Investigation of Human-Computer Task Markets:
Methods and Prototype

Dafna Shahaf* Eric Horvitz'
December 9, 2009

Abstract

We present research on task markets where automated planning procedures
are used to enlist computational and human expertise to jointly contribute to the
solution of problems, based on a consideration of the competencies, availabilities,
and pricing of the different problem-solving resources. The methods meld the area
of human computation with automated reasoning. We describe a prototype that
creates plans for harnessing people and computation to perform translation among
multiple languages. With the prototype, people with different skills are recruited
to refine rough translations generated by a machine translation system. We present
details about the hardness of plan generation, provide methods for solving them,
and review experiences with the use of a prototype.

1 Introduction

There has been growing interest in an area of research referred to as human compu-
tation [vA08]. The work centers on the recruitment of people to perform tasks im-
plicitly while they are engaged in online games. Human computation is also cen-
tral in task markets, such as Amazon’s Mechanical Turk (mTurk.com), where meth-
ods are provided online for specifying, recruiting, and reimbursing people to per-
form problem-solving tasks. We present an effort to generalize human computation
to human-computer computation. We explore the feasibility of creating task markets
that recruit both human and machine intelligence. We focus in this paper on the chal-
lenge of generating plans that assign subtasks to different agents, spanning human and
computational problem solvers.

Human-computer computation (HCC) draws on efforts in complementary comput-
ing [HPO7, Hor07], focused on the development of methods that explicitly consider the
competencies and availabilities of both computational and human resources to solve
problems at hand.

*Computer Science Department, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213.
dshahaf@cs.cmu.edu. Research performed during an internship at Microsoft Research.

T Adaptive Systems & Interaction Group of Microsoft Research, 1 Microsoft Way, Redmond, WA 98052.
horvitz@microsoft.com.

HCC task markets might one day operate within ecosystems that provide pools of
candidate human and machine problem-solving agents and enable the dynamic creation
of custom-tailored solvers. On the way to that potential future, several challenges must
be addressed. Learning, reasoning, and optimization will play a critical role in making
intelligence markets a reality . HCC challenges include the development of compo-
nents that interpret posed problems and then identify, recruit, and reimburse sets of
human and computational problem solvers to solve them. Effective HCC systems and
platforms will require abilities to learn about competencies, availabilities, and pricing
of the different problem-solving resources..

In this paper, we review the HCC opportunity and focus on the core challenge of
HCC plan generation. HCC plans are aimed at “federating” the solution of subprob-
lems via their distribution to multiple expert solvers, and then weaving together the
answers into overall solutions. We focus on the complexity of and solutions to the plan
generation problem for a class of HCC problems.

We shall describe key aspects of the challenge of developing problem-solving plat-
form for the task of language translation. We focus on a prototype, named Lingua
Mechanica, that creates plans for acquiring translation from people and computation
to perform translation among multiple languages. In Lingua Mechanica, people with
different translation competencies are recruited to refine rough translations generated
by a machine translation system. The system continues to optimize its distribution of
subproblems based on the expected utility of engaging human assistance, and continues
to collect data to learn about competency and availability.

After an overview of key components of an HCC platform and service, we dis-
cuss the hardness of the HCC planning problem for language translation. We provide
polynomial approximations to several important classes of models. Finally, we review
how we can use games to harness human computation as means for incenting people
to refine the output of machine translation.

2 HCC Planning Problem

An HCC platform includes components for accepting, interpreting, and decomposing
a task into subproblems and for generating task federation plans (see Figure 1). An
HCC planner accesses information about the availabilities, abilities, and costs (and
other preference information) of agents that can provide problem-solving effort in re-
turn for some reimbursement that incents them to solve task subproblems. Execution is
monitored and data is collected about multiple aspects of the problem solving. Learn-
ing from data can be harnessed to build predictive models about such attributes as
the abilities, availabilities, and preferences of agents. We focus here on the planning
problem for harnessing people and computation to perform translation among multiple
languages.

Translation is a fruitful domain for human-machine collaboration: translating long
documents is often a cumbersome task, requiring skilled bilingual people. Although
machine translation (MT) has made significant progress in recent years, human aid is
still essential for natural-sounding results (e.g. [CBBS04]). See Figure 2 for an exam-
ple of an automated French-to-English translator: the translation is far from perfect,
but provides understandable output to English speakers. Moreover, providing fixes for

MT output is easier, requiring less skill and can be performed by monolingual people.

=

Interpretation,

Decomposition,
Composition

Learning &
Optimization

22 3 Planner:
Q Assign resources to

? tasks
&) Estimate

Abilities,
2 a <> Constraints,

Preferences,

Cost .
L‘ Execution:
-~ Coordination,

h m Evaluation

Figure 1: Problem-solving Platform

The task federation planning problem lies at the heart of HCC. We consider a set
of n agents, A = {A;,..., A, }. Each agent A; is associated with a set of abilities,
{ability;}. An ability is a pair (by, vy) for by, ability identifier and vy € R represents
the skill level of the agent for that ability. Agents can represent any source of problem
solving, spanning human and computational resources. Abilities can span a great spec-
trum of competency from such computational tasks as “Factor number N to “Write a
review for movie M .”

Typical abilities for computational agents we employ at our translation CTM plat-
form are of the form (“Machine Translation French>>English,”0.7). We also have ac-
cess to multilingual people with such bilingual skills as (“Human Translation French>>English,”0.9)
and monolingual people ({“Hindi speaker,’0.95)).

In addition to agents, there is a set of m independent high-level tasks H = {hq, ..., hun }
and a set T of low-level tasks. Each high-level task /; can be carried out in one or more
ways (scenarios). A scenario is a directed acyclic graph (DAG), where vertices are low-
level tasks, and edges specify a partial precedence order: there is an edge from ¢; to ¢;
if task ¢; cannot be performed unless task ¢; is already satisfied (e.g. because its output
is needed as an input to ¢;). A low-level task ¢; is associated with a set demand; of
abilities.

Figure 3 displays an example of a high-level task. We wish to translate a paragraph
from English to French. The figure shows three different scenarios: (a) acquire a bilin-
gual person who can translate the paragraph directly, (b) acquire two bilingual people
who can translate from English to French via an intermediate language (in this case,
Italian), and (c) use machine translation procedures to translate the paragraph and then
find a French-speaking person to correct the paragraph. Scenario B might be assumed
a priori to require more competent language skills from both of the human translators,
as the pipeline with two translations is likely to create more errors than single-stage
translations.

£ vedows e iesenge: Q'
P .
M J

;)om'mica

(*1) Roosevelt skerrit, Prime Minister is

the youngest elected leader of a country -
@ 35 years.

3t 12:35:42 PM on Thursday. January OS. 2005,

Figure 2: Machine Translation log. Errors are marked in circles, partial fixes in text balloons.

Translatea Paragra;xh: English->French

[|

0.8 0.9 ois
Humana Human a Machine ;
lation lati Translation

English -> English -> English ->
French Italian French
G 0.7

Human

Correction
French

0.

Human a
Translation

Italian -> J

French

Figure 3: Three scenarios for translating: human translation, human translation through an
intermediate language, machine translation fixed by a person. Numbers refer to desired quality.

A coalition C C A can be defined as a group of agents who have decided to
cooperate in order to achieve a common task. We assume that a coalition can work on
a single (low-level) task at a time. We consider both cases in which agents may or may
not be members of more than one coalition.

The utility gained from performing the task t; by coalition C' is U(C,t;). The
utility depends on tasks demands and the coalition’s combined abilities. The utility of
a high-level task h; depends on the utilities of the low-level tasks it is composed of.

One common framework assumes modularity — the combined ability set of a coali-
tion is defined as the sum of abilities of participating agents. If agents participate in
more than one coalition, they can distribute their abilities between the coalitions. In
this framework, ¢; can be satisfied by a coalition of agents C'if their combined abilities
are higher than the task’s demands, and U(C, t;) = 0 otherwise. A high-level task h;
is satisfied if all of the low-level tasks ¢; of at least one scenario have to be satisfied.
Later in this paper we consider other types of utility functions.

Definition 2.1 (Coalition Problem). Given < A, H,T >, the Coalition problem is
to assign tasks t € T to coalitions of agents C € A such that the total utility is
maximaized and the precedence order is respected.

In general, agents and tasks are both associated with other sets of constraints (e.g.

money and availability). In this more-general case, the problem is to maximize the
utility under all the constraints.

3 Hardness and Approximations for the Planning Prob-
lem

In this section, we discuss the hardness of the HCC planning problem and provide
polynomial approximations under various models. We conclude the section with a
discussion on applying these algorithms in practice to our prototype system.

3.1 Simple Tasks

We start with the simplest type of tasks: a high-level task h; is composed of nothing
but a single scenario, which is composed of a single low-level task ;.

3.1.1 Hardness

The problem is N"P-hard. The decision problem is in A/P (given a solution, it can be
verified in polytime). We show a reduction from weighted exact set cover.

Definition 3.1. Given a set X and a set S of subsets of X with associated rewards
R(S) for each S € S, an exact set cover 8* is a subset of S such that every element
in X is contained in exactly one set in S*. The goal is to find the exact cover with the
maximal reward.

Weighted exact set-cover is NP-hard. Given a weighted exact set-cover instance,
we construct a Coalition instance:
Let A = X. Each S; € & defines a high-level task h;. h; is composed of a single
scenario and a single low-level task t;, requiring (b;,|S;|) (|:S;| units of ability b;).
Each A; € S; has 1 unit of ability b; ((bj, 1)). Therefore, the only coalition able to
perform ¢; (and thus, h;) is S;. Define the evaluation function such that) U (S}, t;) =
R(S;).

A solution to the Coalition problem corresponds exactly to a solution to weighted
exact set cover. Therefore, the problem is A/P-hard.

3.1.2 Tractable Approximations: Limiting Coalition Size

One of the factors contributing to the hardness of the HCC planning problem for trans-
lation is that the number of possible coalitions is exponential in n. Thus, a natural
way to reduce the search space is to restrict the maximal size of a coalition to k, thus
reducing the number of coalitions to O(n*) (but the problem is still A"P-hard). This
assumption is very reasonable in our system — most tasks we deal with do not require
more than a few participants.

We can represent this as a graph, in which the agents are vertices and tasks are a
collection of weighted hyperedges. A hyperedge corresponds to assigning these agents
to the task; its weight is the expected reward. This is also a useful framework for the

case of extra constrains (e.g., agent availability): in this case, hyperedges correspond
to the possible coalitions.

In addition, every task is identified with a color, and all of its edges are of this color.
We want to find a maximum value matching in the graph s.t. only one edge of each
color is used.

Claim 3.2. The greedy algorithm is a constant-factor approximation to the Coalition
problem (k is constant).

The proof is based on standard greedy analysis. Any coalition chosen for our solu-
tion contains at most k agents, and we compare their assignment to the optimal solu-
tion’s assignment.

3.1.3 Tractable Approximations: Special Utility Functions

We now withdraw the assumption of limited coalition size. The number of coalitions
we need to consider is exponential in n again. Therefore, we have to make some as-
sumptions on the utility functions to restrict our search space. Some common assump-
tions are submodularity (diminishing returns, u;(SNS")+u; (SUS") < u;(S)+u;(S)),
subadditivity (u;(SU S’) < u;(S) + u;(S")) or superadditivity.

For example, suppose the utility functions are monotone and submodular.

Claim 3.3. A greedy algorithm yields a %-approximalion. In special cases where the

the submodular function is of a special type (discussed later), a (1— é)— approximation
has been achieved; this is optimal for these problems.

Those results follow from efficient approximation algorithms [NWF78, Von08] that
exist for the Submodular Welfare Problem. The Coalition problem can be easily for-
malized as a Welfare Maximization Problem. In this problem, m items are to be dis-
tributed among n players with utility functions u; : 2" — RT. Assuming that player
i receives a set of items S;, we wish to maximize the total utility >, u;(S;). In our
case, an agent corresponds to an item, tasks correspond to players. For task ¢;, utility
function u;(C) is U(C, t;).

Similarly, the case of subadditive functions was handled by [Fei06], who relaxes the
problem into an LP, and proposes a way of rounding any fractional solution achieving
an approximation ratio of % For the superadditive case an approximation ratio of

Vlogm an be achieved.

m

3.2 Tasks Consisting of a Single Scenario

We shall now move to the more complex case where a high-level task h; takes the form
of a single scenario. The scenario DAG corresponds to a partial ordering on low-level
tasks ¢;.

Hardness of the problem follows from the previous section. We build on the al-
gorithms described by Shehory and Kraus, to provide a constant-factor approximation
to the case of limited-size coalitions. The algorithm can be viewed as a centralized
version of the methods described in [SK95].

Figure 4: Translation abilities graph. Each resource is a collection of edges (in the same color).
Dashed edges correspond to low skills.

For each task ¢, we denote its set of predecessors, including ¢, by P(t). The choice
of t for coalition formation will depend on the costs of and the benefits from, the
formation of coalitions that perform all of the tasks in P(t).

At each iteration, we choose in a greedy manner the task ¢ with the maximal
u(P(t)) to be performed together with all of its predecessors, and form the required
coalitions. We remove ¢, all of its predecessors, and the assigned agents from the list,
and iterate. We note that only a small portion of the calculations needs to be updated.

3.3 Multiple Scenarios

Let us now consider the case of multiple scenarios. As before, we assume the size of
coalitions is limited. We also limit the maximal number of low-level tasks a scenario
can involve.

The algorithm we propose is a combination of the two algorithms we have dis-
cussed. As before, we first construct a hypergraph. A high-level task is a set of hy-
peredges, corresponding to coalitions that can carry out one of the scenarios. Similar
arguments hold for this case.

3.3.1 Case of Transitive Tasks

An interesting case of multiple scenarios for HCC solvers is where the tasks are tran-
sitive. Transitive tasks allow for a compact representation of many possible scenarios
by encoding them as graph paths. Such transitivity is especially valuable in HCC for
translation. The task of translating from French to English is the same as translating
from French to any intermediate language, and then to English. The path might even
involve a chain of translations among several intermediate languages.

A natural way to solve the case of transitive tasks is with multi-commodity flow. We
have a weighted multigraph G = (V, E, w). Each s € V represents a language. Each
problem-solving resource, whether a human or computer-based reasoned, corresponds
to a set of directed edges. An edge weight represents the user’s ability to translate
between the two. For example, in Figure 4 we have one user speaking Hindi and
Telugu well, a Hindi speaker that knows some English and Kannada (dashed edges
correspond to low weights on competency), and several European-language speakers.

In addition, we have & commodities (tasks), where each one has source language
s; € V, sink (target language) t; € V, and a starting flow d; € R (in the basic scenario,

d; = 1). The goal of an HCC planners to maximize the total throughput.

There are two candidate paths for English-to-French translation (Figure 4): transla-
tion directly, or translating to French through Italian. Note that, given the solvers avail-
able, the direct edge indicates a low competency, but the other two edges are strong.
However, as errors accrue over chains, the use of intermediate translations would tend
to reduce the quality. How should we compare the output qualities?

In the HCC model for translation, the edge weights specifically represent the proba-
bility that the translation will reach a specified threshold of quality. Thus, the quality of
a path is the product of its edge probabilities. We need to modify the multi-commodity
flow solution to handle this case. Each directed edge e has fi" , f°*!, and a capacity
ce. The key concept is that when flow goes through an edge, it loses some quality. We
try to generate high quality at the sink. We first formalize this optimization problem
as a linear program (LP), and then introduce rounding techniques to achieve a feasible
solution:

maxz Z 2 e) sit.

i e:edgestot;

Z fi"(e) < ce
Z (e) =d;

e: edges from s;

out n

L (e) =wl(e) - fi"(e) (*Quality reduction*)
S pt) = 3 M ww) u st (Flow®)

The HCC plan seeks to maximize the quality of commodity ¢ reaching its sink. The
flow on every edge (workload) is no more than the capacity of every edge. Alterna-
tively, we can restrict total capacity per contributor.

Another interesting feature of transitive tasks is the possible re-use of intermediate
results. Let us consider the case where we seek to have a Wikipedia article translated
from English into both Kannada and Hindi. The previous algorithm would treat them as
two separate problems, translating directly from English into both. However, given the
resources and competencies available, it may be more beneficial to translate English to
Hindi, and then Hindi to Kannada. Alternatively, it may be better to use an intermediate
language and so travel via an intermediate node for both.

A similar flow formulation can be applied for re-using intermediate results. We
define a variable for every (language,task) combination (the quality of translation for
a specific task in that language). A task would have one source and possibly many
sinks. The goal now is to minimize the number of intermediate translations, while
enforcing minimal translation quality in all sinks. We note that this minimization is
a constraint, not the objective in this case. The objective should be interpreted as a
routing constraint. Longer paths cost more and are prone to the accrual of errors.
While quality is acceptable, we prefer shorter paths.

. N\~ e — V4

& | | = | -
N S —-
(=)

g~ R —

h, mEh 2 P

¥

v;)f ~ @;}MFJ

Tl T

Figure 5: Games, left to right: Moon Climb, Word-Tetris, Dictionary Builder

3.4 Real-World Deployment

In the process of applying the above algorithms to our translation platform, several
changes were made. First, in order to speed up the assignment process, we defined
equivalence classes of abilities. Instead of using the fine-grained (b;, v;) abilities, we
map them to equivalence classes (thus mapping agents and tasks). For example, we
defined three levels of English proficiency. We ran the algorithms on a set of represen-
tatives for tasks and agents. When the greedy algorithm picked a coalition to perform a
task, we would look for equivalent tasks and coalitions and assign as many as possible.
The approximation guarantee still holds, and computation was significantly faster.

Our algorithms need to operate in an online setting, where users can log in and out
at any minute. This has many implications, among them the need to employ dummy
players (usually previous games recorded). When a task is assigned to a coalition, the
dummy players are transparently replaced. Similarly, if one of the players disappears,
another player (whether real or a dummy) immediately takes his place.

The online nature of the system makes learning availability patterns an attractive
concept. The planner might not try to execute a translation to Chinese now if it knows
some highly-skilled users will log in soon (e.g., since it is 4am now in China). We
considered both learning those patterns and creating mechanisms that will let users
report their patterns (especially for those who are getting paid for their work).

4 Implementation

We have implemented a system named Lingua Mechanica as a prototype HCC platform
for performing translation among multiple languages. In this section we review the
system. The system allows beginning-to-end creation of new tasks (with correspond-
ing hierarchical scenarios) using a user-friendly mash-creator interface. The current
implementation includes three games for engaging people to provide human computa-
tion. The games were developed with assistance from researchers in natural language
processing (NLP). Our experiments with a pool of test subjects found that the system
finds reasonable task assignments, and that the games often result in useful translations,
created by an amalgam of machines and people.

Text
(Input)

Source
Lang

Target
Lang

Figure 6: Popfly-like interface for creating a scenario. The leftmost three blocks correspond to
inputs. Others are functional blocks.

4.1 Requester Point of View

Let us assume that we wish to create a new task for Lingua Mechanica. The system
currently supports two main methods, template-based and customized.

In order to facilitate task creation, the most common tasks are included in the sys-
tem as templates. As an example, Lingua Mechanica provides a “Translate a page”
option. The system engages the author with providing several task parameters, includ-
ing the content that needs to be translated and the source and destination languages.
In addition, the author of the task can change the metadata associated with the task,
including parameters describing the desired quality, deadlines, and how much (if any)
they are willing to pay for human contributions. Note that the cost and deadline affects
the result: the planner can route the request through a professional translator (high-
quality, slow, expensive) or through MT (low-quality, quick, cheap). The system can
notify the user if the deadline seems unrealistic, based on history of similar tasks based
on its growing database of experiences with translation.

Users can also define their own custom-tailored high-level tasks. Defining a new
task involves the same data and metadata parameters, but also specifying the desired
execution scenarios. We use a Popfly-like interface. Popfly.com is a website allow-
ing users to create mashups. See Figure 6 for an example. The interface has pre-
constructed blocks, which can represent any function our system supports. Blocks
usually have parameters (e.g., arithmetic operation, or pair of languages) and one or
more inputs. A mashup is created by connecting blocks together into a DAG, s.t. out-
put of one block can be used in inputs of others. Any input should be mapped to some
other block’s output. This corresponds to our notion of scenario from Section 2. The
mashup in Figure 6 corresponding to the rightmost scenario in Figure 3: the output
of the “Machine Translation” block is the input of “Improve Sentence.” If the user de-
fines several alternative scenarios, the planner might be able to come up with a better
solution.

4.2 Contributor Point of View

Users login to the system, and they can see their statistics and choose a type of a job.
The types of jobs offered to them depend on their abilities. Users’ abilities are deter-
mined through a short questionnaire (mostly used to determine the subset of languages
they know) and through their performance: every now and then users are given a task

10

for which we know the correct answer; this is used as a monitoring mechanism. In ad-
dition, while we are unsure about a user’s abilities, we assign the same task to several
others, until we achieve confidence. As an extra reality-check, we use a system devel-
oped by [CQO8], which scores sentences based on their correctness. Users who want to
speed up the process (to get to more interesting, and perhaps better-paying tasks) can
take qualification tests.

4.3 Games

Humans require some incentive to contribute to problem solving. Incentives include
money, points, skill levels, community reputation, rankings, and even patriotism. An-
other emerging mechanism is online gaming: games are a seductive method for engag-
ing people to participate in the computation process. This idea was first proposed by
[VADO4], who used a matching game to get humans to label images.

After consulting with NLP researches, we have designed and implemented three
simple games whose output may be useful to the NLP community displatey in Figure
5.

Word-Tetris: The goal of the game is fix a machine-translated paragraph. Two
users (who speak the target language) are matched. Both see a sentence, broken into
chunks attached to blocks falling from the sky. Each block may have several alterna-
tives (corresponding to MT ambiguity: “il” is either “he” or “it,” displayed in Figure
2). The initial choice is random per user. Users choose the relative location of the block
(effectively choosing word ordering), and its phrase, applying wildcards/blanks when
needed. Their goal is to match the sentence with their partner: a complete match would
make a whole row disappear, while partial matches result in partial disappearance.

This was our most well-liked game. Users fixed MT-translated paragraphs from
the French Wikipedia, matched with a dummy playing correctly. Most players became
comfortable with the game within 1-3 rounds. Their translations were good at first,
but declined as the game went faster and thus became more challenging. This is to be
expected, and is compensated for by the verification mechanism of 2-player games.

Dictionary Builder: This game is meant to find a translation for words that do
not appear in our bilingual dictionary, or words on which our MT systems have very
low confidence. Given such a word/phrase, we search the web for images/snippets of
text containing it (e.g., in Wikipedia or a monolingual dictionary). We MT this text,
hiding the target word. The result is a collection of snippets in the target language with
a missing word. We show them to two or more users; their goal is to match on the
hidden word. For example, the word “équipe” (team) results in the snippet “A [J is
a d’ group; individuals partners with a common aim” and several images of football
teams. A nice feature of this game is that it can seed itself. Suppose a word translation
is discovered; if we have two monolingual dictionaries, we can align the corresponding
definitions and find new translations.

Players grasped the concept of the game very quickly, and managed to match each
other on a large fraction on the words (especially when searching for nouns; this might
be attributed to the image search). We note that the quality of the snippets should be im-
proved; when searching for words like ‘étoile” (star), the first snippets refer to “Etoile
Restaurant,” “Etoile Boutique,” and several other stores — none of which provides a
clue about the meaning of the word.

11

Moon Climb: Moon Climb is a simple matching game in which the goal is to reach
the moon. You do so by matching flying creatures carrying similar sentences, causing
them to fall down and form a tower. Moon Climb is a game for bilingual people, and
is mostly used to asses their skill level (as a qualification test). Some users commented
that it could also be suitable for children.

5 Conclusions

We have described research on developing a problem-solving platform that enlists both
computational and human expertise to solve tasks. The system considers the competen-
cies, availabilities, and pricing of the different solvers. We reviewed the challenge of
harnessing people and computation to perform translation among multiple languages,
focusing on the challenge of the ongoing generation and updating of plans that en-
list people and machines to contribute. We adapted prior work to the challenge and
showed how we can use a multi-commodity flow procedure in the plan generaetion.
Finally, we reviewed the working Lingua Mechanica system and provided highlights
in its use in authoring translation platforms and in recruiting human computation via
engaging games. We foresee multiple challenges and opportunities on the horizon with
continuing investigations of problem solving via human-computer computation and the
creation and use of problem-solving platforms that can ideally tap human and machine
intelligence.

Acknowledgements The authors would like to thank Vikram Dendi, Paul Koch,
Raman Sarin, Paul Newson and Tommy A. Brosman for their assistance in developing
the system.

References
[CBBS04] C. Callison-Burch, C. Bannard, and J. Schroeder. Improved statistical translation through edit-
ing. In EAMT-2004, 2004.

[CQO8] Colin Cherry and Chris Quirk. Discriminative, syntactic language modeling through latent svms.
In AMTA °08, 2008.

[Fei06] U. Feige. On maximizing welfare when utility functions are subadditive. In STOC ’06, 2006.

[Hor07] E. Horvitz. Reflections on challenges and promises of mixed-initiative interaction. Al Magazine,
28(2), 2007.

[HPO7] E. Horvitz and T. Pack. Complementary computing: Policies for transferring callers from dialog
systems to human receptionists. User Modeling and User Adapted Interaction, 2007.

[NWF78] G.L.Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions I. Mathematical Programming, 14(1), 1978.

[SK95] O. Shehory and S. Kraus. Task allocation via coalition formation among autonomous agents. In
1JCAI *95, 1995.

[vAO8] L. von Ahn. Human computation. In /CDE. IEEE, 2008.
[vADO4] L. von Ahn and L. Dabbish. Labeling images with a computer game. In CHI, 2004.

[Von08] J. Vondrak. Optimal approximation for the submodular welfare problem in the value oracle
model. In STOC ’08, 2008.

12

