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ABSTRACT 

 

It is widely known that the quality of confidence measure is 

critical for speech applications. In this paper, we present our recent 

work on improving word confidence scores by calibrating them 

using a small set of calibration data when only the recognized word 

sequence and associated confidence scores are made available. The 

core of our technique is the maximum entropy model with 

distribution constraints which naturally and effectively make use of 

the word distribution, the confidence-score distribution, and the 

context information. We demonstrate the effectiveness of our 

approach by showing that it can achieve relative 38% mean square 

error (MSE), 39% negative normalized likelihood (NNLL), and 

23% equal error rate (EER) reduction on a voice mail transcription 

data set and relative 35% MSE, 45% NNLL, and 35% EER 

reduction on a command and control data set. 

 

Index Terms— confidence calibration, confidence measure, 

maximum entropy, distribution constraint, word distribution 

 

1. INTRODUCTION 

 

Despite the significant progress made in improving automatic 

speech recognition (ASR) accuracy over the last three decades, the 

recognition results of spontaneous ASR systems still contain a 

large amount of errors, esp. under the noisy conditions. For speech 

applications (e.g., interactive dialog systems) to make wise 

decisions, it is important for the ASR engines to provide speech 

applications with the word confidence score representing an 

estimate of the likelihood that each word is correctly recognized.  

 Numerous techniques have been developed over the past 

years to improve the quality of the confidence measures [1]. These 

techniques can be classified into three categories. Techniques in 

the first category build a two-class (true or false) classifier based 

on the information (e.g., acoustic and language model scores) 

obtained from the ASR engine. The confidence measure on a 

specific word is then considered as the likelihood that the 

classifier’s output is true. Techniques in the second category 

consider the posterior probability of a word given the acoustic 

signal, which is typically estimated from the ASR lattices, as the 

confidence measure. Techniques in the third category consider the 

confidence estimation problem as an utterance verification problem 

and use the likelihood ratio between the null hypothesis (the word 
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is correct) and the alternative hypothesis (the word is incorrect) as 

the confidence measure. 

No matter which technique is used, the confidence measure is 

typically provided by the ASR engines which use one fixed set of 

model parameters, trained on a generic data set, for all 

applications. This approach has two drawbacks. First, the data used 

to train the confidence measure may differ vastly from the real data 

observed in a specific speech application due to different language 

models used and different environments in which the applications 

are deployed. Second, some information such as distribution of the 

words (see Section 2.2 for detailed discussions) cannot be used in 

the generic confidence model since such information is application 

specific and cannot be reliably estimated from the generic data set. 

As a result, the confidence measure provided by the ASR engines 

can be far from optimal for a specific application. 

In this paper we propose to improve the quality of confidence 

measure by calibrating it for each specific application. We assume 

that we have access to a small amount of transcribed calibration 

data collected under the real usage scenario for the specific 

application. We further assume that the only information we can 

obtain from the ASR engines is the recognized word sequence and 

the associated “raw” confidence scores.  

Given a set of 𝑁 confidence scores and the associated labels 
  𝑐𝑖 ∈  0,1 , 𝑦𝑖 ∈  0,1     𝑖 = 1, ⋯ , 𝑁 , where 𝑦𝑖 = 1 if the word is 

correct and 𝑦𝑖 = 0 otherwise, the quality of confidence measure 

can be evaluated using  four popular criteria. The first criterion is 

mean square error (MSE): 

𝑀𝑆𝐸 =
1

𝑁
  𝑐𝑖 − 𝑦𝑖 

2

𝑁

𝑖=1

. (1) 

The second criterion is negative normalized log-likelihood 

(NNLL): 

𝑁𝑁𝐿𝐿 = −
1

𝑁
 𝑙𝑜𝑔 𝑐𝑖𝛿 𝑦𝑖 = 1 +  1 − 𝑐𝑖 𝛿 𝑦𝑖 = 0  

𝑁

𝑖=1

, (2) 

where 𝛿 𝑥 = 1 if 𝑥 is true and 0 otherwise. The third criterion is 

equal error rate (EER).  And the fourth criterion is the detection 

error trade-off (DET) curve [3], the crossing of which with the 
 0,0 −  1,1  diagonal line gives the EER.  

The confidence calibration approach proposed in this paper is 

based on our recently developed maximum entropy (MaxEnt) 

model with distribution constraints [7] and uses both the 

confidence score distribution and the word distribution 

information. We demonstrate the effectiveness of our approach in 

this paper by showing that it can achieve relative 38% MSE, 39% 

mailto:dongyu@microsoft.com
mailto:szwang@ee.ucla.edu
mailto:deng@microsoft.com
mailto:jinyli@microsoft.com


NNLL, and 23% EER reduction on a voice mail transcription 

(VM) data set and relative 35% MSE, 45% NNLL, and 35% EER 

reduction on a command and control (C&C) data set. 

The rest of the paper is organized as follows. In Section 2 we 

review the MaxEnt model with distribution constraints (MaxEnt-

DC) and the specific treatment needed for continuous features and 

multi-valued nominal features. In Section 3 we first argue that the 

word distribution information differs vastly for different 

applications and hence should be effectively exploited to calibrate 

the confidence scores. We then describe three different approaches 

to exploiting the word distribution information. We evaluate our 

approach empirically on a VM data set and a C&C data set in 

Section 4, and conclude the paper in Section 5. 

 

2. MAXIMUM ENTROPY MODEL WITH DISTRIBUTION 

CONSTRAINTS 

 

The MaxEnt model with moment constraints (MaxEnt-MC) is a 

popular discriminative model that is widely used for classifier 

design. Given an 𝑁-sample training set   𝑥𝑛 , 𝑦𝑛    𝑛 = 1, ⋯ , 𝑁  
and a set of 𝑀 features 𝑓𝑖 𝑥, 𝑦 , 𝑖 = 1, ⋯ , 𝑀 defined on the input 𝑥 

and output 𝑦, the posterior probability  

𝑝 𝑦 𝑥; 𝝀 =
1

𝑍𝝀(𝑥)
exp   𝜆𝑖𝑓𝑖 𝑥, 𝑦 

𝑖

  (3) 

is in a log-linear form, where 𝑍𝝀 𝑥 =  exp  𝜆𝑖𝑓𝑖 𝑥, 𝑦 𝑖  𝑦  is a 

normalization constant to fulfill the probability constraint 
 𝑝 𝑦 𝑥 𝑦 = 1, and 𝜆𝑖  is optimized to maximize the log-

conditional-likelihood 

𝑂 𝝀 =  log 𝑝 𝑦𝑛  𝑥𝑛 

𝑁

𝑛=1

 (4) 

over the whole training set. 

While the MaxEnt-MC model can achieve impressive 

classification accuracy when binary features are used, it was not as 

successful when continuous features are used. We have recently 

developed the MaxEnt model with distribution constraints 

(MaxEnt-DC) [7] and proposed that the information carried in the 

feature distributions be used to improve classification performance. 

Our model is a natural extension to the MaxEnt-MC model by 

observing that the moment constraints are the same as the 

distribution constraints for binary features. 

To use the MaxEnt-DC model, features are first classified into 

three categories: binary, continuous, and multi-valued nominal 

features. For the binary features, the distribution constraint is the 

same as the moment constraint and so no change is needed. For the 

continuous features, each feature 𝑓𝑖 𝑥, 𝑦  is expanded to 𝐾 features 

𝑓𝑖𝑘  𝑥, 𝑦 = 𝑎𝑘 𝑓𝑖 𝑥, 𝑦  𝑓𝑖 𝑥, 𝑦 , (5) 

where 𝑎𝑘 .   is a weight function whose definition and calculation 

method can be found in [6][7][8] and the number 𝐾 needs to be 

determined based on the amount of training data available. For the 

multi-valued nominal features, the feature values are sorted first in 

the descending order of their number of occurrences. The top 𝐽 − 1 

nominal values are then mapped into token IDs in  1, 𝐽 − 1 , and 

all remaining nominal values are mapped into the same token ID  𝐽, 

where 𝐽 is chosen to guarantee the distribution of the nominal 

features can be reliably estimated. Each feature 𝑓𝑖 𝑥, 𝑦  is 

subsequently expanded to 𝐽 features 

𝑓𝑖𝑗  𝑥, 𝑦 = 𝛿 𝑓𝑖 𝑥, 𝑦 = 𝑗 . (6) 

After the feature expansion for the continuous and the multi-

valued nominal features, the posterior probability in the MaxEnt-

DC model can be evaluated as  

𝑝 𝑦 𝑥 =
1

𝑍𝝀(𝑥)
exp   𝜆𝑖𝑓𝑖 𝑥, 𝑦 

𝑖∈ 𝑏𝑖𝑛𝑎𝑟𝑦  

+  𝜆𝑖𝑘𝑓𝑖𝑘  𝑥, 𝑦 
𝑖∈ 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠  ,𝑘

+  𝜆𝑖𝑗 𝑓𝑖𝑗  𝑥, 𝑦 
𝑖∈ 𝑛𝑜𝑚𝑖𝑛𝑎𝑙  ,𝑗

  

(7) 

and parameter estimation can be carried out in the same way as 

that used in the MaxEnt-MC model. In our experiments we have 

used the RPROP [4] training algorithm.  

We have applied the MaxEnt-DC model to several tasks [7] 

[9] and consistently observed improvement over the MaxEnt-MC 

model when sufficient training data are available. In the work 

described in this paper, we use the MaxEnt-DC model to calibrate 

the confidence scores. As the related earlier work, White et al. [5]  

used the MaxEnt-MC model for confidence measurement in 

speech recognition. Leeuwen and Brümmer used the MaxEnt-MC 

model to improve the language recognition scores [2]. Our 

approach performs significantly better than the earlier approaches 

in that we used the MaxEnt-DC model with the constraints on both 

continuous raw confidence scores and multi-valued word tokens. 

 

3. INFORMATION SOURCES AND FEATURES 

 

In our confidence calibration setting, it is assumed that we only 

have access to the word and “raw” confidence score sequences of 

 𝑥𝑛,𝑡 =  
𝑤𝑛,𝑡

𝑐𝑛,𝑡
  𝑡 = 1, ⋯ , 𝑇  (8) 

from the ASR engine, where 𝑤𝑛,𝑡  is the 𝑡-th word in the 𝑛-th 

utterance and 𝑐𝑛,𝑡  is the associated confidence score. The goal of 

confidence calibration is to derive a better confidence score 

𝑐𝑛,𝑡
′ = 𝑝 𝑦𝑛,𝑡  𝑥𝑛,𝑡 ; 𝝀  for each word 𝑤𝑛,𝑡 . We also assume that we 

have a training (calibration) set that tells us whether each 

recognized word is correct (true) or not (false), from which we 

train the parameters of the MaxEnt-DC model. 

At first glance, there seems to be little information we can 

exploit to improve the raw confidence score from the ASR engine. 

The information at hand is the current word’s confidence score 𝑐𝑛,𝑡  

and the previous and next words’ confidence scores 𝑐𝑛,𝑡−1 and 

𝑐𝑛,𝑡+1, since an error in one place can affect the adjacent words. 

After a careful examination, however, we noticed that the 

recognized word itself also contains information as shown in Table 

I, where the top 10 words and their frequencies in VM and C&C 

data sets are displayed. From the table we observe that the 

distributions are significantly different across words and tasks. 

Hence, constraints on the distribution of the words would supply 

useful information to the MaxEnt model. In addition, the 

distribution of the confidence scores across words is also vastly 

different, and hence, constraints on the joint distribution of words 

and confidence scores can also help.  

The above analysis suggests three ways of using the word and 

confidence distribution information in the MaxEnt-DC model. In 

the first approach, we construct four features 

𝑓1 𝑥𝑛,𝑡 , 𝑦𝑛,𝑡 =  
𝑐𝑛,𝑡 𝑖𝑓 𝑦𝑛,𝑡 = 𝑡𝑟𝑢𝑒 

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (9) 



𝑓2 𝑥𝑛,𝑡 , 𝑦𝑛,𝑡 =  
𝑐𝑛,𝑡 𝑖𝑓 𝑦𝑛,𝑡 = 𝑓𝑎𝑙𝑠𝑒 

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (10) 

𝑓3 𝑥𝑛,𝑡 , 𝑦𝑛,𝑡 =  
𝑤𝑛,𝑡 𝑖𝑓 𝑦𝑛,𝑡 = 𝑡𝑟𝑢𝑒 

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (11) 

𝑓4 𝑥𝑛,𝑡 , 𝑦𝑛,𝑡 =  
𝑤𝑛,𝑡 𝑖𝑓 𝑦𝑛,𝑡 = 𝑓𝑎𝑙𝑠𝑒 

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (12) 

for each frame  𝑛, 𝑡 . If context information is used, features 

constructed for the previous and next frames can be exploited. 

Note that in this approach the weight on the raw confidence score 

is shared across all the words. However, different bias weights are 

used for different words since 

𝑝 𝑦 𝑥 =
1

𝑍𝝀(𝑥)
exp   𝜆𝑖𝑘𝑓𝑖𝑘  𝑥, 𝑦 

𝑖∈ 1,2 ,𝑘

+  𝜆𝑖𝑗 𝛿 𝑓𝑖 𝑥, 𝑦 = 𝑗 
𝑖∈ 3,4 ,𝑗

  

(13) 

 

TABLE I 

TOP 10 WORDS AND THEIR FREQUENCIES IN THE VOICE MAIL 

TRANSCRIPTION AND COMMAND AND CONTROL DATA SETS 

VM C&C 

word count percentage word count percentage 

i 463 3.03% three 716 4.81% 

you 451 2.95% two 714 4.80% 

to 446 2.92% five 713 4.79% 

the 376 2.46% one 691 4.64% 

and 369 2.42% seven 651 4.38% 

uh 356 2.33% eight 638 4.29% 

a 302 1.98% six 627 4.21% 

um 287 1.88% four 625 4.20% 

that 215 1.41% nine 616 4.14% 

is 213 1.39% zero 485 3.26% 

 

In the second approach the distribution of the words and 

confidence scores are jointly modeled and two features  

𝑓2𝑗−1 𝑥𝑛,𝑡 , 𝑦𝑛,𝑡 =  
𝑐𝑛,𝑡 𝑖𝑓 𝑤𝑛,𝑡 = 𝑗 & 𝑦𝑛,𝑡 = 𝑡𝑟𝑢𝑒 

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (14) 

𝑓2𝑗  𝑥𝑛,𝑡 , 𝑦𝑛,𝑡 =  
𝑐𝑛,𝑡 𝑖𝑓 𝑤𝑛,𝑡 = 𝑗 & 𝑦𝑛,𝑡 = 𝑓𝑎𝑙𝑠𝑒 

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (15) 

are constructed for each word 𝑗 at each frame. This approach 

essentially uses distinct weights on the raw confidence score but 

share the same bias weight for different words. 

In the third approach we add two more features 

𝑓2𝐽 +1 𝑥𝑛,𝑡 , 𝑦𝑛,𝑡 =  
𝑤𝑛,𝑡 𝑖𝑓 𝑦𝑛,𝑡 = 𝑡𝑟𝑢𝑒 

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (16) 

𝑓2𝐽 +2 𝑥𝑛,𝑡 , 𝑦𝑛,𝑡 =  
𝑤𝑛,𝑡 𝑖𝑓 𝑦𝑛,𝑡 = 𝑓𝑎𝑙𝑠𝑒

0 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  (17) 

for each frame, in addition to the features used in the second 

approach. This approach uses different weights on the confidence 

scores and different bias weights for different words. 

 

4. EMPIRICAL EVALUATION 

 

To evaluate the effectiveness of the confidence calibration 

technique we just described, we have conducted a series of 

experiments on two data sets: VM and C&C. Table II summarizes 

the number of utterances and words in the training (calibration), 

development, and test sets in each data set. The word error rate 

(WER) on the test sets are 28% and 8%, respectively, for the VM 

and C&C data sets. The confidence measure before calibration was 

obtained directly from the ASR engine and was trained using 

generic training sets unrelated to these two data sets. 

Table III compares different approaches using the MSE, 

NNLL, and EER criteria. A setting with continuous features 

expanded to 𝑘 features, with 𝑤-th approach used to incorporate the 

word distribution information, and with the adjacent words’ 

information used (𝑐 = 1) or not used (𝑐 = 0) is denoted as 

KkWwCc. 𝑤 = 0 indicates that the word distribution information 

is not used. In all these settings, we assign a unique token ID for 

words that occur more than 20 times in the training (calibration) set 

and assign the same token ID to all other words.  

 

TABLE II 

SUMMARY OF DATA SETS 

 VM C&C 

# utterances # words # utterances # words 

train 352 15274 4381 14877 

dev 368 15265 4391 14642 

test 371 15300 4371 15164 

 

TABLE III 

CONFIDENCE QUALITY COMPARISON USING DIFFERENT FEATURES 

AND APPROACHES 

 

VM C&C 

MSE NNLL EER MSE NNLL EER 

No Calibration 0.235 0.749 33.8 0.085 0.362 32.7 

K1W0C0 0.177 0.532 33.7 0.059 0.226 32.7 

K4W0C0 0.177 0.531 33.8 0.059 0.223 32.7 

K1W0C1 0.171 0.515 31.7 0.058 0.219 32.3 

K4W0C1 0.171 0.514 31.9 0.057 0.217 30.2 

K1W1C0 0.149 0.458 27.4 0.055 0.202 23.4 

K4W1C0 0.149 0.458 27.5 0.055 0.202 23.1 

K1W1C1 0.146 0.449 26.3 0.054 0.200 22.4 

K4W1C1 0.145 0.447 26.6 0.054 0.200 21.7 

K1W2C1 0.146 0.455 26.1 0.055 0.198 21.1 

K4W2C1 0.155 0.480 27.6 0.057 0.209 21.5 

K1W3C1 0.145 0.451 26.6 0.055 0.203 21.7 

K4W3C1 0.153 0.474 27.7 0.056 0.204 23.2 

 

From Table III, we make several observations. First, if neither 

the word distribution nor the adjacent words’ information is used 

(settings K1W0C0 and K4W0C0), no EER reduction can be 

obtained. However, we still can reduce MSE and NNLL by 

relatively 25% and 29% on the VM test set and 31% and 38% on 

the C&C test set, respectively. This indicates that even without 

using additional information, our calibration approach can still 

make the confidence scores more closely related to the probability 

that the word is correct. Second, if the adjacent words’ confidence 

scores are used but the word distribution information is not used 

(settings K1W0C1 and K4W0C1), MSE, NNLL, and EER can all 

be improved. However, only 6% and 8% relative EER can be 

achieved and additional MSE and NNLL reduction over the 

settings K1W0C0 and K4W0C0 is very small. This means 

although the adjacent words’ confidence scores carry information, 

the improvement they bring is relatively small. This conclusion is 

corroborated by comparing the results obtained under settings 

K1W1C1 and K4W1C1 with that achieved under settings 

K1W1C0 and K4W1C0. Third, if the word distribution 

information is used (settings K*W1C*, K*W2C*, and K*W3C*), 



significant MSE, NNLL, and EER reduction is achieved no matter 

how the word distribution information is used. For example, the 

K4W1C1 setting outperforms the no-calibration setting with 

relative MSE, NNLL, and EER reductions by 38%, 40%, 21%, 

respectively, on the VM test set, and 36%, 45%, 34% on the C&C 

test set. Similarly, the K1W2C1 setting reduces the MSE, NNLL, 

and EER by 38%, 39%, and 23% on the VM test set and 35%, 

45%, and 35% on the C&C test set over the no-calibration setting.  

Fourth, expanding the continuous features to four features helps 

when the word distribution information is not used or the first 

approach is used.  But it does not help when the second and third 

approaches are used to exploit the word distribution information. 

This is due to the fact that in this case each word has its own set of 

confidence weight and bias, and the training (calibration) set size is 

not large enough especially for the words that occur only about 20 

times in the calibration set. The above observations can also be 

made from Figs. 1 and 2 where the DET curve for the VM and 

C&C test sets are illustrated for the settings of no-calibration, 

K4W0C1, K4W1C1, and K1W2C1.  

 
Fig. 1.  The DET curve for the VM test set, where the blue-solid 

line, red-dashed line, magenta-dotted line, and black-dash-dot line 

are corresponding to the no-calibration, K4W0C1, K4W1C1, and 

K1W2C1 settings, respectively. 

 

5. CONCLUSIONS 

 

We have argued that calibrating the confidence scores for different 

speech applications is important and proposed to use the MaxEnt-

DC model [7] to calibrate the word confidence scores by utilizing 

the confidence and word distribution information. We have shown 

on two data sets that our approach significantly boosted the quality 

of the confidence scores even though only the recognized word 

sequence and the associated confidence scores are available. We 

have also observed that the performance gain is mostly from using 

the word distribution information and the three approaches 

proposed to exploit this information perform equally well. 

The quality of the calibrated confidence scores can be further 

improved if the additional information such as the N-best results 

and the acoustic and language model scores are available to the 

MaxEnt-DC model.  
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Fig. 2.  The DET curve for the C&C test set, where the blue-solid 

line, red-dashed line, magenta-dotted line, and black-dash-dot line 

are corresponding to the no-calibration, K4W0C1, K4W1C1, and 

K1W2C1 settings respectively. 
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