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The Data Flood:  
Ecological Science and the 4th Paradigm 

Small keys open big doors 
Turkish Proverb 

 



Emergence of a Fourth Paradigm 

• Thousand years ago – Experimental Science 

• Description of natural phenomena 

• Last few hundred years – Theoretical Science 

• Newton‟s Laws, Maxwell‟s Equations… 

• Last few decades – Computational Science 

• Simulation of complex phenomena 

• Today – Data-Intensive Science 

• Scientists overwhelmed with data sets 

 from many different sources  

• Data captured by instruments 

• Data generated by simulations 

• Data generated by sensor networks 

• eScience is the set of tools and technologies 

 to support data federation and collaboration 

• For analysis and data mining 

• For data visualization and exploration 

• For scholarly communication and dissemination 
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http://es.rice.edu/ES/humsoc/Galileo/Images/Astro/Instruments/hevelius_telescope.gif


The Ecological Data Flood 

• We‟re living in a perfect storm of 
remote sensing, cheap ground-based 
sensors, internet data access, and 
commodity computing 

• Yet deriving and extracting the variables 
needed for science remains problematic 
• Specialized knowledge for algorithms, 

internal file formats, data cleaning, etc, etc 

• Finding the right needle across the 
distributed heterogeneous and very rapidly 
growing haystacks 

 



Environmental Remote Sensing Data 

• Time series raster data 
• Over some period of time at some time 

frequency at some spatial granularity over 
some spatial area 

• Conversion from L0 data to L2 and beyond 
as well as reprojections still require 
specialized skills 

• Similar, but dirtier, than model output 

• Can be “cut out” to create virtual 
sensors 

• Today: PBs (L0) to TBs (L2+) 



Tiling : Do Scientists Have to be Computer Scientists?  

• Reprojection 

• Converts one geo-spatial representation to another.  

• Example is converting from latitude-longitude swaths to 
sinusoidal cells.  

• Spatial resampling   

• Converts one spatial resolution to another.  

• Example is converting from 1 KM to 5 KB pixels. 

• Temporal resampling  

• Converts one temporal resolution to another. 

• Example is converting from daily observation to 8 day 
averages.  

• Gap filling  

• Assigns values to pixels without data either due to inherent 
data issues such as clouds or missing pixels introduced by 
one of the above.  

• Masking 

• Eliminates uninteresting or unneeded pixels. 

• Examples are eliminating pixels over the ocean when 
computing a land product or eliminating pixels outside a 
spatial feature such as a watershed. 

Source Data (Swath format) 

Reprojected Data (Sinusoidal format) 



Environmental Sensor Data 

• Time series data 
• Over some period of time at some time 

frequency at some spatial location. 

• May be actual measurement (L0)                                              
or derived quantities (L1+) 

• (Re)calibrations, gaps and errors                        
are a way of life.  
• Birds poop, batteries die, sensors fail.  

• Various quality assessment and signal 
correction algorithms.  

• Gap filling algorithms key as regular time series 
enable more analyzes 

• Today: GBs to TBs 
“Time is not just another axis” 
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Stormflows 

 

 

Dam Releases 



Sensor Databases and Web Services 

• Emerging trend is that groups use databases and 
web services to access, curate, and republish sensor 
data  

• Most use a mostly normalized schema with the data 
in the center, but moving to putting the series 
catalog in the center 

• Example is CUAHSI ODM 
• Initially to address internet access of US agency data – too 

hard to find, too hard to download all the data, too hard to 
get “just the new data” 

• Included water quality bottle samples, a notion of data 
revisions 

• 11 initial research sites growing over time 

http://www.cuahsi.org http://bwc.berkeley.edu 

http://www.cuahsi.org/
http://bwc.berkeley.edu/


Environmental Ancillary Data 

• Almost everything else! 
• „Constants‟ such as latitude or longitude 

• Intermittent measurements such as grain size 
distributions or fish counts 

• Anecdotal descriptions such as “ripple” or 
“shaded” 

• Events such as algal blooms or leaf fall 
including those derived from sensor data such 
as “flood”  

• Disturbances such as a fire, harvest, landslide 

• Not metadata such as instrument type, 
derivation algorithm, etc.  

• Today: KBs to maybe GBs.  

 

http://www.cosee-ne.net/edu_project_1/images/PonarGrab.JPG
http://shiftingbaselines.org/blog/team_redtide.jpg


Ancillary Data is Different ! 

• Very hard won 

• Dig a pit or shoot an air rifle to get samples 

• Lab costs can be considerable 

• Gleaning from literature (and cross checking!) 

• Very hard to curate 

• FLUXNET collection is currently ~30K numbers.  

• Often passed around in email and cut/pasted from web sites 

• Very different usage patterns 

• Constant location attributes or aliases 

• Time series via splines or step functions 

• Filters for sensor data: periods before or after, sites with summer LAI > x, etc 

• Time benders: “since <event>” 

• Often requires science judgment 

• Different scientists don‟t always agree 

• Anecdotal reporting difficult to interpret 

• Citizen science contributions give important coverage but at quality? 

 



Why Make this Distinction?  

• Provenance and trust widely varies 

• Data acquisition, early processing, and reporting ranges from a 
large government agency to individual scientists.  

• Smaller data often passed around in email; big data downloads 
can take days (if at all) 

• Data sharing concerns and patterns vary 

• Open access followed by (non-repeatable and tedious) pre-
processing  

• True science ready data set but concerns about misuse, 
misunderstanding particularly for hard won data.  

• Computational tools differ.  

• Not everyone can get an account at a supercomputer center  

• Very large computations require engineering (error handling)  

• Space and time aren‟t always simple dimensions 

 Complex shared detector Simple instrument (if any)  

Complex and Heavy process by experts Ad hoc observations and models 

KB 

PB 

GB 

TB 

Science happens when PBs, TBs, GBs, and KBs can be mashed up simply Science happens when PBs, TBs, GBs, and KBs can be mashed up simply 

http://nsidc.org/daac/index.html
https://lpdaac.usgs.gov/


Bridging the Gap with the Cloud 

• Barriers to Science:  
• Resource: compute, storage, networking, visualization 

capability 

• Complexity: specific cross-domain knowledge 

• Tedium: repetitive data gathering or preprocessing tasks 

• With cloud computing, we can:  
• marshal needed storage and compute resources on demand 

without caring or knowing how that happens 

• access living curated datasets without having to find, educate, 
and reward a private data curator 

• run key common algorithms as Software as a Service without 
having to know the coding details or installing software 

• grow a given collaboration or share data and algorithms across 
science collaborations elastically 

Democratizing science analysis by fostering sharing and reuse 

Where do you  

want your data?  

Supercomputer  

users 

Small  

cluster  

owners 

The  

Rest  

of  

Us 



Azure and Cloud Computing 

Ideas rose in clouds; I felt them collide until pairs interlocked, so to 
speak, making a stable combination.  
Henri Poincare  



The Cloud  

• A model of computation and data storage 
based on “pay as you go” access to 
“unlimited” remote data center capabilities 

• A cloud infrastructure provides a 
framework to manage scalable, reliable, on-
demand access to applications 

• A cloud is the “invisible” backend to many 
of our mobile applications 

• Historical roots in today‟s Internet apps 
• Search, email, social networks 

• File storage (Live Mesh, Mobile 
Me, Flickr, …) 

 



The Cloud Landscape  

Infrastructure as a 

Service 

Platform as a 

Service 

Software as a 

Service 

Saas: Delivery of 

software from the 

cloud to the 

desktop 

IaaS: Provide a 

data center and a 

way to host client 

VMs and data 

PaaS: Provide a 

programming 

environment to 

build and 

manage the 

deployment of 

a cloud 

application 

http://open.eucalyptus.com/


Research Clients for A Cloud Research Platform 

• Seamless interaction is crucial 
• Cloud is the lens that magnifies the power of desktop 

• Persist and share data from client in the cloud 

• Analyze data initially captured in client tools, such as Excel 
• Analysis as a service (SQL, Map-Reduce, R/MatLab). 

• Data visualization generated in the cloud, display on client 

• Provenance, collaboration, other core services… 



Azure Configuration by the Fabric Controller (FC) 

Each Guest VM has:  
• 1-8 CPU cores:  1.5-1.7 GHz 

x64 

• Memory: 1.7-14.2 GB 

• Network: 100+ Mbps 

• Local Storage: 500GB – 2 TB 

Configured with:  

• .NET framework 

• IIS 7.0 

• 64-bit Windows Server 2008 
Enterprise 

• Azure platform 

 
Compute 

Storage 



Fabric 

Windows Azure Compute Service  

Guest 
VMs 

Web Role Worker Role 

Agent Agent 

main() 
{  …  }   

Load 
Balancer 

HTTP 

IIS 

ASP.NET, WCF, 
etc. 

• Web Role provides client access web presence 

• Worker Role does all heavy lifting 

• Each can scale independently 

Guest 
VMs 



Scalable, Fault Tolerant Applications 

• Queues are the application glue for loosely coupled applications 
• Link application components, enabling each to scale independently 

• Resource allocation, different priority queues and backend servers 

• Mask faults in worker roles through reliable messaging and retries 

• Use Inter-role communication for performance 
• TCP communication between role instances 

 
efine your ports in the service models 

 

 



… 

Fabric 

 Compute Storage 

Application 

Blobs Queues 

HTTP 

Windows Azure Storage Service 

Tables Drives 

• Blobs, Tables, and Queues:  
• are exposed via .NET and RESTful interfaces 

• can be accessed by Windows Azure apps, other 
cloud applications or non-cloud client 
applications 

• Drives: 
• An NTFS volume (D:) 

surfaced from a blob 



MODISAzure :  
Computing Evapotranspiration (ET) in The Cloud 

You never miss the water till the well has run dry 
Irish Proverb 



Computing ET From Historical Sensor Data 

ET: Evapotranspiration  or release of water to the atmosphere by 
evaporation from open water bodies and transpiration by 
plants 

P: Precipitation including snowfall  

R: Surface runoff in streams and rivers  

dS/dt: change in water storage over time such as increase in lakes or 
groundwater levels 

 

 
In Mediterranean climates such as 

California, a long term equilibrium may 

exist. The ecosystem determines ET by soils 

and climate and the lowest recorded 

annual rainfall may determines vegetation.  

 

𝐸𝑇 =  𝑃 − 𝑅 −  
𝑑𝑆

𝑑𝑡
 

Simple Water Balance 

• Easy to do (with a digital watershed) 

• Long term trends only 

P: http://www.ncdc.noaa.gov/oa/ncdc.html 

R: http://waterdata.usgs.gov/nwis 

~400 MB of data reduced to ~1KB  

http://www.ncdc.noaa.gov/oa/ncdc.html
http://waterdata.usgs.gov/nwis


Computing ET from First Principles 

ET = Water volume evapotranspired (m3 s-1 m-2)  

Δ = Rate of change of saturation specific humidity with air 
temperature.(Pa K-1)  

λv = Latent heat of vaporization (J/g)  

Rn = Net radiation  (W m-2) 

cp = Specific heat  capacity of air (J kg-1 K-1)  

ρa = dry air density (kg m-3)  

δq = vapor pressure deficit (Pa) 

ga = Conductivity of air (inverse of ra) (m s-1) 

gs = Conductivity of plant stoma, air (inverse of rs) (m s-1)  

 γ = Psychrometric constant  (γ ≈ 66 Pa K-1) 

Estimating resistance/conductivity across a 

catchment can be tricky  

• Lots of inputs : big reduction 

• Some of the inputs are not so simple  

𝐸𝑇 =  
∆𝑅𝑛 + 𝜌𝑎  𝑐𝑝 𝛿𝑞 𝑔𝑎

(∆ + 𝛾 1 + 𝑔𝑎 𝑔𝑠  )𝜆𝜐
 

Penman-Monteith (1964) 



Computing ET from Imagery, Sensors and Field Data 
 

• Modification of Penman-
Monteith 
• Additions to handle for dry 

region leaf/air temperature 
differences, snow cover, leaf area 
fill, and temporal upscaling 

• All time value inputs (including 
meterology) from MODIS 

• Conductance from biome 
aggregate flux tower properties 

• Not a simple matrix 
computation due to above 
science needs 

• Validation by comparison 
with flux tower data from 74 
US towers (299 site years)  

 

NASA MODIS 

imagery source 

archives 

5 TB (600K files) 

FLUXNET curated 

sensor dataset 

(30GB, 960 files) 

FLUXNET curated 

field dataset 

2 KB (1 file) 



MODISAzure: Four Stage Image Processing Pipeline 

Data collection stage 

• Downloads requested input 
tiles from NASA ftp sites 

• Includes geospatial lookup 
for non-sinusoidal tiles that 
will contribute to a 
reprojected sinusoidal tile 

Reprojection stage 

• Converts source tile(s) to 
intermediate result 
sinusoidal tiles  

• Simple nearest neighbor or 
spline algorithms 

Derivation reduction stage 

• First stage visible to scientist 

• Computes ET in our initial 
use 

Analysis reduction stage 

• Optional second stage 
visible to scientist 

• Enables production of 
science analysis artifacts 
such as maps, tables, virtual 
sensors 

 

Reduction #1 

Queue 

Source 

Metadata  

AzureMODIS  

Service Web Role Portal 

Request 

Queue 

Scientific 

Results  

Download 

Data Collection Stage 

Source Imagery Download Sites  

. . . 

Reprojection 

Queue 

Reduction #2 

Queue 

Download 

Queue 

Scientists 

Science 
results 

Analysis  Reduction Stage Derivation Reduction Stage  Reprojection Stage 

http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx 

http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx
http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx
http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx


Source Data Download Service  

Download Request 

… 

Service Monitor 

(Worker Role) 

SouceDownloadJobStatus 
Persist 

Parse & Persist 
SourceDownloadTaskStatus 

GenericWorker 

(Worker Role) 

… 

Job Queue 

… 

Dispatch 

Task Queue 

Points to 

… 

ScanTimeList 

Each entity specifies a 

single download job 

request   

Each entity specifies a 

single download task (i.e. a 

single tile)   

Query this table to get the 

list of satellite scan times 

that cover a  target tile 

Swath Source 

Data Storage 

Target ScanTimeList Table Entity 

PartitionKey: Aqua_2002_185 

RowKey: h08v05 

satelliteName: Aqua 

Year: 2002 

dayOfYear: 185 

dayScanTimeList: 2055/2100/2235/ 

… … 

External FTP 

MYD04_L2.A2002185.2055.005.2007068182447.hdf 

MYD04_L2.A2002185.2100.005.2007068182940.hdf 

MYD04_L2.A2002185.2235.005.2007068180629.hdf 

… … 

Example: Download the required source files for reprojecting the target sinusoidal tile: MYD04_L2, Year 2002, Day 

185, h08v05 



Reprojection Service  

Reprojection Request 

… 

Service Monitor 

(Worker Role) 

ReprojectionJobStatus 
Persist 

Parse & Persist 
ReprojectionTaskStatus 

GenericWorker 

(Worker Role) 

… 

Job Queue 

… 

Dispatch 

Task Queue 

Points to 

… 

ScanTimeList 

SwathGranuleMeta 

Reprojection Data 

Storage 

Each entity specifies a 

single reprojection job 

request   

Each entity specifies a 

single reprojection task (i.e. 

a single tile)   

Query  this table to get 

geo-metadata (e.g. 

boundaries) for each swath 

tile 

Query this table to get the 

list of satellite scan times 

that cover a  target tile 

Swath Source 

Data Storage 



Why is Reprojection Tricky?  

• Black pixels have no data 
• Non-US land surface masked 
• Vertical bands are gaps between swath tiles; these can be filled by spatial spline or other fit 
• Clouds cause gaps in surface measurement; these can be filled by temporal fit or model result 

leveraging variables in other products  

• White lines have no data 
• Unable to find nearest neighbor at edges of sinusoidal tiles; either due to quality+gap or  

programming algorithm bug 

• Processing only the layers of interest makes dramatic savings in compute and storage 
 

 
 

• It‟s not just nearest neighbor vs 
aggregating spline and nadir vs oblique 
pixels 

 

h12v04 h13v04 h11v04 h10v04 h09v04 h08v04 

h12v05 h11v05 h10v05 h09v05 h08v05 

h11v06 h10v06 h09v06 h08v06 

Sinusoidal (equal 

land area pixel)  

projection tiles 

across the US 



Reduction Service (Single Stage Only) 

User Web Portal 

(Web Role) 

Job Request 

… 
Job Queue 

Service Monitor 

(Worker Role) 

ReductionJobStatus Table 

Persist 

ReductionTaskStatus Table 

… 

Dispatch 

Task Queue 

Parse & Persist 

GenericWorker 

(Worker Role) 

… 

… 

Points to 

Sinusoidal Land  

Source Storage 

Reprojection Data 

Storage 

Reduction Result 

Storage 

Download 

Link to Results 



Pipeline Stage Priorities and Interactions 

• The Web Portal Role, Service Monitor Role and 5 Generic Worker Roles are 
deployed at most times 
• 5 Generic Workers are sufficient for reduction algorithm testing and development ($20/day) 

• Early results returned to scientist while deploying up to 93 additional Generic Workers; such 
a deployment typically takes 45 minutes 

• Deployment taken down when long periods of idle time are known 

• Heuristic for scaling number of Generic Workers up and down 

• Download stage runs in the deep background in all deployed generic worker 
roles 
• IO, not CPU bound so no competition 

• Reduction tasks that have available inputs run preferentially to Reprojection 
tasks 
• Expedites interactive science result generation 

• If no available inputs and a backlog of reprojection tasks, number of Generic Workers scale 
up naturally until backlog addressed and reduction can continue 

• Second stage reduction runs only after all first stage reductions have completed 



Costs for 1 US Year ET Computation 

• Computational costs 
driven by data scale 
and need to run 
reduction multiple 
times 

• Storage costs driven 
by data scale and 6 
month project 
duration 

• Small with respect to 
the people costs even 
at graduate student 
rates !  

Reduction #1 

Queue 

Source 

Metadata  

Request 

Queue 

Scientific 

Results  

Download 

Data Collection Stage 

Source Imagery Download Sites  

. . . 

Reprojection 

Queue 

Reduction #2 

Queue 

Download 

Queue 

Scientists 

Analysis  Reduction Stage Derivation Reduction Stage  Reprojection Stage 

400-500 GB 

60K files 

10 MB/sec 

11 hours 

<10 workers 

$50 upload 

$450 storage 

400 GB 

45K files 

3500 hours 

20-100  

    workers 

5-7 GB 

5.5K files 

1800 hours 

20-100  

   workers 

<10  GB 

~1K files 

1800 hours 

20-100  

  workers 

$420 cpu 

$60 download 

$216 cpu 

$1 download 

$6 storage 

$216 cpu 

$2 download 

$9 storage 

AzureMODIS  

Service Web Role Portal 

Total: $1420 



Current Status (5/6/2010) 

• 10 US year results encouraging 
• Still some work to be done when 

forest floor is snow covered 

• 1 FluxTower year now under 
investigation 
• 1 FluxTower year ~ 4 US years 

• Adds significant biomes such as 
tropical rain forests and tundras 

• Added comparison with similar 
European sites 

• Global calculation with 5 KM 
pixels under consideration 
• 1 global year ~ 1 US year   

 Manaus - ZF2 K34



Summary 

I can see clearly now, the rain has gone. I can see all obstacles in 
my way.  
Johnny Nash 



Learnings 

• Lowering the barriers to use remote sensing data can enable science 
• NASA makes the data accessible, not science ready 
• At AGU 2009, we learned that a cloud service that just made on-demand jpg mosaics would help 

tremendously 

• Science and algorithm debugging benefit from the same infrastructure as both need to 
scale up and down 
• Debugging an algorithm on the desktop isn‟t enough – you have to debug in the cloud too 
• Whenever running at scale in the cloud, you must reduce down to the desktop to understand the 

results 

 

 
 

 

• Putting all your eggs in the cloud basket means watching 
that basket 
• Cloud scale resources often mean you still manage small 

numbers of resources: 100 instances over 24 hours = $288 
even if idle 

• Where is the long term archive for any results ?  

• Azure is a rapidly moving target and unlike the Grid 
• Commercial cloud backed by large commercial development 

team 
• Bake in the faults for scaling and resilience 
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