
Christoph Csallner, University of Texas at Arlington (UTA)

Joint work with:
Nikolai Tillmann (MSR), Yannis Smaragdakis (UMass),
Ishtiaque Hussain (UTA), Chengkai Li (UTA)

• Dynamic symbolic execution
• Pioneered by Godefroid et al: Dart [PLDI’05], Cadar et al [SPIN’05]

• Why it is great

• What kind of software engineering problems it may be useful for

• How it works

• Example problems and solutions (tools)
• Each tool implemented on top of a dynamic symbolic execution engine

100% sound
program analysis
 If DSE says: program P does X for input I

then: program P does X for input I

• No false warnings
• Unlike many static analyses

• False warning: Program P does not do X for I, even though analysis said so

• Even if program contains “hairy” constructs: reflection, native code, ...

• Drawback: 100% sound  <100% complete
• Cannot analyze program P for all inputs I

• ... But works great for some I

• Useful for reasoning about a subset of all possible execution paths
• Testing

• Reverse engineering

• Repair of data structures at runtime

• ?

int p(int a, int b)

{

 int c = b-1;

 if (c<0)

 return 0;

 if (c==0)

 crash();

 return a / c;

}

a=0

b=0

c=-1

(-1<0)

ret: 0

a=a

b=b

c=b-1

(b-1<0)

(b<1)

a=0

b=5

c=4

(4>=0)

(4!=0)

ret: 0/4

a=a

b=b

c=b-1

(b-1>=0)

(b>=1)

(b-1!=0)

(b!=1)

a=0

b=1

c=0

(0>=0)

(0==0)

crash

...

int p(int a, int b)

{

 int c = b-1;

 if (c<0)

 return 0;

 if (c==0)

 crash();

 return a / c;

}

a=0

b=0

c=-1

(-1<0)

ret: 0

a=0

b=5

c=4

(4>=0)

(4!=0)

ret: 0/4

a=0

b=1

c=0

(0>=0)

(0==0)

crash

100% sound
program analysis
 If DSE says: program P does X for input I

then: program P does X for input I

 How? It just executed P, observed X for input I

DySy: Dynamic Symbolic Execution for
Dynamic Invariant Inference

• Dynamic: Execute a program with a given set of inputs
• the inputs are assumed to be “representative”

• e.g., a regression test suite

• Good for program comprehension, further analysis (e.g., test
input generation), summaries for interprocedurality

• Otherwise trivial to be sound/accurate:
• just report the (finite) observed behaviors:

 Trivial spec:

p=1 -> m(p)=3 &&

p=50 -> m(p)=24 &&

…
Run test:

infer spec

Program:

m(int p)

Existing tests:

m(1); m(50); …

Outputs:

3; 24; ...
More interesting:

p>0

• A predefined set of invariant templates (around 50)
• unary, binary, ternary relations over scalars

• compare var to const: x = a, x > 0

• linear relationships: y = a*x + b

• ordering: x <= y

• relations over arrays
• sortedness, membership: x in arr

• A gray-box approach
• other than instantiating template for program vars,

only observing values at method entry and exit

• Why not get candidate invariants directly from the program text?
• e.g., if-conditions, loop conditions

• but what if these are on intermediate (local) values or after modifying
input variables?

• Observation: Conditions maintained by dynamic symbolic
execution of the program are exactly what we want!

• Path condition
• predicate the inputs must satisfy for an execution to follow a particular

path

• i.e., a precondition for observing the current behavior!

int testme(int x, int y)

{

 int prod = x*y;

 if (prod < 0)

 throw new ArgumentException();

 if (x < y) // swap them

 {

 int tmp = x;

 x = y;

 y = tmp;

 }

 int sqry = y*y;

 return prod*prod - sqry*sqry;

}

Concrete Symbolic

x=2, y=5 x=x, y=y

prod=10 prod=x*y

(10>=0) (x*y>=0)

(2<5) (x<y)

tmp=2 tmp=x

x=5 x=y

y=2 y=x

sqry=4 sqry=x*x

ret: 84 ret: x*y*x*y - x*x*x*x

int testme(int x, int y)

{

 int prod = x*y;

 if (prod < 0)

 throw new ArgumentException();

 if (x < y) // swap them

 {

 int tmp = x;

 x = y;

 y = tmp;

 }

 int sqry = y*y;

 return prod*prod - sqry*sqry;

}

Concrete Symbolic

x=5, y=2 x=x, y=y

prod=10 prod=x*y

(10>=0) (x*y>=0)

(5>=2) (x>=y)

sqry=4 sqry=y*y

ret: 84 ret: x*y*x*y - y*y*y*y

Precondition:

(x*y >= 0)

Postcondition: return:

(x<y)  (x*y*x*y - x*x*x*x)

else  (x*y*x*y - y*y*y*y)

int testme(int x, int y)

{

 int prod = x*y;

 if (prod < 0)

 throw new ArgumentException();

 if (x < y) // swap them

 {

 int tmp = x;

 x = y;

 y = tmp;

 }

 int sqry = y*y;

 return prod*prod - sqry*sqry;

}

• StackAr is a reference micro-benchmark for Daikon
• Included in the Daikon distribution, discussed in papers

• We hand-inferred an “ideal” set of invariants

• Used the test inputs written by the Daikon authors

• Both DySy and Daikon found almost all reference invariants
• 27 total, of those: DySy: 20 (25 liberally), Daikon: 19 (27 liberally)

• But Daikon inferred a lot more: many redundant or spurious
• 89 “ideal” expressions, DySy: 133, Daikon: 316

• Example:
\old(topOfStack) >= 0
==>
(\old(topOfStack) >> StackAr.DEFAULT_CAPACITY) == 0

Dynamic Symbolic Execution for
Automatic Data Structure Repair

• Software is built on data structures

• During runtime, data structures may get corrupted by
• Software bugs, hardware bugs,

• Particles from space (“soft errors”):
http://en.wikipedia.org/wiki/Cosmic_ray#Effect_on_electronics

• Data structure corruption may crash software

• Crash may be fatal, sometimes we do not have the time to
• Restart system, let alone analyze, debug, fix, re-install

• Example: Real-time systems

• Instead, we want to repair data structure automatically
• Bring into a state that again satisfies a given correctness condition

• Perform repair efficiently: Cannot wait forever!

• Assume the correctness condition is correct
• Bug in correctness condition dooms repair

• Still better than state of the art that assumes that full program is correct

• Correctness condition is smaller than full program  easier to
understand

• Express correctness condition in same language as program
• Easier for programmer to reason about correctness condition

• Example: Java method that checks correctness

public class LinkedList {

 Node header;

 // ..

 public boolean repOk() {

 Node n = header;

 if (n == null)

 return true;

 int length = n.value;

 int count = 1;

 while (n.next != null) {

 count += 1;

 n = n.next;

 if (count > length)

 return false;

 }

 if (count != length)

 return false;

 return true;

 }

}

public class Node {

 int value;

 Node next;

 // ..

}

First node has a value that is

equal to the number of nodes

in the list.

1 2 3
4

Last

accessed

field

4

public class LinkedList {

 Node header;

 // ..

 public boolean repOk() {

 Node n = header;

 if (n == null)

 return true;

 int length = n.value;

 int count = 1;

 while (n.next != null) {

 count += 1;

 n = n.next;

 if (count > length)

 return false;

 }

 if (count != length)

 return false;

 return true;

 }

}

n1.next != null

F T

n1 == null T F

2 > n1.value

F T

n2.next != null

F T

3 > n1.value

F
T

n3.next != null

F T

3 != n1.value

F T

return false return true

public class Node {

 int value;

 Node next;

 // ..

}

4

First node has a value that is

equal to the number of nodes

in the list.

n1 n2 n3

 • Lower is better

• Backtracking search in
list of field accesses in
Juzi leads to exponential
behavior

• No such backtracking in
Dynamic Symbolic
Repair (DSDSR)

• More evaluation needed
• Larger structures

• Different subjects

Dynamic Symbolic Execution for
Database Application Testing

• Many business applications are coded against existing databases
• Databases contain valuable business data

• Databases are large, fairly static, almost append-only

• Example: Insurance company claims database

• Application expected to work well with the data stored in such
an existing database

• Application has huge number of potential execution paths

• But not all paths are equally interesting

• Goal: Focus on paths that can be triggered with the existing data
• Need to make sure application works with the existing data

• Application issues database
queries
• Constrained by user input

• Example: Select a particular
customer

• Input: User-supplied query

• Query results may be used by
program logic
(= branch conditions)

• Different values from database
may trigger different paths

• Different queries may result in
different execution paths

public void dbfoo(String q)

{

 String query = "Select * From r Where "+q;

 Tuple[] tuples = db.execute(query);

 for (Tuple t: tuples) {

 int x = t.getValue(1);

 bar(x);

 }

}

public void bar(int x)

{

 int z = -x;

 if (z > 0) { // c1

 if (z < 100) // c2

 // ..

}

• Generating mock databases
• Generate database contents to trigger additional execution paths

• But are the generated mock databases representative of real
database?
• Real database may contain subtle data patterns

• Hard problem

public void dbfoo(String q)

{

 String query = "Select * From r Where "+q;

 Tuple[] tuples = db.execute(query);

 for (Tuple t: tuples) {

 int x = t.getValue(1);

 bar(x);

 }

}

public void bar(int x)

{

 int z = -x;

 if (z > 0) { // c1

 if (z < 100) // c2

 // ..

}

• Map each candidate execution
path to a database query

• Get multiple candidate queries:

• Query 1 = c1 && !c2

• Query 2 = !c1

Credits and References

“DySy: Dynamic symbolic execution for invariant inference” by
Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis.
In Proc. 30th ACM/IEEE International Conference on Software
Engineering (ICSE), May 2008, pp. 281-290.

“Dynamic symbolic data structure repair” by
Ishtiaque Hussain and Christoph Csallner. In Proc. 32nd ACM/IEEE
International Conference on Software Engineering (ICSE), Volume 2,
Emerging Results Track, May 2010, pp. 215-218.

“Dynamic symbolic database application testing” by
Chengkai Li and Christoph Csallner.
In 3rd International Workshop on Testing Database Systems
(DBTest), June 2010.

