Microsoft® Research

Faculty Summit2010

- A New Approach to Concurrency ang
| Parallelism (Part 2)




Performance Speedup Responsiveness

Atomicity, Determinism,
Correctness Deadlock, Livelock,
Linearizability, Data races, ...



- -
PPCP Courseware: http://research.microsoft.com/ppep

 What: 16 weeks (8 units) of material
» Slides
Notes
Exercises, quizzes
Sample programs and applications
» Tests and tools

* Who: beginning graduates, senior undergraduates
» Prerequisites: OO programming, systems, data structures

« Dependencies:
. NET4
« C# and F# languages




PPCP Units: Breadth with Correctness Concepts

* Unit 1: Imperative Data Parallel Programming
« Unit 2: Shared Memory

* Unit 3: Concurrent Components

* Unit 4: Functional Data Parallel Programming
* Unit 5: Scheduling and Synchronization

« Unit 6: Interactive/Reactive Systems

« Unit 7: Message Passing

« Unit 8: Advanced Topics




CHESS Concurrency Testing Technold o

DD/ eSeaTchIMIGIOS OGO N/ Chessy)

* Source code release * LineUp: automatic linearizability
chesstool.codeplex.com checking [PLDI10]

* Preemption bounding [PLDIO7]
speed search for bugs « Data race detection

simple counterexamples

 Fair stateless exploration [PLDIO8]

scales to large programs

* Architecture [OSDIO8] .
« Coming: CHESS

» Tasks and SyncVars
. API wrappers « Concurrency unit tests
* Determinism checking

Memory model issues

Tested


http://www.codeplex.com/

Some Correctness Concepts Featuredin PPCP

Data race free discipline and happens-before data race detection
Automated linearizability checking of concurrent components

Supported by CHESS




Microsoft® Research

Faculty Summit2010

Data Races




Why Care About Data Races?

« Data races may reveal synchronization errors

* Many errors (from simple omissions to algorithmic mistakes) can
manifest as data races.

« Data race detectors can often help to find & fix concurrency bugs very
efficiently.

« But: some data races may appear “benign”, watering down the utility
of such detectors (false alarms)

« Data races are not portable
» Behavior of program with data races depends on memory model

» Relaxations in compiler or hardware may introduce strange &
platform-dependent effects



What is a Data Race, Traditiona Iy?

* Long history, many definitions

« Sometimes linked to specific programming idioms
« “shared variables must be lock-protected”

« Often unclear terminology
« "“Races” vs. “Data Races”: Is it a race if two threads try to acquire the same lock?
* "“Ordered by synchronization”: What counts as synchronization?

« Recently: Convergence of Definition

» Motivated by research on memory models and recent proposals for language-
level memory models (Java, C++)



What is a Data Race,

 If two conflicting memory accesses happen concurrently, we
have a data race.

« Two memory accesses conflict if
» They target the same location
* They are not both reads
» They are not both synchronization operations

ke



Proposal: Follow DRF Discipline

« Data-Race-Free (DRF) Discipline

means we write programs that have NO data races (not even
“benign” ones).

« Already "best practice” for many, but not all programmers.



How Does DRF Discipline Affectm

* Answer A:
I have to protect ey
sync 2ertton techniques

and must not use lock-free

Answer B:
I have to properly declare racy accesses using type qualifiers

(atomic, volatile) or special operations (interlocked, compare-and-
swap)




DRF Discipline Pros & Cons

 Pros
* Code is more declarative (easier to see intentions)

* Code is immune against memory model relaxations
(= why DRF invented in the first place).

« All data races are bugs, no benign races.
» Code is easier to verify and debug.
 Cons
« Have to learn how to use type qualifiers correctly
* Annotation overhead (not much)
« Some qualifiers not efficient on some platforms



How to find a data race?

 Test for concurrent conflicting accesses
* Problem: schedule varies from run to run

 Probability of making potentially concurrent accesses actually
simultaneous often not very good.

 Idea: happens-before race detector

« Check for conflicting accesses that could have been concurrent in a
slightly different schedule



Happens-Before Order [Laprt]

« Use logical clocks and timestamps to define a partial order called
happens-before on events in a concurrent system

 States precisely when two events are logically concurrent
(abstracting away real time)

1#(1,0,0) l®21,0) 10,01 . Cros.s—edges from send events to
receive events
2 (2,0,0) (0,0,2) e (a; ay aj) h.appens before
3& (by, by, by) iff a; < b; and
(3,3,2) (0,0,3) a, < b, and a5 < b,




Happens-Before for Shared IVMiemory

Distributed Systems
Cross-edges from send to receive events

Shared Memory systems

Cross-edges represent ordering effect of synchronization
» Edges from lock release to subsequent lock acquire
» Edges from volatile writes to subsequent volatile reads
» Long list of primitives that may create edges

« Semaphores, Waithandles, Rendezvous, system calls (asynchronous
10), ...



Static Program Dynamic Execution Trace

1‘( Iflag)->true
int data; - 1-@1
[volatile bool flag; J data = 1,*110\ 2‘ yield()

Thread 1 Thread 2
g : flag = true; Y
data = 1; while (!flag) (!flag)->false
flag = true; yield();

int x = data;

(1,2) X = data

 Not a data race because (1,0) < (1,4)

- If flag were not declared volatile, we would not add a cross-
edge, and this would be a data race.



Microsoft® Research

Faculty Summit2010

Automated Linearizability Checking




i

An Implementation of Concurrent Queue

#pragma warning disable 0420

Jf==+4==

"

// Copyright (¢) Microsoft Corporation. Al rights reserved.
"

/7

/11 <summary>

/// Get the data array to be serialized

/1] </summary>

[OnSerializing]

private void OnSerializing(StreamingContext context)

{
// save the data into the serialization array to be saved
m_serializationArray = ToArray();

// ConcurrentQueue.cs

// <OWNER>csong</OWNER>

/7

/1 A'lock-free, concurrent queue primitive, and its associated debugger view type.
/7

/7

E
E

/1 <summary>

/// Construct the queue from a previously seiralized one
/11 </summary>

[OnDeserialized]

private void OnDeserialized(StreamingContext context)

Contract Assert(m_serializationArray != null);

using System;

using System Collections;

using System Collections.Generic;
using System Diagnostics;

using BadSystemDiagnosticsContracts;
using System Runtime.ConstrainedExecution;
using System Runtime.InteropServices;
using System Runtime Serialization;
using System Security;

using System Security. Permissions;
using BadSystemThreading;

using BadSystem;

using System.Threading;

llectionsConcurrent

/// <summary>

/// Represents a thread-safe first-in, first-out collection of objects.
/1/ </summary>

/// <typeparam name='
/// <remarks>

T'>Specifies the type of elements in the queue.</typeparam>

/// All public and protected members of <see cref="ConcurrentQueue{T}"/> are thread-safe and may be used

/// concurrently from multiple threads.
/11 </remarks>

[ComVisible(false)]
[DebuggerDisplay("Count = {Count)")]
[DebuggerT
[HostProtection(Synchronization = true, ExternalThreading = true)]
[Serializable]

public class ConcurrentQueue<T> : IProducerConsumerCollection<T>

//fields of ConcurrentQueue
[NonSerialized]
private volatile Segment m_head;

[NonSerialized]
private volatile Segment m_tail;

private T[] m_serializationArray; // Used for custom serialization.

private const int SEGMENT_SIZE = 32;

ollectionsConcurrent_ProducerConsumerCollectionDebugView <>))]

I ollection(m_serializationArray);
m_serializationArray = null;

/1/ <summary>
/// Copies the elements of the <see cref="T:System.Collections.ICollection"/> to an <see

/11 cref="T:System.Array"/>, starting at a particular

/1] <see cref="T:System.Array"/> index.

11/ </summary>

/// <param name="array">The one-dimensional <see cref="T:System.Array">Array</see> that is the

/// destination of the elements copied from the

/1] <see cref="T:System.Collections.Concurrent.ConcurrentBag"/>. The <see

J// cref="T:System Array"> Array</see> must have zero-based indexing.</param>

J// <param name="index">The zero-based index in <paramref name="array"/> at which copying

/// begins.</param>

/// <exception cref="ArgumentNullException"> <paramref name="array"/> is a null reference (Nothing in
/// Visual Basic).</exception>

J// <exception cref="ArgumentOutOfRangeException"> <paramref nam
/1] zero.</exception>

/11 <exception cref=
/1/ <paramref name

index"/> is less than

‘ArgumentException”>

rray"/> is multidimensional. -or-

/11 <paramref nam rray”/> does not have zero-based indexing. -or-

/// <paramref name="index"/> is equal to or greater than the length of the <paramref name="array"/>
/// -or- The number of elements in the source <see cref="T:System.Collections.ICollection"/> is
/// greater than the available space from <paramref name="index"/> to the end of the destination
J// <paramref name="array"/>. -or- The type of the source <see

/1/ cref="T:System.Collections.ICollection"/> cannot be cast automatically to the type of the

/// destination <paramref name="array"/>.

/11 </exception>

void ICollection.CopyTo(Array array, int index)

// Validate arguments.
if (array == null)

throw new ArgumentNullException("array");

// We must be careful not to corrupt the array, so we will first accumulate an

// internal list of elements that we will then copy to the array. This requires

// some extra allocation, but is necessary since we don't know up front whether
// the array is sufficiently large to hold the stack's contents.
((ICollection)ToList().CopyTo(array, index);

public bool IsEmpty
{

get
{
Segment head = m_head;
if (thead IsEmpty)
//fast route 1:
//if current head is not empty, then queue is not empty
return false;
else if (head.Next
//fast route 2:
J/if current head is empty and it's the last segment
//then queue is empty
return true;
else
//slow route:
J/current head is empty and it is NOT the last segment,
//it means another thread is growing new segment

= null)

SpinWait spin = new SpinWait(;
while (head IsEmpty)

{
if (head.Next == null)
return true;

spin.SpinOnce();
head = m_head;

}
return false;
}
}
}

/1] <summary>

/// Copies the elements stored in the <see cref="ConcurrentQueue{T}"/> to a new array.
/1] </summary>

/// <returns>A new array containing a snapshot of elements copied from the <see

/1/ cref="ConcurrentQueue{T}"/>.</retums>

public T[] ToArray()

{
return Tolist().ToArray();

/// <summary>

/// Copies the <see cref="ConcurrentQueue(T)"/> elements to a new <see

/1] cref="T:system.Collections Generic.List(T)"/>.

/1 </summary>

/// <retums>A new <see cref="T:System.Collections.GenericList(T}"/> containing a snapshot of
/// elements copied from the <see cref="ConcurrentQueue{T}"/>.</returns>

private List<T> ToList)

//store head and tail positions in buffer,

Segment head, tail;

int headLow, tailHigh;

GetHeadTailPositions(out head, out tail, out headLow, out tailHigh);

return head.ToList(headLow, tailHigh);




| et’s write a test

g = new ConcurrentQueue() ;

g.push (10) ; t = q.pop();

Assert( ? )




| et’s write a test

g = new ConcurrentQueue() ;

g.push(10) ;

Assert:
g.size() is O or 1




| et’s write a test

g = new ConcurrentQueue() ;

g.push (10) ;

Assert:
g.size() is O or 1
and t is 10 or <fail>




L et’s write a test

g = new ConcurrentQueue() ;

g.push (10) ;

Assert:
t = fail && g.size() = 1 &&
qg.peek() == 10 ||




| et’s write a test

g = new ConcurrentQueue() ;

g.push(10) ; g.push (20) ;

Assert ( ? )




L et’s write a test

g = new ConcurrentQueue() ;

Assert:
g.size() == 0 &&

10 || £t = 20) &s&
10 || £t = 20) &s&




L et’s write a test

-

g = new ConcurrentQueue() ;

gq.push (10) ;

tl = q.pop();
t2 = q.peek();

gq.push (30) ;
ul = gq.peek() ;
gq.push (40) ;

vl = q.pop() ;
g.push (50) ;
v2 = q.peek();

Assert ( ? )




Wouldn't it be nice if we could

g = new ConcurrentQueue() ;

gq.push (10) ;
tl = q.pop();
t2 = g.peek() ;
h (20) ;

gq.push (30) ;
ul = g.peek() ;
gq.push (40) ;

2 -_— .

vl = q.pop()
g.push (50) ;

v2 = g.peek() ;
h

Assert:
ConcurrentQueue
behaves
like a queue

- -




Informally, this is “thread safe

ConcurrentQueue behaves like a queue

e A piece of code is thread-safe if it
i functions correctly during
N simultaneous execution by multiple

WIKIPEDIA threads.
The Free Encyclopedia




Formally, this is Linearizability | er ihy 8 \Wing '90]

ConcurrentQueue behaves like a queue
\ J | )

=<

Concurrent
behaviors of

a sequential
specification

are
consistent

Every operation appears to occur
atomically at some point between the
call and return




So, simply check linearizability

g = new ConcurrentQueue() ;

q.push (10) ;

tl = q.pop();
t2 = g.peek() ;

g.push (30) ;
ul = g.peek() ;
g.push (40) ;

vl = q.pop()
g.push (50) ;
v2 = g.peek() ;

-

Assert:
Linearizability wrt
a given sequential




LineUp: No need to provide a sequential specificatio

g = new ConcurrentQueue() ;

gq.push (30) ;
ul = g.peek() ;
gq.push (40) ;

vl = g.pop() ;
g.push (50) ;
v2 = g.peek() ;

Assert:
Exists some
deterministic spec
wrt which g is

b4
)

==




LineUp Detalls [see PLDI 10 paper]

« Automatically synthesize a sequential specification
« By observing sequential behaviors of a component

» Check linearizability with respect to this spec

« Completeness
* LineUp failure = Component is not linearizable wrt any deterministic spec

» Restricted Soundness
« Component is not linearizable =» Exists a test case for which LineUp fails



Formalizing “Thread Safety”

» Thread safety == Generalized linearizability

 Linearizability does not check against incorrect blocking
« An implementation that blocks on all operations is vacuously linearizable

| .



Performance Speedup Responsiveness

Atomicity, Determinism,
Correctness Deadlock, Livelock,
Linearizability, Data races, ...



Microsoft® Research

Microsoft



