Faculty Summit2010

Guarujá, Brasil | May 12 – 14 | In collaboration with FAPESP

# Faculty Summit2010

Guarujá, Brasil | May 12 – 14 | In collaboration with FAPESP

# Bridging the Gaps: Satellites to Science and Desktop to the Cloud

Catharine van Ingen Partner Architect eScience Group, Microsoft Research

# The Data Flood: Ecological Science and the 4<sup>th</sup> Paradigm

Small keys open big doors Turkish Proverb



## **Emergence of a Fourth Paradigm**

- Thousand years ago Experimental Science
  - Description of natural phenomena
- Last few hundred years Theoretical Science
  - Newton's Laws, Maxwell's Equations...
- Last few decades Computational Science
  - Simulation of complex phenomena
- Today Data-Intensive Science
  - Scientists overwhelmed with data sets from many different sources
    - Data captured by instruments
    - Data generated by simulations
    - Data generated by sensor networks
- eScience is the set of tools and technologies to support data federation and collaboration
  - For analysis and data mining
  - For data visualization and exploration
  - For scholarly communication and dissemination

$$\left(\frac{\dot{a}}{a}\right)^2 = \frac{4\pi G\rho}{3} - K\frac{c^2}{a^2}$$



## The Ecological Data Flood

- We're living in a perfect storm of remote sensing, cheap ground-based sensors, internet data access, and commodity computing
- Yet deriving and extracting the variables needed for science remains problematic
  - Specialized knowledge for algorithms, internal file formats, data cleaning, etc, etc
  - Finding the right needle across the distributed heterogeneous and very rapidly growing haystacks



### **Environmental Remote Sensing Data**

- Time series raster data
  - Over some period of time at some time frequency at some spatial granularity over some spatial area
  - Conversion from L0 data to L2 and beyond as well as reprojections still require specialized skills
  - Similar, but dirtier, than model output
- Can be "cut out" to create virtual sensors
- Today: PBs (L0) to TBs (L2+)





### Tiling: Do Scientists Have to be Computer Scientists?

#### Reprojection

- Converts one geo-spatial representation to another.
- Example is converting from latitude-longitude swaths to sinusoidal cells.
- Spatial resampling
  - Converts one spatial resolution to another.
  - Example is converting from 1 KM to 5 KB pixels.
- Temporal resampling
  - Converts one temporal resolution to another.
  - Example is converting from daily observation to 8 day averages.
- Gap filling
  - Assigns values to pixels without data either due to inherent data issues such as clouds or missing pixels introduced by one of the above.
- Masking
  - Eliminates uninteresting or unneeded pixels.
  - Examples are eliminating pixels over the ocean when computing a land product or eliminating pixels outside a spatial feature such as a watershed.



Reprojected Data (Sinusoidal format)

#### **Environmental Sensor Data**

- Time series data
  - Over some period of time at some time frequency at some spatial location.
  - May be actual measurement (L0) or derived quantities (L1+)
- (Re)calibrations, gaps and errors are a way of life.
  - Birds poop, batteries die, sensors fail.
  - Various quality assessment and signal correction algorithms.
  - Gap filling algorithms key as regular time series enable more analyzes
- Today: GBs to TBs





"Time is not just another axis"

#### Sensor Databases and Web Services

- Emerging trend is that groups use databases and web services to access, curate, and republish sensor data
- Most use a mostly normalized schema with the data in the center, but moving to putting the series catalog in the center
- Example is CUAHSI ODM
  - Initially to address internet access of US agency data too hard to find, too hard to download all the data, too hard to get "just the new data"
  - Included water quality bottle samples, a notion of data revisions
  - 11 initial research sites growing over time





### **Environmental Ancillary Data**

- Almost everything else!
  - 'Constants' such as latitude or longitude
  - Intermittent measurements such as grain size distributions or fish counts
  - Anecdotal descriptions such as "ripple" or "shaded"
  - Events such as algal blooms or leaf fall including those derived from sensor data such as "flood"
  - Disturbances such as a fire, harvest, landslide
- Not metadata such as instrument type, derivation algorithm, etc.
- Today: KBs to maybe GBs.



### **Ancillary Data is Different!**

- Very hard won
  - Dig a pit or shoot an air rifle to get samples
  - Lab costs can be considerable
  - Gleaning from literature (and cross checking!)
- Very hard to curate
  - FLUXNET collection is currently ~30K numbers.
  - Often passed around in email and cut/pasted from web sites
- Very different usage patterns
  - Constant location attributes or aliases
  - Time series via splines or step functions
  - Filters for sensor data: periods before or after, sites with summer LAI > x, etc
  - Time benders: "since <event>"
- Often requires science judgment
  - Different scientists don't always agree
  - Anecdotal reporting difficult to interpret
  - Citizen science contributions give important coverage but at quality?



### Why Make this Distinction?

- Provenance and trust widely varies
  - Data acquisition, early processing, and reporting ranges from a large government agency to individual scientists.
  - Smaller data often passed around in email; big data downloads can take days (if at all)
- Data sharing concerns and patterns vary
  - Open access followed by (non-repeatable and tedious) preprocessing
  - True science ready data set but concerns about misuse, misunderstanding particularly for hard won data.
- Computational tools differ.
  - Not everyone can get an account at a supercomputer center
  - Very large computations require engineering (error handling)
  - Space and time aren't always simple dimensions









Complex shared detector

Simple instrument (if any)

Science happens when PBs, TBs, GBs, and KBs can be mashed up simply

# Bridging the Gap with the Cloud

#### Barriers to Science:

- Resource: compute, storage, networking, visualization capability
- Complexity: specific cross-domain knowledge
- Tedium: repetitive data gathering or preprocessing tasks

#### With cloud computing, we can:

- marshal needed storage and compute resources on demand without caring or knowing how that happens
- access living curated datasets without having to find, educate, and reward a private data curator
- run key common algorithms as Software as a Service without having to know the coding details or installing software
- grow a given collaboration or share data and algorithms across science collaborations elastically





Democratizing science analysis by fostering sharing and reuse

# **Azure and Cloud Computing**

Ideas rose in clouds; I felt them collide until pairs interlocked, so to speak, making a stable combination.

Henri Poincare

#### The Cloud

- A model of computation and data storage based on "pay as you go" access to "unlimited" remote data center capabilities
- A cloud infrastructure provides a framework to manage scalable, reliable, ondemand access to applications
- A cloud is the "invisible" backend to many of our mobile applications
- Historical roots in today's Internet apps
  - Search, email, social networks
  - File storage (Live Mesh, Mobile Me, Flickr, ...)





### The Cloud Landscape



#### Research Clients for A Cloud Research Platform

- Seamless interaction is crucial
  - Cloud is the lens that magnifies the power of desktop
  - Persist and share data from client in the cloud
  - Analyze data initially captured in client tools, such as Excel
    - Analysis as a service (SQL, Map-Reduce, R/MatLab).
    - Data visualization generated in the cloud, display on client
    - Provenance, collaboration, other core services...







# Azure Configuration by the Fabric Controller (FC)



#### Each Guest VM has:

- 1-8 CPU cores: 1.5-1.7 GHz x64
- Memory: 1.7-14.2 GB
- Network: 100+ Mbps
- Local Storage: 500GB 2 TB

#### Configured with:

- .NET framework
- IIS 7.0
- 64-bit Windows Server 2008 Enterprise
- Azure platform









## Windows Azure Compute Service





- Web Role provides client access web presence
- Worker Role does all heavy lifting
- Each can scale independently

### Scalable, Fault Tolerant Applications







- Queues are the application glue for loosely coupled applications
  - Link application components, enabling each to scale independently
  - Resource allocation, different priority queues and backend servers
  - Mask faults in worker roles through reliable messaging and retries
- Use Inter-role communication for performance
  - TCP communication between role instances



### Windows Azure Storage Service





**Application** Compute Storage Fabric

- Blobs, Tables, and Queues:
  - are exposed via .NET and RESTful interfaces
  - can be accessed by Windows Azure apps, other cloud applications or non-cloud client applications

# MODISAzure: Computing Evapotranspiration (ET) in The Cloud

You never miss the water till the well has run dry Irish Proverb

### Computing ET From Historical Sensor Data



#### Simple Water Balance

ET: Evapotranspiration or release of water to the atmosphere by evaporation from open water bodies and transpiration by plants

P: Precipitation including snowfall

R: Surface runoff in streams and rivers

dS/dt: change in water storage over time such as increase in lakes or groundwater levels

P: http://www.ncdc.noaa.gov/oa/ncdc.html

R: <a href="http://waterdata.usgs.gov/nwis">http://waterdata.usgs.gov/nwis</a>

- Easy to do (with a digital watershed)
- Long term trends only





In Mediterranean climates such as California, a long term equilibrium may exist. The ecosystem determines ET by soils and climate and the lowest recorded annual rainfall may determines vegetation.

~400 MB of data reduced to ~1KB

### Computing ET from First Principles

$$ET = \frac{\Delta Rn + \rho_a c_p(\delta q)g_a}{(\Delta + \gamma(1 + g_a/g_s))\lambda_v}$$

ET = Water volume evapotranspired (m<sup>3</sup> s<sup>-1</sup> m<sup>-2</sup>)

 $\Delta$  = Rate of change of saturation specific humidity with air temperature.(Pa K<sup>-1</sup>)

 $\lambda_{v}$  = Latent heat of vaporization (J/g)

 $R_{\rm n}$  = Net radiation (W m<sup>-2</sup>)

 $c_p$  = Specific heat capacity of air (J kg<sup>-1</sup> K<sup>-1</sup>)

 $\rho_a$  = dry air density (kg m<sup>-3</sup>)

 $\delta q$  = vapor pressure deficit (Pa)

 $g_a$  = Conductivity of air (inverse of  $r_a$ ) (m s<sup>-1</sup>)

 $g_s$  = Conductivity of plant stoma, air (inverse of  $r_s$ ) (m s<sup>-1</sup>)

 $\gamma$  = Psychrometric constant ( $\gamma \approx 66 \text{ Pa K}^{-1}$ )

- Lots of inputs : big reduction
- Some of the inputs are not so simple



Estimating resistance/conductivity across a catchment can be tricky



### Computing ET from Imagery, Sensors and Field Data

- Modification of Penman-Monteith
  - Additions to handle for dry region leaf/air temperature differences, snow cover, leaf area fill, and temporal upscaling
  - All time value inputs (including meterology) from MODIS
  - Conductance from biome aggregate flux tower properties
  - Not a simple matrix computation due to above science needs
- Validation by comparison with flux tower data from 74 US towers (299 site years)



NASA MODIS imagery source archives 5 TB (600K files)



FLUXNET curated sensor dataset (30GB, 960 files)



FLUXNET curated field dataset 2 KB (1 file)





## MODISAzure: Four Stage Image Processing Pipeline

#### Data collection stage

- Downloads requested input tiles from NASA ftp sites
- Includes geospatial lookup for non-sinusoidal tiles that will contribute to a reprojected sinusoidal tile

#### Reprojection stage

- Converts source tile(s) to intermediate result sinusoidal tiles
- Simple nearest neighbor or spline algorithms

#### Derivation reduction stage

- First stage visible to scientist
- Computes ET in our initial use

#### Analysis reduction stage

- Optional second stage visible to scientist
- Enables production of science analysis artifacts such as maps, tables, virtual sensors



http://research.microsoft.com/en-us/projects/azure/azuremodis.aspx

#### Source Data Download Service

Example: Download the required source files for reprojecting the target sinusoidal tile: MYD04\_L2, Year 2002, Day



### Reprojection Service



### Why is Reprojection Tricky?

 It's not just nearest neighbor vs aggregating spline and nadir vs oblique pixels







- Black pixels have no data
  - Non-US land surface masked
  - Vertical bands are gaps between swath tiles; these can be filled by spatial spline or other fit
  - Clouds cause gaps in surface measurement; these can be filled by temporal fit or model result leveraging variables in other products
- White lines have no data
  - Unable to find nearest neighbor at edges of sinusoidal tiles; either due to quality+gap or programming algorithm bug
- Processing only the layers of interest makes dramatic savings in compute and storage

### Reduction Service (Single Stage Only)



### Pipeline Stage Priorities and Interactions

- The Web Portal Role, Service Monitor Role and 5 Generic Worker Roles are deployed at most times
  - 5 Generic Workers are sufficient for reduction algorithm testing and development (\$20/day)
  - Early results returned to scientist while deploying up to 93 additional Generic Workers; such a deployment typically takes 45 minutes
  - Deployment taken down when long periods of idle time are known
  - Heuristic for scaling number of Generic Workers up and down
- Download stage runs in the deep background in all deployed generic worker roles
  - IO, not CPU bound so no competition
- Reduction tasks that have available inputs run preferentially to Reprojection tasks
  - Expedites interactive science result generation
  - If no available inputs and a backlog of reprojection tasks, number of Generic Workers scale up naturally until backlog addressed and reduction can continue
  - Second stage reduction runs only after all first stage reductions have completed

### Costs for 1 US Year ET Computation

- Computational costs driven by data scale and need to run reduction multiple times
- Storage costs driven by data scale and 6 month project duration
- Small with respect to the people costs even at graduate student rates!







400 GB

20-100

45K files

3500 hours

workers









Scientific Results Download



\$6 storage

MODIS Data Reduction Service

**AzureMODIS** 

Reduction #1 Queue

1800 hours 20-100 workers

<10 GB ~1K files \$216 cpu 1800 hours \$2 download 20-100 \$9 storage workers

**Analysis Reduction Stage** 

Reduction #2 Queue

### **Current Status (5/6/2010)**

- 10 US year results encouraging
  - Still some work to be done when forest floor is snow covered
- 1 FluxTower year now under investigation
  - 1 FluxTower year ~ 4 US years
  - Adds significant biomes such as tropical rain forests and tundras
  - Added comparison with similar European sites
- Global calculation with 5 KM pixels under consideration
  - 1 global year ~ 1 US year



Comparison of using only morning observation with using both morning and afternoon observation. Plotted is ET expressed as LE computed Scaled 8-day average vs Flux tower 8-day mean daily.



Br-SP1
Sao Paulo Cerrado



Br-Ma2 Manaus - ZF2 K34

# Summary

I can see clearly now, the rain has gone. I can see all obstacles in my way.

Johnny Nash

### Learnings

- Lowering the barriers to use remote sensing data can enable science
  - NASA makes the data accessible, not science ready
  - At AGU 2009, we learned that a cloud service that just made on-demand jpg mosaics would help tremendously
- Science and algorithm debugging benefit from the same infrastructure as both need to scale up and down
  - Debugging an algorithm on the desktop isn't enough you have to debug in the cloud too
  - Whenever running at scale in the cloud, you must reduce down to the desktop to understand the results
- Putting all your eggs in the cloud basket means watching that basket
  - Cloud scale resources often mean you still manage small numbers of resources: 100 instances over 24 hours = \$288 even if idle
  - Where is the long term archive for any results?
- Azure is a rapidly moving target and unlike the Grid
  - Commercial cloud backed by large commercial development team
  - Bake in the faults for scaling and resilience



### Acknowledgements

#### **Berkeley Water Center, University of California, Berkeley, Lawrence Berkeley Laboratory**

- Jim Hunt
- Dennis Baldocchi
- Deb Agarwal
- Monte Goode
- Keith Jackson
- Rebecca Leonardson (student)
- Carolyn Remick
- Susan Hubbard

#### **University of Virginia**

- Marty Humphrey
- Norm Beekwilder
- Jie Li (student)

#### San Diego Supercomputing Center

- Ilya Zavlavsky
- David Valentine
- Matt Rodriguez (student)
- Tom Whitenack

#### **CUAHSI**

- David Maidment
- David Tarboton
- Rick Hooper
- Jon Goodman

#### **RENCI**

- John McGee
- Oleg Kapeljushnik (student)

#### **Fluxnet Collaboration**

- Dennis Baldocchi
- Rodrigo Vargas (postdoc)
- Youngryel Ryu (student)
- Dario Papale (CarboEurope)
- Markus Reichstein (CarboEurope)
- Hank Margolis (Fluxnet-Canada)
- Alan Barr (Fluxnet-Canada)
- Bob Cook
- Susan Holladay
- Dorothea Frank

#### **Ameriflux Collaboration**

- Beverly Law
- Tara Hudiburg (student)
- Gretchen Miller (student)
- Andrea Scheutz (student)
- Christoph Thomas
- Hongyan Luo (postdoc)
- Lucie Ploude (student)
- Andrew Richardson
- Mattias Falk
- Tom Boden

#### **North American Carbon Program**

- Kevin Schaefer
- Peter Thornton

#### **University of Queensland**

Jane Hunter

#### **University of Indiana**

You-Wei Cheah (student)

#### **Microsoft Research**

- Yogesh Simmhan
- Roger Barga
- Dennis Gannon
- Jared Jackson
- Nelson AraujoWei Liu
- Tony Hey
- Dan Fay



#### http://azurescope.cloudapp.net/



http://www.fluxdata.org