
Tom Ball (tball@microsoft.com)
Sebastian Burckhardt (sburckha@microsoft.com)
Madan Musuvathi (madanm@microsoft.com)
Microsoft Research

P&C Parallelism Concurrency

Performance Speedup Responsiveness

Correctness

Atomicity, Determinism,

Deadlock, Livelock,

Linearizability, Data races, …

P&C

• What: 16 weeks (8 units) of material
• Slides

• Notes

• Exercises, quizzes

• Sample programs and applications

• Tests and tools

• Who: beginning graduates, senior undergraduates

• Prerequisites: OO programming, systems, data structures

• Dependencies:
• .NET 4

• C# and F# languages

• Unit 1: Imperative Data Parallel Programming

• Unit 2: Shared Memory

• Unit 3: Concurrent Components

• Unit 4: Functional Data Parallel Programming

• Unit 5: Scheduling and Synchronization

• Unit 6: Interactive/Reactive Systems

• Unit 7: Message Passing

• Unit 8: Advanced Topics

• Source code release
• chesstool.codeplex.com

• Preemption bounding [PLDI07]
• speed search for bugs

• simple counterexamples

• Fair stateless exploration [PLDI08]
• scales to large programs

• Architecture [OSDI08]

• Tasks and SyncVars

• API wrappers

• LineUp: automatic linearizability
checking [PLDI10]

• Data race detection

• Memory model issues

• Coming:
• Concurrency unit tests

• Determinism checking

http://www.codeplex.com/

• Data race free discipline and happens-before data race detection

• Automated linearizability checking of concurrent components

• Supported by CHESS

Data Race Free (DRF) Discipline
Happens-Before Race Detection

• Data races may reveal synchronization errors
• Many errors (from simple omissions to algorithmic mistakes) can

manifest as data races.

• Data race detectors can often help to find & fix concurrency bugs very
efficiently.

• But: some data races may appear “benign”, watering down the utility
of such detectors (false alarms)

• Data races are not portable
• Behavior of program with data races depends on memory model

• Relaxations in compiler or hardware may introduce strange &
platform-dependent effects

• Long history, many definitions

• Sometimes linked to specific programming idioms
• “shared variables must be lock-protected”

• Often unclear terminology
• “Races” vs. “Data Races”: Is it a race if two threads try to acquire the same lock?

• “Ordered by synchronization”: What counts as synchronization?

• Recently: Convergence of Definition
• Motivated by research on memory models and recent proposals for language-

level memory models (Java, C++)

Today/Tomorrow

• If two conflicting memory accesses happen concurrently, we
have a data race.

• Two memory accesses conflict if
• They target the same location

• They are not both reads

• They are not both synchronization operations

• Data-Race-Free (DRF) Discipline

means we write programs that have NO data races (not even
“benign” ones).

• Already “best practice” for many, but not all programmers.

• Answer A:
I have to protect everything with locks and must not use lock-free
synchronization techniques

• Answer B:
I have to properly declare racy accesses using type qualifiers
(atomic, volatile) or special operations (interlocked, compare-and-
swap)

• Pros
• Code is more declarative (easier to see intentions)

• Code is immune against memory model relaxations
(= why DRF invented in the first place).

• All data races are bugs, no benign races.

• Code is easier to verify and debug.

• Cons
• Have to learn how to use type qualifiers correctly

• Annotation overhead (not much)

• Some qualifiers not efficient on some platforms

• Test for concurrent conflicting accesses
• Problem: schedule varies from run to run

• Probability of making potentially concurrent accesses actually
simultaneous often not very good.

• Idea: happens-before race detector
• Check for conflicting accesses that could have been concurrent in a

slightly different schedule

• Use logical clocks and timestamps to define a partial order called
happens-before on events in a concurrent system

• States precisely when two events are logically concurrent
(abstracting away real time)

1

2

3

1

2

3

1

2

3

(0,0,1)  Cross-edges from send events to

receive events

 (a1, a2, a3) happens before

 (b1, b2, b3) iff a1 ≤ b1 and

 a2 ≤ b2 and a3 ≤ b3

(2,1,0) (1,0,0)

(0,0,2) (2,2,2) (2,0,0)

(0,0,3) (2,3,2) (3,3,2)

• Distributed Systems
Cross-edges from send to receive events

• Shared Memory systems
Cross-edges represent ordering effect of synchronization

• Edges from lock release to subsequent lock acquire

• Edges from volatile writes to subsequent volatile reads

• Long list of primitives that may create edges

• Semaphores, Waithandles, Rendezvous, system calls (asynchronous
IO), …

Static Program Dynamic Execution Trace

1

2

1

2

3

(1,0)

(1,4)

data = 1;
flag = true;

while (!flag)
 yield();
int x = data;

Thread 1 Thread 2

int data;
volatile bool flag;

data = 1;

flag = true;

(!flag)->true

yield()

(!flag)->false

4 x = data

• Not a data race because (1,0) ≤ (1,4)

• If flag were not declared volatile, we would not add a cross-
edge, and this would be a data race.

Madan Musuvathi
Microsoft Research

Joint work with

 Sebastian Burckhardt, MSR
 Chris Dern, MS
 Roy Tan, MS

#pragma warning disable 0420

// ==++==

//

// Copyright (c) Microsoft Corporation. All rights reserved.

//

// ==--==

//

=+

=+=+=+=+=+

//

// ConcurrentQueue.cs

//

// <OWNER>csong</OWNER>

//

// A lock-free, concurrent queue primitive, and its associated debugger view type.

//

// =-

using System;

using System.Collections;

using System.Collections.Generic;

using System.Diagnostics;

using BadSystemDiagnosticsContracts;

using System.Runtime.ConstrainedExecution;

using System.Runtime.InteropServices;

using System.Runtime.Serialization;

using System.Security;

using System.Security.Permissions;

using BadSystemThreading;

using BadSystem;

using System.Threading;

namespace BadSystemCollectionsConcurrent

{

 /// <summary>

 /// Represents a thread-safe first-in, first-out collection of objects.

 /// </summary>

 /// <typeparam name="T">Specifies the type of elements in the queue.</typeparam>

 /// <remarks>

 /// All public and protected members of <see cref="ConcurrentQueue{T}"/> are thread-safe and may be used

 /// concurrently from multiple threads.

 /// </remarks>

 [ComVisible(false)]

 [DebuggerDisplay("Count = {Count}")]

 [DebuggerTypeProxy(typeof(SystemCollectionsConcurrent_ProducerConsumerCollectionDebugView<>))]

 [HostProtection(Synchronization = true, ExternalThreading = true)]

 [Serializable]

 public class ConcurrentQueue<T> : IProducerConsumerCollection<T>

 {

 //fields of ConcurrentQueue

 [NonSerialized]

 private volatile Segment m_head;

 [NonSerialized]

 private volatile Segment m_tail;

 private T[] m_serializationArray; // Used for custom serialization.

 private const int SEGMENT_SIZE = 32;

 /// <summary>

 /// Get the data array to be serialized

 /// </summary>

 [OnSerializing]

 private void OnSerializing(StreamingContext context)

 {

 // save the data into the serialization array to be saved

 m_serializationArray = ToArray();

 }

 /// <summary>

 /// Construct the queue from a previously seiralized one

 /// </summary>

 [OnDeserialized]

 private void OnDeserialized(StreamingContext context)

 {

 Contract.Assert(m_serializationArray != null);

 InitializeFromCollection(m_serializationArray);

 m_serializationArray = null;

 }

 /// <summary>

 /// Copies the elements of the <see cref="T:System.Collections.ICollection"/> to an <see

 /// cref="T:System.Array"/>, starting at a particular

 /// <see cref="T:System.Array"/> index.

 /// </summary>

 /// <param name="array">The one-dimensional <see cref="T:System.Array">Array</see> that is the

 /// destination of the elements copied from the

 /// <see cref="T:System.Collections.Concurrent.ConcurrentBag"/>. The <see

 /// cref="T:System.Array">Array</see> must have zero-based indexing.</param>

 /// <param name="index">The zero-based index in <paramref name="array"/> at which copying

 /// begins.</param>

 /// <exception cref="ArgumentNullException"><paramref name="array"/> is a null reference (Nothing in

 /// Visual Basic).</exception>

 /// <exception cref="ArgumentOutOfRangeException"><paramref name="index"/> is less than

 /// zero.</exception>

 /// <exception cref="ArgumentException">

 /// <paramref name="array"/> is multidimensional. -or-

 /// <paramref name="array"/> does not have zero-based indexing. -or-

 /// <paramref name="index"/> is equal to or greater than the length of the <paramref name="array"/>

 /// -or- The number of elements in the source <see cref="T:System.Collections.ICollection"/> is

 /// greater than the available space from <paramref name="index"/> to the end of the destination

 /// <paramref name="array"/>. -or- The type of the source <see

 /// cref="T:System.Collections.ICollection"/> cannot be cast automatically to the type of the

 /// destination <paramref name="array"/>.

 /// </exception>

 void ICollection.CopyTo(Array array, int index)

 {

 // Validate arguments.

 if (array == null)

 {

 throw new ArgumentNullException("array");

 }

 // We must be careful not to corrupt the array, so we will first accumulate an

 // internal list of elements that we will then copy to the array. This requires

 // some extra allocation, but is necessary since we don't know up front whether

 // the array is sufficiently large to hold the stack's contents.

 ((ICollection)ToList()).CopyTo(array, index);

 }

 public bool IsEmpty

 {

 get

 {

 Segment head = m_head;

 if (!head.IsEmpty)

 //fast route 1:

 //if current head is not empty, then queue is not empty

 return false;

 else if (head.Next == null)

 //fast route 2:

 //if current head is empty and it's the last segment

 //then queue is empty

 return true;

 else

 //slow route:

 //current head is empty and it is NOT the last segment,

 //it means another thread is growing new segment

 {

 SpinWait spin = new SpinWait();

 while (head.IsEmpty)

 {

 if (head.Next == null)

 return true;

 spin.SpinOnce();

 head = m_head;

 }

 return false;

 }

 }

 }

 /// <summary>

 /// Copies the elements stored in the <see cref="ConcurrentQueue{T}"/> to a new array.

 /// </summary>

 /// <returns>A new array containing a snapshot of elements copied from the <see

 /// cref="ConcurrentQueue{T}"/>.</returns>

 public T[] ToArray()

 {

 return ToList().ToArray();

 }

 /// <summary>

 /// Copies the <see cref="ConcurrentQueue{T}"/> elements to a new <see

 /// cref="T:System.Collections.Generic.List{T}"/>.

 /// </summary>

 /// <returns>A new <see cref="T:System.Collections.Generic.List{T}"/> containing a snapshot of

 /// elements copied from the <see cref="ConcurrentQueue{T}"/>.</returns>

 private List<T> ToList()

 {

 //store head and tail positions in buffer,

 Segment head, tail;

 int headLow, tailHigh;

 GetHeadTailPositions(out head, out tail, out headLow, out tailHigh);

 if (head == tail)

 {

 return head.ToList(headLow, tailHigh);

 }

q = new ConcurrentQueue();

q.push(10); t = q.pop();

Assert(?)

q = new ConcurrentQueue();

q.push(10); t = q.pop();

Assert:

q.size() is 0 or 1

q = new ConcurrentQueue();

q.push(10); t = q.pop();

Assert:

q.size() is 0 or 1

and t is 10 or <fail>

q = new ConcurrentQueue();

q.push(10); t = q.pop();

Assert:

 t = fail && q.size() = 1 &&

q.peek() == 10 ||

t = 10 && q.size() = 0

q = new ConcurrentQueue();

q.push(10);

t = q.pop();

q.push(20);

u = q.pop();

Assert (?)

q = new ConcurrentQueue();

q.push(10);

t = q.pop();

q.push(20);

u = q.pop();

Assert:

q.size() == 0 &&

(t = 10 || t = 20) &&

(u = 10 || t = 20) &&

u != t

q = new ConcurrentQueue();

q.push(10);

t1 = q.pop();

t2 = q.peek();

q.push(20);

Assert (?)

q.push(30);

u1 = q.peek();

q.push(40);

u2 = q.pop();

v1 = q.pop();

q.push(50);

v2 = q.peek();

q.push(60);

q = new ConcurrentQueue();

q.push(10);

t1 = q.pop();

t2 = q.peek();

q.push(20);

Assert:

ConcurrentQueue

behaves

like a queue

q.push(30);

u1 = q.peek();

q.push(40);

u2 = q.pop();

v1 = q.pop();

q.push(50);

v2 = q.peek();

q.push(60);

ConcurrentQueue behaves like a queue

A piece of code is thread-safe if it

functions correctly during

simultaneous execution by multiple

threads.

ConcurrentQueue behaves like a queue

Concurrent

behaviors of

ConcurrentQueue

are

consistent

with

a sequential

specification

of a queue

Every operation appears to occur

atomically at some point between the

call and return

q = new ConcurrentQueue();

q.push(10);

t1 = q.pop();

t2 = q.peek();

q.push(20);

Assert:

Linearizability wrt

a given sequential

specification

q.push(30);

u1 = q.peek();

q.push(40);

u2 = q.pop();

v1 = q.pop();

q.push(50);

v2 = q.peek();

q.push(60);

q = new ConcurrentQueue();

q.push(10);

t1 = q.pop();

t2 = q.peek();

q.push(20);

Assert:

Exists some

deterministic spec

wrt which q is

Linearizable

q.push(30);

u1 = q.peek();

q.push(40);

u2 = q.pop();

v1 = q.pop();

q.push(50);

v2 = q.peek();

q.push(60);

• Automatically synthesize a sequential specification
• By observing sequential behaviors of a component

• Check linearizability with respect to this spec

• Completeness
• LineUp failure  Component is not linearizable wrt any deterministic spec

• Restricted Soundness
• Component is not linearizable  Exists a test case for which LineUp fails

• Thread safety == Generalized linearizability

• Linearizability does not check against incorrect blocking
• An implementation that blocks on all operations is vacuously linearizable

P&C Parallelism Concurrency

Performance Speedup Responsiveness

Correctness

Atomicity, Determinism,

Deadlock, Livelock,

Linearizability, Data races, …

P&C

