We say that a histogram or distribution y over
U is ξ-smooth, if for every u ∈ U , the probability of u by y
is at most ξ. We say that a histogram or database x ∈ Un is
(ξ, φ)-pseudo-smooth w.r.t a set C of queries if there exists
some ξ-smooth y that approximates it well w.r.t every query
in C. I.e., for every f ∈ C, |f(y) − f(x)| ≤ φ (where by
f(y) we mean the expectation of f over data items drawn
from y). See Section V for formal definitions.

The PMW mechanism yields a mechanism with improved
running time—sub-linear, or even polylogarithmic in N—
for pseudo-smooth databases. The new mechanism (with
smoothness parameter ξ) runs in time that depends linearly
on ξN rather than N . It guarantees differential privacy for
any input database. Its error is similar to that of the mecha-
nism of Theorem I.1 (up to an additional φ error), but this ac-
curacy guarantee is only: (i) for a set C of interactive count-

ing queries that are fixed in advance (i.e. non-adaptively).
We note that the mechanism is interactive in the sense that
it need not know the queries in advance, but accuracy is not
guaranteed for adversarially chosen queries (see the discus-
sion in Section II for motivation for this relaxation), and (ii)
for input databases that are (ξ, φ)-smooth with respect to the
query class C. The performance guarantees are in Theorem
I.2 below. The proof is in Section V

Theorem I.2 (Smooth PMW). Let U be a data universe of
size N . For any ε, δ, β, ξ, φ > 0, the Private Multiplicative
Weights Mechanism of Figure 1 is an (ε, δ)-differentially
private interactive mechanism. For any sequence C of
k interactive counting queries over U that are fixed
in advance (non-adaptively), for any database of size
n that is (ξ, φ)-pseudo-smooth w.r.t C, the mechanism
is (α, β, k)-non-adaptively accurate w.r.t. C, where α =
Õ

(
φ + ε−1n−1/2 log(1/δ) log1/4(ξN) · (log k + log(1/β))

)

The running time in answering each query is
(ξN) · poly(n) · polylog(1/β, 1/ε, 1/δ, 1/ξ, 1/φ).

In particular, for very good smoothness ξ = polylogN/N ,
the running time will depend only poly-logarithmically on
N . The main observation for achieving this improved run-
ning time is that for (pseudo)-smooth databases we can ef-
fectively reduce the data universe size by sub-sampling, and
then apply our algorithm to the smaller data universe. The
mechanism does not require knowledge of the histogram
which certifies that the given input database is pseudos-
mooth.

The privacy guarantee is the standard notion of differential
privacy. I.e., privacy holds always and for every database.
The accuracy guarantee is only for pseudosmooth databases,
and we interpret it as follows. The dataset is drawn i.i.d from
an unknown underlying distribution D (the standard view
in statistics). The mechanism guarantees accuracy and sub-
linear efficiency as long as the underlying data distribution
is smooth. If the underlying distribution is ξ-smooth, then
w.h.p. the database x (which we think of as being drawn
i.i.d from D and of large enough size) is “close” to D on
every query f ∈ C, and so w.h.p. x is (ξ, φ)-smooth and the
mechanism is accurate. An important aspect of this guar-
antee is that there is no need to know what the underlying
distribution is, only that it is smooth. A promising approach
in practice may be to run this mechanism as a very efficient
heuristic. The heuristic guarantees privacy, and also has a
rigorous accuracy guarantee under assumptions about the
underlying distribution. We note that Dwork and Lei [4]
also proposed mechanisms that always guarantee privacy,
but guarantee accuracy only for a subset of databases (or
underlying distributions).

We also note that [13] considered databases drawn from
a distribution that was itself picked randomly from the set
of all distributions. Such “random distributions” are indeed

very smooth (w.h.p. ξ ≤ O(log N/N)) and therefore a spe-
cial case of our model.

An interesting direction for future work is finding dif-
ferentially private mechanisms for other and more useful
or well motivated families of databases, or finding natural
applications where pseudo-smooth databases are of particu-
lar interest. We note that (as one would expect given these
positive results) the negative results for producing synthetic
data are for databases that are neither smooth nor pseudo-
smooth.

II. OVERVIEW OF PROOF AND TECHNIQUES

Multiplicative Weights: We use a (privacy-preserving)
multiplicative weights mechanism (see [12], [1]). The mech-
anism views databases as histograms or distributions (also
known as “fractional” databases) over the data universe U
(as was done in [8]). At a high level, the mechanism works as
follows. The real database being analyzed is x (we view x as
distribution or histogram over U , with positive weight on the
data items in x). The mechanism also maintains an updated
fractional database, denoted as xt at the end of round t.
In each round t, after the t-th counting query ft has been
specified, xt−1 is updated to obtain xt. The initial database
x0 is simply the uniform distribution over the data universe.
I.e., each coordinate u ∈ U has weight 1/N .

In the t-th round, after the t-th query ft has been spec-
ified, we compute a noisy answer ât by adding (properly
scaled) Laplace noise to ft(x)—the “true” answer on the
real database. We then compare this noisy answer with the
answer given by the previous round’s database ft(xt−1). If
the answers are “close”, then this is a “lazy” round, and we
simply output ft(xt−1) and set xt ← xt−1. If the answers
are “far”, then this is an “update” round and we need to
update or “improve” xt using a multiplicative weights re-
weighting. The intuition is that the re-weighting brings xt

“closer” to an accurate answer on ft. In a nutshell, this is
all the algorithm does. The only additional step required
is bounding the number of “update” rounds: if the total
number of update rounds grows to be larger than (roughly)
n, then the mechanism fails and terminates. This will be a
low probability event. See Figure 1 for the details. Given
this overview of the algorithm, it remains to specify how
to: (i) compute ft(xt−1), and (ii) re-weight or improve the
database on update rounds. We proceed with an overview of
the arguments for accuracy and privacy.

For this exposition, we think of the mechanism as explic-
itly maintaining the xt databases, resulting in complexity
that is roughly linear in N = |U |. Using standard tech-
niques we can make the memory used by the mechanism
logarithmic in N (computing each coordinate of xt as it is
needed). Either way, it is possible to compute ft(xt−1) in
linear time.

The re-weighting (done only in update rounds), proceeds
as follows. If in the comparison we made, the answer ac-

cording to xt−1 was “too small”, then we increase by a
small multiplicative factor the weight of items u ∈ U that
satisfy the query ft’s predicate, and decrease the weight of
those that do not satisfy it by the same factor. If the answer
was “too large” then do the reverse in terms of increasing
and decreasing the weights. We then normalize the resulting
weights to obtain a new database whose entries sum to 1.
The intuition, again, is that we are bringing xt “closer” to
an accurate answer on ft. The computational work scales
linearly with N .

To argue accuracy, observe that as long as the number
of update rounds stays below the (roughly n) threshold,
our algorithm ensures bounded error (assuming the Laplace
noise we add is not too large). The question is whether the
number of update rounds remains small enough. This is in
fact the case, and the proof is via a multiplicative weights
potential argument. Viewing databases as distributions over
U , we take the potential of database y to be the relative
entropy RE(x||y) between y and the real database x. We
show that if the error of xt−1 on query ft is large (roughly
larger than 1/

√
n), then the potential of the re-weighted xt is

smaller by at least (roughly) 1/n than the potential of xt−1.
Thus, in every “update” round, the potential drops, and the
drop is significant. By bounding the potential of x0, we get
that the number of update rounds is at most (roughly) n.

“Pay as you go” privacy analysis: At first glance,
privacy might seem problematic: we access the database and
compute a noisy answer in every round. Since the number
of queries we want to answer (number of rounds) might be
huge, unless we add a huge amount of noise this collection of
noisy answers is not privacy preserving. The point, however,
is that in most rounds we don’t release the noisy answer. All
we do is check whether or not our current database xt−1 is
accurate, and if so we use it to generate the mechanism’s
output. In all but the few update rounds, the perturbed true
answer is not released, and we want to argue that privacy
in all those lazy rounds comes (essentially) “for free”. The
argument builds on ideas from privacy analyses in previous
works [8], [7], [13]).

A central concern is arguing that the “locations” of the
update rounds be privacy-preserving (there is an additional,
more standard, concern that the noisy answers in the few
update rounds also preserve privacy). Speaking intuitively
(and somewhat inaccurately), for any two adjacent databases,
there are w.h.p. only roughly n “borderline” rounds, where
the noise is such that on one database this round is update
and on another this round is lazy. This is because, condition-
ing on a round being “borderline”, with constant probability
it is actually an “update” round. Since the number of update
rounds is at most roughly n, with overwhelming probability
the number of borderline rounds also is roughly n. For non-
borderline rounds, those rounds’ being an update or a lazy
round is determined similarly for the two databases, and
so privacy for these rounds come “for free”. The borderline

rounds are few, and so the total privacy hit incurred for them
is small.

Given this intuition, we want to argue that the “privacy
loss”, or “confidence gain” of an adversary, is small. At
a high level, if we bound the worst-case confidence gain
in each update round by roughly O(ε/

√
n), then by an

“evolution of confidence” argument due to [3], [9], [10],
the total confidence gain of an adversary over the roughly n
update rounds will be only ε w.h.p. To bound the confidence
gain, we define “borderline” rounds as an event over the
noise values on a database x, and show that: (1) Conditioned
on a round being borderline on x, it will be an update round
on x w.h.p. This means borderline rounds are few. (2) Con-
ditioned on a round being borderline on x, the worst-case
confidence gain of an adversary viewing the mechanism’s
behavior in this round on x vs. an adjacent x′ is bounded
by roughly ε/

√
n. This means the privacy hit in borderline

rounds isn’t too large, and we can “afford” roughly n of
them. (3) Conditioned on a round not being borderline, there
is no privacy loss in this round on x vs. any adjacent x′. I.e.,
non-borderline rounds come for free (in terms of privacy).

This analysis allows us to add less noise than previous
works, while still maintaining (ε, δ) differential privacy. It
may find other applications in interactive or adaptive privacy
settings. Details are in Section IV-B.

Sublinear Time Mechanism for Smooth Databases: We
observe that we can modify the PMW mechanism to work
over a smaller data universe V ⊆ U , as long as there exists
a database x∗ whose support is only over V , and gives
close answers to those of x on every query we will be
asked. We modify the algorithm to maintain multiplicative
weights only over the smaller set V , and increase slightly the
inaccuracy threshold for declaring a round as “update”. For
the analysis, we modify the potential function: it measures
relative entropy to x∗ rather than x. In update rounds, the
distance between xt−1 and this new x∗ on the current query
is large (since x∗ is close to x, and xt−1 is far from x).
This means that re-weighting will reduce RE(x∗||xt−1), and
even though we maintain multiplicative weights only over a
smaller set V , the number of update rounds will be small.
Maintaining multiplicative weights over V rather than U
reduces the complexity from linear in |U | to linear in |V |.

To use the above observation, we argue that for any
large set of counting queries C and any (ξ, φ)-pseudosmooth
database x, if we choose a uniformly random small (but
not too small) sub-universe V ⊆ U , then w.h.p there
exists x∗ whose support is in V that is close to x on
all queries in C. In fact, sampling a sub=universe of size
roughly ξN · n · log |C| suffices. This means that indeed
PMW can be run on the reduced data universe V with
reduced computational complexity. See Section V-A for this
argument.

Utility here is for a fixed non-adaptive set C of queries
(that need not be known in advance). We find this utility

guarantee to still be well motivated—note that, privacy aside,
the input database itself, which is sampled i.i.d from an
underlying distribution, isn’t guaranteed to yield good an-
swers for adaptively chosen queries. Finally, we remark that
this technique for reducing the data universe size (the data
dimensionality) may be more general than the application
to PMW. In particular, previous mechanisms such as [8],
[10] can also be modified to take advantage of this sampling
and obtain improved running time for smooth databases (the
running time will be polynomial, rather than linear as it is
for the PMW mechanism).

Synthetic databases: We conclude by noting that the
PMW mechanism can be used to generate synthetic data (in
the non-interactive setting). To do this, iterate the mechanism
over a set of queries C, repeatedly processing all the queries
in C and halting when either (i) we made roughly n+1 itera-
tions, i.e. have processed every query in C n times, or (ii) we
have made a complete pass over all the queries in C without
any update rounds (whichever of these two conditions occurs
first). If we make a complete pass over C without any update
rounds, then we know that the xt we have is accurate for
all the queries in C and we can release it (or a subsample
form it) as a privacy-preserving synthetic database. By the
potential argument, there can be at most roughly n update
rounds. Thus, after n+1 iterations we are guaranteed to have
a pass without any update rounds. Previous mechanisms for
generating synthetic databases involved linear programming
and were more expensive computationally.

III. PRELIMINARIES

Let x, y ∈ RN . We define the relative entropy between
x and y as RE(x||y) =

∑
i∈[N] xi log

(
xi

yi

)
+ yi − xi .

This reduces to the more familiar expression
∑

i xi log(xi

yi
)

when
∑

i xi =
∑

i yi = 1 (in particular this happens when
x, y correspond to distributions over [N]). We let Lap(σ)
denote the one-dimensional Laplacian distribution centered
at 0 with scaling σ and corresponding density f(x) =
1
2σ exp

(
− |x|

σ

)
. We denote by 〈x, y〉 =

∑
i∈[N] xiyi the

real valued inner product between two vectors x, y ∈ RN .
When x ∈ RS is a vector supported on a subset of
the coordinates S ⊆ [N] and y ∈ RN , we still write
〈x, y〉 =

∑
i∈S xiyi.

Histograms and linear queries: A histogram x ∈ RN

represents a database or data distribution over a universe U
of size |U | = N. We will assume that x is normalized so
that

∑
i∈U xi = 1. We use histograms in the natural way

to denote standard databases of size n (n-item multisets in
U), and also to denote distributions over the data universe.
The only difference is that databases have support size n,
whereas distributions do not necessarily have small support.

In this work we focus on linear queries f : RN → [0, 1].
As usual we may view a linear query as a vector f ∈ [0, 1]N .
We then use the equality f(x) = 〈f, x〉, where the histogram

x can be either an n-item database or a data distribution.
By our normalization of x, the sensitivity of a linear query
is 1/n. While we assume that ft ∈ [0, 1]N , our algorithm
applies to any linear query ft ∈ [−c, c]N by considering the
query defined as 1/2+ft[i]/2c in coordinate i. In this case,
the error of the algorithm scales linearly in c.

A special case of linear queries are counting queries. A
counting query associated with a predicate from U to {0, 1},
outputs what fraction of the items in its input database satisfy
the predicate. We view a counting query f as a vector
over {0, 1}N specifying which data items satisfy the query’s
predicate.

Accuracy and privacy in the interactive setting: For-
mally, an interactive mechanism M(x) is a stateful random-
ized algorithm which holds a histogram x ∈ RN . It receives
successive linear queries f1, f2, . . . ∈ F one by one, and in
each round t, on query ft, it outputs a (randomized) answer
at (a function of the input histogram, the internal state, and
the mechanism’s coins). For privacy guarantees, we always
assume that the queries are given to the mechanism in an
adversarial and adaptive fashion by a randomized algorithm
A called the adversary. For accuracy guarantees, while we
usually consider adaptive adversarial, we will also consider
non-adaptive adversarial queries chosen in advance—we still
consider such a mechanism to be interactive, because it does
not know in advance what these queries will be. The main
query class we consider throughout this work is the class F
of all linear queries, as well as sub-classes of it.

Definition III.1. We say that a mechanism M is (α, β, k)-
(adaptively) accurate for a database x, if when it is run for
k rounds, for any (adaptively chosen) linear queries, with all
but β probability over the mechanism’s coins ∀t ∈ [k], |at−
〈ft, x〉| ≤ α.

We say that a mechanism M is (α, β, k)-non-adaptively
accurate for a query sequence C of size k and a database x,
if when it is run for k rounds on the queries in C, with all
but β probability over the mechanism’s coins ∀t ∈ [k], |at−
〈ft, x〉| ≤ α.

For privacy, the interaction of a mechanism M(x) and an
adversary A specifies a probability distribution [M(x), A]
over transcripts, i.e., sequences of queries and answers
f1, a1, f2, a2, . . . , fk, ak. Let Trans(F , k) denote the set of
all transcripts of any length k with queries from F . We will
assume that the parameter k is known to the mechanism
ahead of time. Our privacy requirement asks that the entire
transcript satisfies differential privacy.

Definition III.2. We say a mechanism M provides (ε, δ)-
differential privacy for a class of queries F , if for ev-
ery adversary A and every two histograms x, x′ ∈ RN

satisfying ‖x − x‖1 ≤ 1/n, the following is true: Let
P = [M(x), A] denote the transcript between M(x) and
A. Let Q = [M(x′), A] denote the transcript between

M(x′) and A. Then, for every S ⊆ Trans(F , k), we have
P (S) ≤ eεQ(S) + δ .

We will find it useful to work with the following condi-
tion, which (by Lemma III.1 below) is no weaker than (ε, δ)
privacy:

Pru∼P

{∣∣∣log
(

P (u)
Q(u)

)∣∣∣ > ε
}
≤ δ. (1)

(Note that here we are identifying the distribution P with
its density function dP.)

Lemma III.1. (1) implies (ε, δ)-differential privacy.

IV. PRIVATE MULTIPLICATIVE WEIGHTS MECHANISM

Parameters: A subset of the coordinates V ⊆ U with
|V | = M (by default V = U), intended number of rounds
k ∈ N, privacy parameters ε, δ > 0 and failure probability
β > 0. Put σ = 10·log(1/δ) log

1/4 M√
n·ε , η = log

1/4 M√
n

, T =
4σ · (log k + log(1/β))
Input: Database D ∈ Un corresponding to a histogram
x ∈ RN

Algorithm: Set y0[i] = x0[i] = 1/M for all i ∈ V
In each round t ← 1, 2 . . . , k when receiving a linear
query ft do the following:

1) Sample At ∼ Lap(σ). Compute the noisy answer
ât ← 〈ft, x〉+ At.

2) Compute the difference d̂t ← ât − 〈ft, xt−1〉:
If |d̂t| ≤ T , then set wt ← 0, xt ← xt−1, output
〈ft, xt−1〉, and proceed to the next iteration.
If |d̂t| > T , then set wt ← 1 and (a) for all
i ∈ V, update yt[i] ← xt−1[i] · exp(−η · rt[i]) ,
where rt[i] = ft[i] if d̂t > 0 and rt[i] = 1 − ft[i]
otherwise. (b) Normalize, xt[i] ← yt[i]∑

i∈V yt[i]
. (c)

Let m =
∑t

j=1 wj . If m > n · log1/2 M , then abort
and output “failure”. Otherwise, output the noisy
answer ât and proceed to the next iteration.

Figure 1. Private Multiplicative Weights (PMW) Mechanism

In the PMW mechanism of Figure 1, in each round t,
we are given a linear query ft over U and xt denotes a
fractional histogram (distribution over V ⊆ U) computed in
round t. The domain of this histogram is V rather than U.
Here, V could be much smaller than U and this allows for
some flexibility later, in proving Theorem I.2, where we aim
for improved efficiency. For this section, unless otherwise
specified, we assume that V = U. In particular this is the
case in the statement of Theorem I.1, the main theorem that
we prove in this section.

We use at to denote the true answer on the database on
query t, and ât denotes this same answer with noise added
to it. We use dt to denote the difference between the true
answer at and the answer given by xt−1, and d̂t to denote the

difference between the noisy answer and the answer given
by xt−1. The boolean variable wt denotes whether the noisy
difference was large or small. If d̂t is smaller (in absolute
value) than ≈ 1/

√
n, then this round is lazy and we set

wt = 0. If d̂t is larger than threshold then this is an update
round and we set wt = 1.

We are now ready to prove Theorem I.1, i.e. the utility
and privacy of the PMW mechanism. This follows directly
from the next two lemmas that are proved in Section IV-A
and Section IV-B, respectively.

A. Utility analysis

To argue utility, we need to show that even for very large
total number of rounds k, the number of update rounds is
at most roughly n with high probability. This is done using
a potential argument. Intuitively, the potential of a database
xt is the relative entropy between the true histogram x and
our estimate xt.

Since in general V 6= U, we will actually define the
potential with respect to a target histogram x∗ ∈ RN with
support only over V . This x∗ need not be equal to x, nor
does it have to be known by the algorithm. This added bit
of generality will be useful for us later in Section V when
we modify the mechanism to run in sublinear time. For this
section, however, unless we explicitly note otherwise the
reader may think of x∗ as being equal to x. The potential
function is then defined as

Φt = RE(x∗||xt) =
∑

i∈V x∗[i] log
(

x∗[i]
xt[i]

)
. (2)

Note that x∗ and xt are both normalized so that we can think
of them both as distributions or histograms over U . We start
with two simple observations: First, note that Φ0 ≤ log M .
Indeed, by the nonnegativity of entropy H(x∗) we get that
Φ0 = log M−H(x∗) ≤ log M . Second, by the nonnegativity
of relative entropy, we have Φt ≥ 0 for every t. Our goal
is to show that if a round is an update round (and wt = 1),
then the potential drop in that round is at least log1/2 M/n.
In Lemma IV.3 we show that this is indeed the case in every
round, except with β/k probability over the algorithm’s
coins. Taking a union bound, we conclude that with all
but β probability over the algorithm’s coins, there are at
most n · log1/2 M update rounds. The next lemma quantifies
the potential drop in terms of the penalty vector rt and the
parameter η using a multiplicative weights argument.

Lemma IV.1. In each update round t, we have Φt−1−Φt ≥
η〈rt, xt−1 − x∗〉 − η2 .

Proof: A direct calculation shows that

Φt−1−Φt = −η〈rt, x
∗〉− log

(∑
i∈V exp(−ηrt[i])xt−1[i]

)

Note that exp(−ηrt[i]) ≤ 1−ηrt[i]+η2rt[i]2 ≤ 1−ηrt[i]+

η2 . Using this and
∑

xt−1[i] = 1 we get

log

(∑

i∈V

exp(−ηrt[i])xt−1[i]

)
≤ log

(
1− η〈rtxt−1〉+ η2

)

≤ −η〈rt, xt−1〉+ η2 ,

where we used log(1+y) ≤ y for y > −1. We conclude that
Φt−1 −Φt ≥ −η〈rt, x

∗〉+ η〈rt, xt−1〉 − η2 = η〈rt, xt−1 −
x∗〉 − η2 .

In the following lemmata, we condition on the event that
|At| ≤ T/2. Since At is a centered Laplacian with standard
deviation σ and T ≥ 2σ(log k+log(1/β)), this event occurs
with all but β/k probability in every round t.

The next lemma connects the inner product 〈rt, x
∗−xt−1〉

with the “error” of xt−1 on the query ft. Here, error is
measured with respect to the true histogram x. To relate x
with x∗, we further denote err(x∗, ft) = |〈ft, x

∗〉−〈ft, x〉| .
When x∗ = x we get that err(x∗, ft) = 0 always, and
in general we will be interested in x∗ databases where
err(x∗, ft) is small for all t ∈ [k].

Lemma IV.2. In each round t where |d̂t| ≥ T and
|At| ≤ T/2 we have 〈rt, x

∗−xt−1〉 ≥ |〈ft, x〉−〈ft, xt−1〉|−
err(x∗, ft) .

Proof: By assumption |d̂t| ≥ T and |dt − d̂t| ≤ |At| ≤
T/2. Hence, sign(dt) = sign(d̂t). Now suppose sign(dt) <
0. In other words, 〈ft, x〉 − 〈ft, xt−1〉 < 0 and therefore
rt[i] = 1− ft[i]. Hence,
∑

i∈V

rt[i](x∗[i]− xt−1[i]) = −
(
〈ft, x

∗〉 − 〈ft, xt−1〉
)

≥ −
(
〈ft, x〉 − 〈ft, xt−1〉

)
− err(x∗, ft)

= |〈ft, x〉 − 〈ft, xt−1〉| − err(x∗, ft) .

The case where sign(dt) = sign(d̂t) ≥ 0 is analogous. The
claim follows.

Combining the previous two lemmas, we get the following
claim (whose simple proof is omitted).

Lemma IV.3. In each round t where |d̂t| ≥ T and At ≤
T/2 we have Φt−1 − Φt ≥ η

(
T
2 − err(x∗, ft)

)− η2 .

We are now ready to prove our main lemma about utility.

Lemma IV.4 (Utility for V = U). When the
PMW mechanism is run with V = U , it is an
(α, β, k)-accurate interactive mechanism, where α =
O

(
ε−1n−1/2 · log(1/δ) log1/4 N · (log k + log(1/β))

)

Proof: For V = U, we may choose x∗ = x so that
err(ft) = 0 for all t ∈ [k]. Furthermore, with all but β
probability over the algorithm’s coins, the event At ≤ T/2
occurs for every round t ∈ [k]. Hence, by Lemma IV.3 and
T ≥ 4η, the potential drop in every update round is at least
Φt−1 − Φt ≥ η T

2 − η2 ≥ η2 .

Since η = log
1/4 M√

n
, it follows that there are at most

n
√

log N update rounds. In particular, the algorithm termi-
nates. Furthermore, the error of the algorithm is never larger
than T + |At| ≤ 2T which is what we claimed.

We now give a utility analysis in the general case where
we are working with a smaller universe V ⊆ U. This will be
used (in Section V) to prove the utility guarantee of Theorem
I.2. The proof is analogous that the previous one except for
minor modifications.

Lemma IV.5. Let f1, f2, . . . , fk denote a sequence of k lin-
ear queries. Take γ = infx∗ supt∈[k] err(x∗, ft) where x∗

ranges over all histograms supported on V. When the PMW
mechanism is run with V on the query sequence above, and
with threshold parameter T ′ = T + γ, it is an (α, β, k)-
non-adaptively accurate interactive mechanism, where α =
O

(
γ + ε−1n−1/2 log(1/δ) log1/4 M · (log k + log(1/β))

)
.

B. Privacy analysis

Our goal in this section is to demonstrate that the in-
teractive mechanism satisfies (ε, δ)-differential privacy (see
Definition III.2). We assume that all parameters such as V, σ,
η, and T are publicly known. They pose no privacy threat
as they do not depend on the input database. For ease of
notation we will assume that V = U throughout this section.
The proof is the same for V ⊆ U. (the sub-universe V is
always public information).

Simplifying the transcript: Without loss of generality,
we can simplify the output of our mechanism (and hence the
transcript between adversary and mechanism). We claim that
the output of the mechanism is determined by the following
vector v. In particular, it is sufficient to argue that v is
differentially private. For every round t, the t-th entry in
v is defined as vt = ât in case wt = 1 and otherwise
vt =⊥ . In other words, vt is equal to ⊥ if that round
was a lazy round, or the noisy answer ât = 〈ft, x〉+ At if
round t was an update round. This is sufficient information
for reconstructing the algorithm’s output: given the prefix
v<t = (v1, . . . , vt−1), we can compute the current histogram
xt−1 for the beginning of round t. For the lazy rounds, this is
sufficient information for generating the algorithm’s output.
For the update rounds, vt = ât, which is the output for
round t. It is also sufficient information for re-weighting
and computing the new xt.

Note that to argue differential privacy, we need to prove
that the entire transcript, including the queries of the ad-
versary, is differentially private. Without loss of generality,
we may assume that the adversary is deterministic.3 In this
case ft is determined by v<t. Hence, there is no need to
include ft explicitly in our transcript. It suffices to show
that the vector v is (ε, δ)-differentially private.

3We can think of a randomized adversary as a collection of deterministic
adversaries one for each fixing of the adversary’s randomness (which is
independent of our algorithm’s coin tosses).

Lemma IV.6 (Privacy). The PMW mechanism satisfies (ε, δ)-
differential privacy.

Proof: Fix an adversary and histograms x, x′ ∈ RN so
that ‖x− x′‖1 ≤ 1/n. Take m = n · log1/2 M and let ε0 =
1/σm (where σ is the scaling parameter in our algorithm).

Let P denote the output distribution of our mechanism
when run on the input database x and similarly let Q
denote the output of our mechanism when run on x′. Both
distributions are supported on S = ({⊥} ∪R)k. For v ∈ S ,
we define the loss function L(v) := log

(
P (v)
Q(v)

)
. We will

then show that Prv∼P {L(v) ≤ ε} ≥ 1−δ . By Lemma III.1,
this implies (ε, δ)-differential privacy and hence our claim.

Using the chain rule for conditional probabilities, let us
rewrite L(v) as

L(v) = log
(

P (v)
Q(v)

)
=

∑

t∈[k]

log
(

P (vt | v<t)
Q(vt | v<t)

)
, (3)

where P (vt | v<t) denotes the probability of outputting vt

on input histogram x, conditioned on v<t = (v1, . . . , vt−1),
similarly defined for Q (on histogram x′). Note that condi-
tioning on v<t is necessary, since the coordinates of v are
not independent. Further, note that conditioned on v<t, the
estimate xt−1 is the same regardless of whether we started
from x or x′.

Borderline event: Fix v<t. We define an event St =
S(v<t) ⊆ R on the noise values as follows. Let dt =
〈ft, x〉 − 〈ft, xt−1〉. Note that xt−1 depends on v<t and
therefore St will depend on it as well.

We define St so it contains all of the noise values At

where |d̂t| = |dt + At| is within distance σ or more from
the threshold T . Formally, we construct St = S+ ∪ S− to
be made up of two intervals of noise values: one interval
S+ = [T − dt − σ,∞], around T − dt, and the second
interval S− = [−∞,−T − dt + σ], around −T − dt. Note
that, since T > 2σ, these two intervals never intersect.

The next three claims collect the key properties of a
borderline event. Claims IV.7 and IV.9 follow from basic
properties of the Laplacian distribution. The formal proofs
are omitted from this extended abstract.

Claim IV.7. Pr(|d̂t| ≥ T | At ∈ St, v<t) ≥ 1/6 .

Claim IV.8. For every a ∈ R ∪ {⊥}:

log
(

P (vt = a | At 6∈ St, v<t)
Q(vt = a | At 6∈ St, v<t)

)
= 0 .

Claim IV.9. For every a ∈ R ∪ {⊥}:

log
(

P (vt = a | At ∈ St, v<t)
Q(vt = a | At ∈ St, v<t)

)
≤ 2ε0.

Bounding the Expectation: It was shown in [10] that
Claim IV.9 implies

E
[
log

(
P (vt | At ∈ St, v<t)
Q(vt | At ∈ St, v<t)

)]
≤ 8ε2

0 . (4)

Here the expectation is taken over vt sampled according to
the conditional distribution P (vt | At ∈ St, v<t). Directly
by Claim IV.8 we have:

log
(

P (vt | At 6∈ St, v<t)
Q(vt | At 6∈ St, v<t)

)
= 0 , (5)

We can express P (vt | v<t) as a convex combination in
the form P (vt | v<t) = Pr(At ∈ St | v<t)P (vt | At ∈
St, v<t) + Pr(At 6∈ St | v<t)P (vt | At 6∈ St, v<t) , and we
can express Q(vt | v<t) similarly. These observations (with
a convexity argument) imply that

E
vt

[
log

(
P (vt | v<t)
Q(vt | v<t)

)]
≤ 8ε2

0 Pr(At ∈ St | v<t) . (6)

On the other hand, we have
∑k

i=1 Pr(At ∈ St | v<t) ≤ 6m
This is because each round where At ∈ St is a update round
with probability at least 1/6 (by Claim IV.7.) Hence,

EL(v) ≤ 48ε2
0m ≤ ε/2 . (7)

Number of Borderline Rounds: With overwhelming
probability, the number m′ of borderline rounds (rounds t
where St occurs) is not much larger than m (the bound
on the number of update rounds). This is because every
borderline round is with probability at least 1/6 a update
round (Claim IV.7. This is made formal in the claim below.

Claim IV.10. Pr(m′ > 32m log1/2(1/δ)) ≤ δ/2

Proof: Recall conditioned on At ∈ St, we have that
At ∈ Rt with probability 1/6. The latter can only happen
m times. Moreover, the noise in each round is independent
from previous rounds. Hence, by tail bounds for Bernoulli
variables, the event m′ > 32

√
log(1/δ)m has probability

less than exp(− log(2/δ)).
Putting it Together: Condition on there being at most

m′ = 32m log1/2(1/δ) borderline rounds (this is the case
with all but δ/2 probability). We proceed by an “evolution
of confidence argument” similar to [3], [9].

Specifically, we will apply Azuma’s inequality to the
set of m′ borderline rounds. Formally, let B ⊆ [k]
denote the set of borderline rounds. For each t ∈ B,

we view Xt = log
(

P (vt|v<t)
Q(vt|v<t)

)
as a random variable.

Note that L(v) =
∑

t∈B Xt. Further |Xt| ≤ 2ε0 by
Claim IV.9. Hence, by Azuma’s inequality, Pr {L(v) > ε} ≤
Pr {L(v) > E [L(v)] + ε/2} ≤ 2 exp

(
− ε2

8m′·ε2
0

)
,

where ε2

8m′·ε2
0

≥ ε2σ2n2

m′ ≥ 100 log(1/δ)2n log
1/2 N

m′ =
100 log(1/δ) m

m′ .
So, conditioning on having at most m′ borderline rounds

(occurs with all but δ/2 probability), with all but δ/2
probability the loss L(v) deviates by at most ε/2 from its
expectation. The expectation itself is at most ε/2 by (7). We
conclude that with all but δ probability, the total loss L(v)
is bounded by ε.

V. AVERAGE-CASE COMPLEXITY AND SMOOTH
INSTANCES

In this section, we define a notion of average case
complexity for interactive (and non-interactive) mechanisms
that allows us to improve the running time of the PMW
mechanism as a function of the data universe size. This is
done using an argument for reducing the data universe size.

We start by defining the notion of a smooth histogram.
We think of these histograms as distributions over the data
universe that do not place too much weight on any given
data item. In other words, we require the histogram to have
high min-entropy.

Definition V.1 (Smooth). A histogram x ∈ RU s.t.∑
u∈U xu = 1 and ∀u ∈ U : xu ≥ 0 is ξ-smooth if

∀u ∈ U : xu ≤ ξ.

In particular, a ξ-smooth histogram has min-entropy at
least log(1/ξ). We typically think of ξ has a function of N ,
such as polylogN/N or 1/

√
N. Note that small databases

(viewed as histograms) cannot be very smooth, since a ξ-
smooth histogram has at least 1/ξ nonzero coordinates.

We therefore extend the notion of smoothness to the
notion of pseudo-smoothness with respect to a set of queries
C. A histogram is pseudo-smooth w.r.t a query class C
roughly speaking when there exists a smooth histogram x∗

that is close on every query in C. This notion allows even
very sparse histograms (corresponding to small databases) to
be very pseudo-smooth. The formal definition is as follows.

Definition V.2 (Pseudo-smooth). A histogram x ∈ RU s.t.∑
u∈U xu = 1 and ∀u ∈ U : xu ≥ 0 is (ξ, φ)-smooth w.r.t a

class of linear queries C if there exists a ξ-smooth histogram
x∗ s.t. ∀f ∈ C : |〈f, x〉 − 〈f, x∗〉| ≤ φ .

A straightforward way of obtaining pseudo-smooth
databases is by sampling from a smooth histogram.

Claim V.1. Let U be a data universe, C a class of linear
queries over U , and x∗ a ξ-smooth histogram over U . For
any α, β > 0, sample a database x of m = (log(2/β) +
log |C|)/α2 items i.i.d from the distribution of x∗ (i.e. in each
sample we independently pick each u ∈ U with probability
x∗u). Then with all but β probability over the samples taken,
∀f ∈ C : |〈f, x〉 − 〈f, x∗〉| ≤ α, and so the database x is
(ξ, α)-pseudosmooth w.r.t C.

A. Domain reduction for pseudosmooth histograms

For a given smoothness parameter ξ, data universe U ,
and query class C, let V ⊆ U be a sub-universe sampled
uniformly and at random from U . In this section we show
that (as long as V is large enough) if x was a pseudosmooth
histogram over U w.r.t a query class C, then w.h.p. there will
be a histogram x∗ with support only over (the smaller) V
that is “close” to x on C. We emphasize that sampling the
sub-universe V does not require knowing x nor knowing

any x∗ that certifies x being pseudosmooth, we only need
to know ξ. In particular, this approach is privacy-preserving.
This technique for reducing the universe size can be used to
improve the efficiency of the PMW mechanism for pseudos-
mooth input databases.

Lemma V.2. Let U be a data universe and C a collection of
linear queries over U . Let x be (ξ, φ)-psuedo-smooth w.r.t
C. Take α, β > 0, and sample uniformly at random (with
replacement) V ⊆ U so that M = |V | = 4max{ξN ·
(log(1/β) + log |C|)/α2, log(1/β)} Then, with all but β
probability over the choice of V , there exists a histogram
x∗ with support only over V such that

∀f ∈ C : |f(x)− f(x∗)| ≤ φ + α . (8)

Proof: Let y be the ξ-smooth histogram which shows
that x is (ξ, φ)-pseudosmooth. If we sampled uniformly at
random from x or from y then by Claim V.1, we could get a
database over a very small sub-universe that is (as required)
close to x on all the queries in C. This is insufficient because
we want the sub-universe that we find to be independent of
the database x (and so also independent of y).

Still, let us re-examine the idea of sampling from y.
One way of doing this is by rejection sampling. Namely,
repeatedly sample u ∈ U uniformly at random and then
“keep” u with probability yu/ξ. Otherwise reject. When
we use this rejection sampling, since y is a ξ-smooth
distribution, each sample that we keep is distributed by
y (i.e. it is u ∈ U w.p. yu). Repeat this process until
m1 = (log(2/β)+ log |C|)/α2 samples have been accepted.
There is now a set of coordinates V1 ⊆ U , those that were
kept (of size at most m1), and a set of coordinates V2 ⊆ U ,
those that were rejected. By Claim V.1 the sub-universe V1

of samples that we keep (which are i.i.d samples from y)
supports (except with probability β/2) a database x∗ that is
“close” to y (w.r.t C), and so it will also be “close” to x. In
particular, by triangle inequality, maxf∈C |f(x)− f(x∗)| ≤
maxf∈C |f(x)− f(y)|+ maxf∈C |f(y)− f(x∗)| ≤ φ + α .

But now we may take V = V1 ∪ V2. Note that V is
simply a uniformly random subset of the coordinates of U.
And by the previous argument, V supports a histogram that
satisfies (8), namely x∗. To conclude the proof it remains to
argue that V has the required size. Note that the probability
of accepting sample i in the rejection procedure is given
by

∑N
i=1

1
N · yi

ξ = 1/ξN. Hence, the expected number
of queries in total is µ = 2ξN · (log(2/β) + log |C|)/α2.
Moreover, since every sample is independent, we have con-
centration around the expectation. A multiplicative Chernoff
bound shows that the probability that V is larger than twice
its expectation is bounded by exp(−µ) ≤ β/2.

Finally, we use Lemma V.2 together with Lemma IV.5
(utility of PMW for general V), to sample a small sub-
universe V and derive the accuracy guarantee of Theorem
I.2 for the performance of the PMW mechanism on pseudo-

smooth databases. The details are omitted from this extended
abstract.

VI. ACKNOWLEDGEMENTS

We thank Boaz Barak, Cynthia Dwork, Moni Naor, Aaron
Roth, Rob Schapire and Salil Vadhan for their helpful and
insightful comments. Thanks also to the anonymous FOCS
2010 reviewers for their helpful comments.

REFERENCES

[1] S. Arora, E. Hazan, and S. Kale. The multiplicative weights
update method: a meta algorithm and applications. Technical
report, Princeton University, 2005.

[2] A. Blum, K. Ligett, and A. Roth. A learning theory ap-
proach to non-interactive database privacy. In STOC ’08:
Proceedings of the 40th annual ACM symposium on Theory
of computing, pages 609–618, New York, NY, USA, 2008.
ACM.

[3] I. Dinur and K. Nissim. Revealing information while pre-
serving privacy. In Proc. 22nd PODS, pages 202–210. ACM,
2003.

[4] C. Dwork and J. Lei. Differential privacy and robust statistics.
In Proc. 41st STOC, pages 371–380. ACM, 2009.

[5] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating
noise to sensitivity in private data analysis. In Proc. 3rd TCC,
pages 265–284. Springer, 2006.

[6] C. Dwork, F. McSherry, and K. Talwar. The price of privacy
and the limits of LP decoding. In Proc. 39th STOC, pages
85–94. ACM, 2007.

[7] C. Dwork, M. Naor, T. Pitassi, and G. N. Rothblum. Dif-
ferential privacy under continual observation. In Proc. 42nd
STOC. ACM, 2010.

[8] C. Dwork, M. Naor, O. Reingold, G. N. Rothblum, and S. P.
Vadhan. On the complexity of differentially private data
release: efficient algorithms and hardness results. In Proc.
41st STOC, pages 381–390. ACM, 2009.

[9] C. Dwork and K. Nissim. Privacy-preserving datamining on
vertically partitioned databases. In Proc. 24th CRYPTO, pages
528–544. Springer, 2004.

[10] C. Dwork, G. N. Rothblum, and S. Vadhan. Boosting and
differential privacy. Manuscript, 2010.

[11] C. Dwork and S. Yekhanin. New efficient attacks on statistical
disclosure control mechanisms. In Proc. 28th CRYPTO, pages
469–480. Springer, 2008.

[12] N. Littlestone and M. K. Warmuth. The weighted majority
algorithm. Inf. Comput., 108(2):212–261, 1994.

[13] A. Roth and T. Roughgarden. Interactive privacy via the
median mechanism. In STOC, pages 765–774, 2010.

[14] J. Ullman and S. Vadhan. PCPs and the hardness of generating
synthetic data. Electronic Colloquium on Computational
Complexity (ECCC), 1(17), 2010.

