

Some sample programs written in

DryadLINQ

2

Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Ulfar Erlingsson, Pradeep Kumar Gunda, Jon

Currey, Frank McSherry, Kannan Achan, Christophe Poulain

May 11, 2008 First publication

December 3, 2009 Revised to reflect current programming application interfaces

Contents
0 Introduction .. 3

0.1 About this document .. 3

0.2 What is DryadLINQ? .. 3

1 Examples ... 5

1.1 Displaying the contents of a text file .. 5

1.2 Copying a file ... 6

1.3 Counting the records in an input file .. 6

1.4 fgrep .. 7

1.5 Partitioned Files .. 8

1.6 Counting elements of a partitioned file .. 10

1.7 Computing histograms .. 10

1.8 Reductions (Aggregations) .. 12

1.9 Apply ... 13

1.10 Join .. 17

1.11 Computing multiple outputs ... 17

1.12 Statistics in DryadLINQ .. 18

1.13 Writing Custom Serializers .. 22

1.14 TeraSort ... 22

1.15 A Generic Pairwise Select .. 23

1.16 PageRank ... 26

1.17 Q18 from SkyServer .. 29

2 Using the Large Vector Library .. 31

2.1 Statistics Revisited .. 32

2.2 Linear Regression .. 33

2.3 Expectation Maximization (Mixture of Gaussians) ... 33

2.4 Principal Component Analysis... 35

2.5 Image Processing .. 36

3

0 Introduction

0.1 About this document

The goal of this document is to illustrate the use of DryadLINQ parallel computation framework through
a set of examples. For each program we present the essential source code and a brief description. This
document does not describe the installation or configuration of DryadLINQ or the configuration
parameters which can be used to influence the compilation and execution. A non-commercial release of
the DryadLINQ research software is available for download at http://connect.microsoft.com/DryadLINQ.

0.2 What is DryadLINQ?

DryadLINQ is a compiler which translates LINQ programs to distributed computations which can be run
on a PC cluster. LINQ is an extension to .Net, launched with Visual Studio 2008, which provides
declarative programming for data manipulation.

By using DryadLINQ the programmer does not need to have any knowledge about parallel or distributed
computation (though a little knowledge can help with writing efficient programs). Thus any LINQ
programmer turns instantly into a cluster computing programmer. FIGURE 1 shows the software stack
used by DryadLINQ.

While LINQ extensions have been made to Visual Basic and C#, the DryadLINQ compiler only supports
C#.

Figure 1: The DryadLINQ software stack

FIGURE 2 shows the flow of execution when a program is executed by DryadLINQ.

1) A C# user application runs. It creates a DryadLINQ expression object. Because of LINQ's deferred

evaluation, the actual execution of the expression does not occur yet.

2) A call within the application to ToPartitionedTable or to a method that requires the

output data sets triggers a data-parallel execution. The expression tree is handed to DryadLINQ.

3) DryadLINQ compiles the LINQ expression tree into a distributed Dryad execution plan.

4) DryadLINQ invokes a custom DryadLINQ-specific job manager. The job manager may be

executed behind a cluster firewall.

5) The job manager creates the Dryad job.

6) The Dryad job is executed on the cluster.

4

7) When the Dryad job completes successfully it writes the data to the output table(s).

8) The job manager process terminates, and it returns control back to DryadLINQ. DryadLINQ

creates the local PartitionedTable objects encapsulating the outputs of the execution.

These objects may be used as inputs to subsequent expressions in the user program.

9) Control returns to the user application. The iterator interface over a PartitionedTable

allows the user to read its contents as C# objects.

Figure 2: Architecture of the DryadLINQ system.

5

1 Examples

1.1 Displaying the contents of a text file

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using LinqToDryad;

public static class Program

{

 static void ShowOnConsole<T>(IQueryable<T> data)

 {

 foreach (T r in data)

 Console.WriteLine("{0}", r);

 }

 static void Main(string[] args)

 {

 string uri = @"file://\\machine\directory\input.pt";

 PartitionedTable<LineRecord> table =

 PartitionedTable.Get<LineRecord>(uri);

 ShowOnConsole(table);

 Console.ReadKey();

 }

}

Code with the current PartitionedTable API

The generic function ShowOnConsole displays the contents of an arbitrary DryadLINQ collection of
objects of type T. (Each object is transformed to a string using its ToString() method.)

The Main function creates a partitioned table by calling the Get method of the
PartitionedTable class. (Section 1.5 contains more detailed description of partitioned tables.)

The table is a sequence of pre-defined DryadLINQ LineRecord objects. It implements both
IEnumerable and IQueryable interfaces. Passing the table to the ShowOnConsole method
achieves the desired result. Note that this program does not require remote execution of code. I.e., this
execution only involves steps 8 and 9 from
FIGURE 2.

Earlier version of DryadLINQ used the notion of DryadDataContext and DryadTable to specify
the input datasets. It has been replaced by PartitionedTable in the current version.

From now on we omit the using directives in the C# code.

6

1.2 Copying a file

public static class Program

{

 static void Main(string[] args)

 {

 string uri = @"file://\\machine\directory\input.pt";

 PartitionedTable<LineRecord> table =

 PartitionedTable.Get<LineRecord>(uri);

 table.ToPartitionedTable("copy.pt");

 }

}

This program only goes through steps (1)-(7) from
FIGURE 2. It copies a partitioned table into another partitioned table.

1.3 Counting the records in an input file

public static class Program

{

 static void Main(string[] args)

 {

 string uri = @"file://\\machine\directory\input.pt";

 PartitionedTable<LineRecord> table =

 PartitionedTable.Get<LineRecord>(uri);

 int lines = table.Count();

 Console.WriteLine("Lines: {0}", lines);

 Console.ReadKey();

 }

}

The execution of this program goes through all steps from
FIGURE 2.

Even though the result is a scalar value, DryadLINQ will first create a temporary anonymous table
holding the value of the count.

7

1.4 fgrep
This program displays all lines matching a fixed string.

public static IQueryable<string>

fgrep(IQueryable<string> collection, string tosearch)

{

 return collection.Where(s => s.IndexOf(tosearch) >= 0);

}

static void Main(string[] args)

{

 string uri = @"file://\\machine\directory\input.pt";

 PartitionedTable<LineRecord> table =

 PartitionedTable.Get<LineRecord>(uri);

 IQueryable<string> lines = table.Select(lr => lr.line);

 IQueryable<string> match = fgrep(lines, "and");

 ShowOnConsole(match);

 Console.ReadKey();

}

There are several notable things about this program:

 The input table of LineRecord objects is converted to a collection of strings by using the

operation lr => lr.line

 The fgrep procedure uses the Where operator to keep in the output collection only the

strings from the input collection containing tosearch as a substring

 The collection match is directly passed to the ShowOnConsole procedure. DryadLINQ will

first create a temporary anonymous table holding the contents of the match collection, and

then use an iterator to traverse this table.

 The plan generated by DryadLINQ for the program is shown in FIGURE 3 for the case where a

relatively small text file has been partitioned using the method outlined at the end of Section

1.2. There is only one remote process which performs the reading, the Select and the Where

because there is only one part in the partitioned file.

Figure 3: Plan for the fgrep program.

8

1.5 Partitioned Files

The fgrep program can be effectively parallelized for scanning a large amount of data. It is sufficient
to cut the data into pieces (preserving line boundaries) and run the scan in parallel on all pieces. The
hardest part to do is to describe the file pieces. For this purpose DryadLINQ provides a datatype

PartitionedFile. A partitioned file on disk is composed of two parts:

1) The pieces themselves and

2) The metadata: a textual description of all the pieces of a file which has been split. FIGURE 4

shows how the metadata is organized:

 The first line indicates the name prefix of each piece. The pieces must all be placed in the

same directory on all the machines. In this example each file will be in the \mydata

directory, and its name will have the form Piece.XXXXXXXX. Here XXXXXXXX is an 8-digit

hexadecimal number.

 The second line is the number of pieces, in this example 4.

 Each line that follows describes a piece:

o The piece number, in decimal.

o The piece size in bytes.

o Finally, a comma-separated list of machines. A piece may be replicated on several

machines, for fault-tolerance.

Figure 4: Partitioned File Structure

9

The description in FIGURE 4 corresponds to the following pieces:

 \\m1\mydata\Piece.00000000

 \\m2\mydata\Piece.00000001

 \\m3\mydata\Piece.00000001

 \\m3\mydata\Piece.00000002

 \\m4\mydata\Piece.00000003

Piece.00000001 is present on two machines.

Once you have partitioned your data in this way, you only need to make a tiny change to enable the
computation to use the partitioned table:

static void Main(string[] args)

{

 string uri = @"file://\\machine\directory\input4.pt";

 PartitionedTable<LineRecord> table =

 PartitionedTable.Get<LineRecord>(uri);

 IQueryable<string> lines = table.Select(lr => lr.line);

 IQueryable<string> match = Match(lines, "and");

 match.ToDryadPartitionedTable("matching.pt");

}

‘input4.pt’ is the new metadata file describing the partitioned file with four pieces. When running this
job, the job will operate in parallel on all four partitions:

Figure 5: The program operating on a partitioned file with 4 partitions.

The throughput of this computation will be increased by a factor of 4 (assuming the cluster contains at
least 4 machines). If the input partitions are on different machines, they can be read all in parallel. The
file output by the program also contains four partitions; each partition will reside on the machine which

computed it; the metadata file for the result “matching.pt” is created in a place directed by a
configuration variable.

10

1.6 Counting elements of a partitioned file
If we apply the counting function to the partitioned file we get a typical plan for associative aggregation
operators: each machine does a local count, then these counts are aggregated together by a global
phase.

static void Main(string[] args)

{

 string uri = @"file://\\machine\directory\input4.pt";

 PartitionedTable<LineRecord> i = PartitionedTable.Get<LineRecord>(uri);

 Console.WriteLine(i.Count());

}

Figure 6: Plan for distributed counting.

1.7 Computing histograms
Let us assume that the input is a large text file distributed over many machines. We want to compute a
histogram of the words in the web pages, and extract the top k words and their counts. The program
uses a helper class Pair, which will be used to represent for each word a count.

public struct Pair {

 string word;

 int count;

 public Pair(string w, int c)

 {

 word = w;

 count = c;

 }

 public override string ToString() {

 return word + ":" + count.ToString();

 }

}

The distributed computation will express intermediate results as collections of Pair objects, and these
collections need to be shipped between machines. DryadLINQ automatically builds efficient serializers
for the data structures in your program; its serialization is much less verbose than the default C#
reflection-based serialization.

11

public static IQueryable<Pair> Histogram(IQueryable<string> input, int k)

{

 IQueryable<string> words = input.SelectMany(x => x.Split(' '));

 IQueryable<IGrouping<string, string>> groups = words.GroupBy(x => x);

 IQueryable<Pair> counts = groups.Select(x => new Pair(x.Key, x.Count()));

 IQueryable<Pair> ordered = counts.OrderByDescending(x => x.count);

 IQueryable<Pair> top = ordered.Take(k);

 return top;

}

Calling ShowOnConsole on the result of this function will display the output. TABLE 1 shows a sample
execution for k=3.

Operator Output

table “A line of words of wisdom”

SelectMany *“A”, “line”, “of”, “words”, “of”, “wisdom”+

GroupBy **“A”+, *“line”+, *“of”, “of”+, *“words”+, *“wisdom”++

Select * ,“A”, 1-, ,“line”, 1-, ,“of”, 2-, ,“words”, 1-, ,“wisdom”, 1-+

OrderByDescending *,“of”, 2-, ,“A”, 1-, ,“line”, 1-, ,“words”, 1-, ,“wisdom”, 1-+

Take(3) *,“of”, 2-, ,“A”, 1-, ,“line”, 1-+

Table 1: Sample execution of Histogram

Let’s dissect this program.

 The SelectMany method transforms a scalar into an IEnumerable. In our case, we use it

to transform a string representing a line into an IEnumerable<string> containing all

the words on the line.

 The GroupBy has a key selector lambda-expression as argument (which returns the “key”

associated to each input). The result is a set of bags (called IGrouping), where all elements in

a bag have the same “key”. We use the identity function for the argument of the GroupBy,

and thus all identical words are grouped together.

 Each group is summarized with a pair containing just the representative word (x.Key) and the

count of elements in the group.

 The pairs are sorted descending on their Count value (OrderBy).

 Finally, the Take() method just selects the first k elements of the result.

12

The generated plan is actually quite nifty:

Figure 7: Distributed Histogram plan generated by DryadLINQ.

There are seven input partitions, reading seven files. The GroupBy is computed in a distributed way,
using a pattern called hash-partitioning. The computation is divided into three stages. In the first stage,
we apply a local GroupBy+Select, and hash partition the result based on the hash function applied to
the word; in this way, each machine computes a local GroupBy just for a subset of the words. (Note

that all identical words will end up on the same machine). The optimizer inserts and OrderBy and
Take at the level of each partition. The final stage can thus just use merge-sort to combine the
ordered streams, and then apply Take to the result. Currently the final Take operator requires the
whole data to be present on a single machine; this explains why the data was merged and the output file
has a single partition.

Note that it would be perfectly acceptable to omit the types of all temporary variables in the program.
I.e., the following program works just fine, and is equivalent to the previous one:

var words = input.SelectMany(x => x.Split(' '));

var groups = words.GroupBy(x => x);

var counts = groups.Select(x => new Pair(x.Key, x.Count()));

var ordered = counts.OrderByDescending(x => x.Count);

var top = ordered.Take(k);

1.8 Reductions (Aggregations)
The following program computes the sum of all values in a text file. It first parses the file as a set of
floating-point values, one per line.

static double Add(double x, double y) { return x + y; }

IQueryable<double> numbers = table.Select(x => Double.Parse(x.line));

double total = numbers.Aggregate((x, y) => Add(x, y));

The distributed computation which aggregates an input with two partitions looks as follows:

13

Figure 8: Aggregation is done after collecting all inputs in a single vertex.

The Aggregate vertex collects all the data from the two input readers and sums it up.
However, if the aggregating function is associative, a much better parallel computation plan is possible
by aggregating each partition of the data separately and then combining the results at the end. By
adding an [Associative] annotation to a function, you can enable DryadLINQ to generate a much
better plan.

[Associative]

static double Add(double x, double y) { return x + y; }

…

double total = numbers.Aggregate((x, y) => Add(x, y));

The generated plan looks much better:

Figure 9: Aggregation of associative function is done using multiple machines.

Each machine does pipelined reading followed by local aggregation on its own data, and then a global
stage combines the partial results.

1.9 Apply
DryadLINQ takes one IQueryable object and transforms it into a distributed network of processes
(vertices). Each of the vertices manipulates only a partition of the data. In the generated code, each
vertex executes an independent LINQ program. The inputs and outputs to each vertex are all
IEnumerable objects. Thus each vertex takes automatically advantage of the lazy evaluation and
pipelining provided by the iterator model.

DryadLINQ extends LINQ with several powerful operators. The Apply operator is a new addition. It
corresponds roughly to Select: it has a delegate argument, which produces the output by

14

transforming the input. Unlike Select, the input to the Apply delegate is the whole input stream,
and the output is a complete stream.

Figure 10: The Select function argument receives each element individually, while the one of Apply

receives the whole stream.

In other words, in FIGURE 10 the type of f is Expression<Func<T,S>>, while the type of g is
Expression<Func<IEnumerable<T>,IEnumerable<S>>>.

There exists a binary version of Apply, which operates on two input streams:

public static IQueryable<T3>

Apply<T1, T2, T3>(this IQueryable<T1> source1,

 IQueryable<T2> source2,

 Expression<Func<IEnumerable<T1>,

 IEnumerable<T2>,

 IEnumerable<T3>>> procFunc);

Unfortunately, there is no binary version of Select. But we can build one using Apply. For

example, here is how to implement a binary Select-like operator which adds the corresponding
numbers in two streams (the two streams must have the same length). First, we write the per-vertex

transformation, which operates on IEnumerable inputs:

15

[Homomorphic]

public static IEnumerable<int>

addeach(IEnumerable<int> left, IEnumerable<int> right)

{

 IEnumerator<int> left_enu = left.GetEnumerator();

 IEnumerator<int> right_enu = right.GetEnumerator();

 while (true)

 {

 bool more_left = left_enu.MoveNext();

 bool more_right = right_enu.MoveNext();

 if (more_left != more_right)

 {

 throw new Exception("Streams with different lengths");

 }

 if (!more_left) yield break; // both are finished

 int l = left_enu.Current;

 int r = right_enu.Current;

 int q = l + r;

 yield return q;

 }

}

The addeach function is hopefully obvious: it iterates over two streams in parallel using two iterators

(it uses the MoveNext() and Current stream operators rather than foreach).

To create the IQueryable version of addition it is just enough to invoke addeach on the two inputs:

public static IQueryable<int>

AddStreams(IQueryable<int> left, IQueryable<int> right)

{

 return left.Apply<int, int, int>(right, (x,y) => addeach(x,y));

}

(It is surprisingly harder to write a generic Select, which takes an arbitrary lambda-expression; this is
covered in Section 1.15.)

If the [Homomorphic] annotation is left out the Apply operator first merges all input partitions, as
shown in FIGURE 11. With the [Homomorphic] annotation the plan performs additions on all vertices
in parallel, as shown in FIGURE 12.

16

Figure 11: Plan for the pairwise addition when the addeach function is not annotated with [Homomorphic].

Figure 12: Plan when using the [Homomorphic] annotation.

17

1.10 Join
This program computes the set of lines in a text file which start with a keyword. The keywords are listed
in a second input file.

PartitionedTable<LineRecord> table =

 PartitionedTable.Get<LineRecord>(metadata);

PartitionedTable<LineRecord> keywords =

 PartitionedTable.Get<LineRecord>(keys);

IQueryable<LineRecord> matches =

 table.Join(keywords,

 l1 => l1.line.Split(' ').First(), /* first key */

 l2 => l2.line, /* second key */

 (l1, l2) => l1); /* keep first line */

The matching is done of the first word in each line of table and an entire line of the keywords file. The
result is composed from the lines from the first file that match.

The plan uses hash-partitioning to distribute the work:

Figure 13: Join computed using hash-partitioning.

Both input tables are redistributed to four partitions which are combined separately.

1.11 Computing multiple outputs
Here we show how to create multiple output tables in a single query. The program first filters non-
empty lines from the first table, then applies two joins similar to the previous one.

IQueryable<LineRecord> filtered =

 table.Where(l => l.line.Split(' ').Length > 0);

IQueryable<LineRecord> matches1 = filtered.Join(keywords,

 l1 => l1.line.Split(' ').First(),

 l2 => l2.line, (l1, l2) => l1);

IQueryable<LineRecord> matches2 = filtered.Join(keywords,

 l1 => l1.line.Split(' ').Last(),

 l2 => l2.line, (l1, l2) => l1);

IQueryable<LineRecord> m1 = matches1.ToPartitionedTableLazy("first");

IQueryable<LineRecord> m2 = matches2.ToPartitionedTableLazy("last");

DryadLinq.Materialize(m1, m2);

18

The Materialize call will invoke a single query which computes both results. Notice how the two
queries share the filtering subquery.

Figure 14: Materializing multiple results.

1.12 Statistics in DryadLINQ
In this section we write a program to manipulate more complex C# data structures. We tackle a
statistics application: given a very large set of high-dimensional sparse vectors, compute their mean and
variance.

𝜇 =
 𝑣𝑖

𝑛
, 𝜎 =

 (𝑣𝑖 − 𝜇)2

𝑛

We won’t delve into the implementation of the sparse vectors; any implementation with the following
interface would do:

public class SparseVector

{

 public SparseVector();

 public SparseVector(string line); /* read from text file */

 public double this[uint index] { get; set; }

 [Associative]

 public SparseVector Add(SparseVector r);

 public SparseVector Subtract(SparseVector r);

 public SparseVector Square(); // elementwise square

 public SparseVector SqRoot(); // elementwise square root

 public SparseVector Divide(double scalar);

}

The statistics program will ship around objects of type (collection of) SparseVector.

We first tackle computing the average. This is done by summing-up all the values and dividing the result
by the count of values. Both the sum and count are built-in aggregations. A naïve attempt to do this
fails:

19

// this program is not good enough

public static SparseVector

ComputeStatistics(this IQueryable<SparseVector> v)

{

 SparseVector sum = v.Aggregate((x, y) => x.Add(y));

 int count = v.Count();

 SparseVector average = sum.Divide((double)count);

 IQueryable<SparseVector> normalized =

 v.Select(x => (x.Subtract(average).Square()));

 SparseVector sum = normalized.Aggregate((x, y) => x.Add(y));

 Sum = sum.Divide(count);

 sum = sum.SqRoot();

 return sum;

}

This code does indeed compute the average and standard deviation of all the SparseVectors in v.
However, average is a SparseVector, and not an IQueryable. This means that there will be
three queries executed: one to compute the sum, a second to compute the count , and a third the
standard deviation. In between, the count and average values are shipped back and forth to the C#
program.

In order to blend the computation in a single big query we have to perform a few changes:
1) First, we have to use special DryadLINQ extensions for Aggregate and Count which return

IQueryables and not values: AggregateAsQuery and CountAsQuery. These two

operators return an IQueryable which will always contain a single element when evaluated.

2) The average computation becomes much more involved, since we can no longer perform

simple arithmetic between the sum and count. We need to use Apply to manipulate them.

The Apply operation needs to be spelled out:

[Homomorphic]

public static IEnumerable<SparseVector>

Scale(IEnumerable<SparseVector> left, IEnumerable<int> right)

 // left and right should contain a single value

{

 SparseVector l = left.Single();

 int coef = right.Single();

 yield return l.Divide((double)coef);

}

public static IQueryable<SparseVector>

Average(this IQueryable<SparseVector> v, IQueryable<int> count)

{

 IQueryable<SparseVector> sum =

 v.AggregateAsQuery<SparseVector>((x, y) => x.Add(y));

 IQueryable<SparseVector> average =

 sum.Apply(count, (x, y) => Scale(x, y));

 return average;

}

The Single() method returns the unique element of a stream.
We have factored out the count computation, since it will be reused.

20

3) The standard deviation involves a computation between a big stream (the input vector), and a

singleton stream (the average, which is subtracted from each element of the vector). This can

be done with another instance of Apply,using the following code:

[Homomorphic(Left = true)]

public static

IEnumerable<SparseVector> stddev(IEnumerable<SparseVector> left,

 IEnumerable<SparseVector> average)

 // average is a single value, left is a vector

{

 SparseVector avg = average.Single();

 foreach (SparseVector l in left)

 {

 SparseVector tmp = l.Subtract(avg);

 SparseVector tmp_sq = tmp.Square();

 yield return tmp_sq;

 }

}

public static

IQueryable<SparseVector> StdDev(this IQueryable<SparseVector> v,

 IQueryable<SparseVector> average,

 IQueryable<int> count)

{

 IQueryable<SparseVector> normalized =

 v.Apply(average, (x, y) => stddev(x, y));

 IQueryable<SparseVector> sum =

 normalized.AggregateAsQuery<SparseVector>((x, y) => x.Add(y));

 IQueryable<SparseVector> scaled =

 sum.Apply(count, (x, y) => Scale(x, y));

 IQueryable<SparseVector> result =

 scaled.Apply(x => x.SqRoot());

 return result;

}

We know that the first Apply operation (the normalization) can be performed in parallel, but
how do we express this fact? In other words, stddev can handle in parallel all elements of the

left input, but it needs to see the whole right input (which is a single element stream
anyway). This can be described using a special variant of the Homomorphic attribute for the
stddev argument:

[Homomorphic(Left = true)]

public static IEnumerable<SparseVector>

stddev(IEnumerable<SparseVector> left, IEnumerable<SparseVector> average)

This means that the function is distributive in its left argument, but not in the right one.

21

public static

IQueryable<SparseVector> ReadVectors(string tableUri)

{

 PartitionedTable<LineRecord> table =

 PartitionedTable.Get<LineRecord>(tableUri);

 return table.Select(s => new SparseVector(s.line));

}

public static void

ComputeStatistics(this IQueryable<SparseVector> v)

{

 IQueryable<int> count = v.CountAsQuery();

 IQueryable<SparseVector> average = v.Average(count);

 IQueryable<SparseVector> dev = v.StdDev(average, count);

 IQueryable<SparseVector> a = average.ToPartitionedTableLazy("average");

 IQueryable<SparseVector> d = dev.ToPartitionedTableLazy("stddev");

 DryadLinq.Materialize(a, d);

}

This query will generate two tables when executed. The query plan for an input with two partitions
looks pretty good:

Figure 15: Plan for the statistics computation.

This program can be written in a simpler fashion using the Large Vector library; we revisit it again in
Section 2.1.

22

1.13 Writing Custom Serializers

DryadLINQ writes binary data in the output tables, using the same binary serialization routines that are
used to ship data between vertices. As a consequence, data written by a DryadLINQ query can be read
by another query without any special preparations; the two programs should just specify the same type
for the table contents:

PartitionedTable<T> output = result.ToPartitionedTable(histogramUri);

[. . .]

PartitionedTable<T> input = PartitionedTable.Get<T>(histogramUri);

For class MyRecord you can control the way it is represented on the wire by endowing it with the
following two methods:

public struct MyRecord

{

 public static MyRecord Read(DryadBinaryReader rd);

 public static void Write(DryadBinaryWriter wr, MyRecord rec);

}

For example, to write the SparseVectors of the previous section in text form you can either:

 Add an extra Select computation stage before the output:

result.Select(x => new LineRecord(x.ToString())).ToPartitionedTable(destUri);

 Add a Write method to the SparseVector class:

public static void Write(DryadBinaryWriter wr, SparseVector vec)

{

 wr.Write(new LineRecord(vec.ToString()));

}

1.14 TeraSort

The following code shows the complete implementation of a program that can be used for sorting data
in the format of the Terasort benchmark. The data is described by 100-byte character records, with a
10-byte key. Most of the complexity of the code is in defining a C# data structure which can read, write
and compare data in this format. The actual sorting code is exactly one line: an invocation of OrderBy.

23

public struct TeraRecord : IComparable<TeraRecord>

{

 public const int RecordSize = 100;

 public const int KeySize = 10;

 public byte[] content;

 public int CompareTo(TeraRecord rec)

 {

 for (int i = 0; i < KeySize; i++)

 {

 int cmp = this.content[i] - rec.content[i];

 if (cmp != 0) return cmp;

 }

 return 0;

 }

 public static TeraRecord Read(DryadBinaryReader rd)

 {

 TeraRecord rec;

 rec.content = rd.ReadBytes(RecordSize);

 return rec;

 }

 public static void Write(DryadBinaryWriter wr, TeraRecord rec)

 {

 wr.WriteBytes(rec.content);

 }

}

class Terasort

{

 public static void Main(string[] args)

 {

 PartitionedTable<TeraRecord> records =

 PartitionedTable.Get<TeraRecord>(args[0]);

 var q = records.OrderBy(x => x);

 q.ToPartitionedTable(args[1]);

 }

}

1.15 A Generic Pairwise Select
In this section we show how to build higher-order query operations by writing a generic Select

operator on IQueryable objects which operates on two inputs at once, pairwise. The argument is a
binary function mapper.

We start by writing a helper function which manipulates Expression objects. Given a function f(x,y,z)
and a constant value c, it will construct a function g(y,z) = f(c,y,z). But this has to be done using
Expression objects, and not delegates:

24

public static Expression<Func<T1, T2, T3>>

Closure_cvv<T0, T1, T2, T3>(

 Func<T0, T1, T2, T3> function,

 Expression firstArg) // type should be T0

// build a closure from a function of 3 arguments,

// first one is constant (cvv)

{

 ParameterExpression xparam = Expression.Parameter(typeof(T1), “xparam”);

 ParameterExpression yparam = Expression.Parameter(typeof(T2), “yparam”);

 Expression fun = Expression.Constant(function);

 Expression body = Expression.Invoke(fun, firstArg, xparam, yparam);

 Type resultType =

 typeof(Func<,,>).MakeGenericType(typeof(T1), typeof(T2), body.Type);

 LambdaExpression result = Expression.Lambda(resultType,

 body,

 xparam,

 yparam);

 return (Expression<Func<T1, T2, T3>>)result;

}

To apply a binary function to two streams, we first scan the two input streams in parallel, and create
pairs of objects. Then pass each pair to a function which breaks each pair into two components and

applies the binary function on components. For this purpose we build a helper generic Pair class with
the following signature:

[Serializable]

public struct Pair<T1, T2> : IEquatable<Pair<T1, T2>>

{

 public T1 First { get; set }

 public T2 Second { get; set }

 public Pair(T1 f, T2 s);

 public static Pair<T1, T2> MakePair(T1 f, T2 s);

 public bool Equals(Pair<T1, T2> other);

 public override bool Equals(object obj);

 public override int GetHashCode();

}

Next we generalize the addeach function we defined in Section 1.9 to operate with an arbitrary
mapper:

25

[Homomorphic]

public static IEnumerable<T3>

Pointwise<T1, T2, T3>(Func<T1, T2, T3> mapper,

 IEnumerable<T1> x,

 IEnumerable<T2> y)

// apply mapper pointwise

{

 IEnumerator<T1> xenu = x.GetEnumerator();

 IEnumerator<T2> yenu = y.GetEnumerator();

 while (true)

 {

 bool morex = xenu.MoveNext();

 bool morey = yenu.MoveNext();

 if (morex != morey)

 {

 throw new Exception("Non-isomorphic collections");

 }

 if (!morex) yield break;

 T1 s = xenu.Current;

 T2 r = yenu.Current;

 T3 q = mapper(s, r);

 yield return q;

 }

}

Then final pairwise Select does three things:
 creates a function closure called pairmaker which takes the Pointwise function and uses a

function creating pairs as the first argument.

 Creates a function pop (from “pairwise operation”) that breaks the pairs away and invokes a

simple mapper (equivalent to (pair) => mapper(pair.First, pair.Second)).

 Invokes pairmaker on the two input streams to create a stream of pairs

 Invokes pop using the regular Select operation on the stream of pairs.

26

public static IQueryable<T3>

Select<T1, T2, T3>(this IQueryable<T1> input0,

 IQueryable<T2> input1,

 Expression<Func<T1, T2, T3>> mapper)

{

 // first create pairs of elements using Apply

 Expression<Func<T1, T2, Pair<T1, T2>>>

 makepairs = (x, y) => Pair<T1, T2>.MakePair(x, y);

 Expression<Func<IEnumerable<T1>,

 IEnumerable<T2>,

 IEnumerable<Pair<T1,T2>>>>

 pairmaker =

 Closure_cvv<Func<T1, T2, Pair<T1,T2>>,

 IEnumerable<T1>,

 IEnumerable<T2>,

 IEnumerable<Pair<T1,T2>>>(

 Pointwise, makepairs);

 // tag pairmaker as homomorphic and stateless

 HomomorphicAttribute h = new HomomorphicAttribute();

 AttributeSystem.Add(pairmaker, h);

 ResourceAttribute a = new ResourceAttribute();

 a.IsStateful = false;

 AttributeSystem.Add(pairmaker, a);

 // create a stream of pairs

 IQueryable<Pair<T1, T2>> pairs =

 input0.Apply<T1, T2, Pair<T1, T2>>(input1, pairmaker);

 // create a new mapper which operates on pairs

 ParameterExpression p12 =

 Expression.Parameter(typeof(Pair<T1, T2>),

 "tmparg");

 Expression p1 = Expression.Property(p12, "First");

 Expression p2 = Expression.Property(p12, "Second");

 Expression body = Expression.Invoke(mapper, p1, p2);

 Expression<Func<Pair<T1, T2>, T3>> pop =

 Expression.Lambda<Func<Pair<T1, T2>, T3>>(body, p12);

 // invoke the mapper on all pairs created

 IQueryable<T3> result = pairs.Select(pop);

 return result;

}

1.16 PageRank
Pagerank is a popular approach to scoring web pages based off of a random walk that traverses the links
of the web graph. A random surfer is started at a uniformly random page, and in each time step chooses
a random outgoing link to follow, or with lower probability (usually 0.15) resets to a uniformly random
page. The pagerank of a page is then defined as its stationary probability under this random walk: after
an arbitrarily large number of steps, what is the probability that the surfer finds itself at the page in
question.

The simplest and most common approach to pageranking keeps the pageranks for each web page, and
iteratively updates these scores using power iteration. Given a vector of scores (probabilities), the scores

27

after one step are determined by having each page distribute its score among its outgoing links, typically
uniformly, and updating the scores of each page to be the total score received from incoming links.
Additionally, we scale each score down by a factor of 0.85, and add 0.15/n to each score, to emulate the
reset to uniformly random pages.

PR(u) = sum_v PR(v) weight(u,v) * 0.85 + 0.15/n

Given a list of edges in the graph, perhaps as a list of <source, target> pairs, we can perform this update
efficiently by using a Join of the current scores with the sources of the pairs, outputting a list of

<target, score> pairs that we can then group using a GroupBy on the first field. The scores in the group
can then be accumulated, forming the score for the next round. Ignoring for now the matter of scaling
by 0.85, dividing by degree, or adding 0.15, the following method does just that:

public IQueryable<Rank>

PageRank(IQueryable<Edge> edges, IQueryable<Rank> ranks)

{

 return edges.Join(ranks,

 edge => edge.source,

 rank => rank.source,

 (edge, rank) => new Rank(edge.target, rank.value)).

 GroupBy(rank => rank.source).

 Select(group => new Rank(group.Key,

 group.Select(rank => rank.value).Sum()));

}

This approach is not the most efficient, for several reasons. First, it reads edge data as pairs, when surely
it would be more efficient to group the pairs by their source, and emit the several new ranks for
outgoing links from the page at once. At the least, this will save a factor of two in the description of the
input. Additional metadata about the page, including its out-degree (eventually useful to normalize the
outgoing scores) is also immediately available. The following method uses a list of LinkRecord rather
than Edge, has a slightly more complicated Join method to output the list of scores for each page, and
needs to use a SelectMany to merge the list of ranks before grouping.

public static IQueryable<Rank>

PageRank(IQueryable<LinkRecord> pages, IQueryable<Rank> ranks)

{

 return pages.Join(ranks,

 page => page.url,

 rank => rank.source,

 (page, rank) =>

 page.links.Select(dest=>new Rank(dest, rank.value))).

 SelectMany(list => list).

 GroupBy(rank => rank.source).

 Select(group => new Rank(group.Key,

 group.Select(rank=>rank.value).Sum()));

}

We can be even cleverer with a bit of work and observe that most of the links on the web tend to point
to the same host/domain as their source. If we group the LinkRecords by the host of their source,
then many of the Ranks that are produced will be shared within the host, and can be pre-aggregated
before being sent to a global GroupBy. This can substantially reduce the amount of data that needs to

28

be shipped around the network, resulting in substantial performance improvements. One
implementation of this idea is as follows:

// pagerank that exploits structure in the links

public static IQueryable<HostRanks>

PageRank(IQueryable<IGrouping<string, LinkRecord>> hosts,

 IQueryable<HostRanks> hranks)

{

 return

 hosts.Join(hranks,

 host => host.Key,

 hrank => hrank.host,

 (host, hrank) =>

 host.Join(hrank.ranks,

 page => page.url,

 rank => rank.url,

 (page, rank) =>

 page.links.Select(

 dest => new Rank(dest, rank.))).

 SelectMany(list => list).

 GroupBy(score => score.url).

 Select(group =>

 new Rank(group.Key,

 group.Select(x => x.val).Sum()))).

 SelectMany(list => list).

 HashPartition(rank => Hostname(rank.source), HashParts).

 GroupBy(rank => Hostname(rank.source)).

 Select(group =>

 new HostRanks(group.Key,

 group.GroupBy(rank =>rank.source).

 Select(group2 =>

 new Rank(group2.Key,

 group2.Select(rank =>

 rank.value).Sum())))).

 AssumeHashPartition(host => host.host);

}

Notice that the innards of the Join function contain another Join, and in fact contains code that looks
very much like a small version of the previous code example. Indeed this is what is happening, with the
host aggregating scores as much as possible before returning its list of outgoing values. Once produced,
this list is flattened (with SelectMany) and grouped by host, rather than page, so that we can repeat
the process. Each group (by host) has its list of scores aggregated by page, and the process is ready to
continue.

The two functions HashPartition and AssumeHashPartition are present to direct the layout of
data. Rather than scatter the data arbitrarily, it helps substantially to co-locate the scores associated
with a host to the graph structure associated with the host. Assuming that the hosts input is also

HashPartitioned by host into HashParts parts, doing the same with the vector of scores will
ensure that when next we perform the Join, no data will need to move across the network. In fact, the
only traffic that occurs is due to our explicit HashPartition statement, which will move only those
scores that are not presently in the correct part (recall that many of the scores from a host remain
within that host, and consequently need not be moved across the network).

29

1.17 Q18 from SkyServer
For a definition of this query see http://www.sdss.jhu.edu/SQL/SQLQueries.html. This is the most time-
consuming query of a set of queries for mining astronomical data. We elide some constructor code to
abbreviate the example.

public class PhotoObjAll

{

 public long objId;

 public bool mode;

 public float u, g, r, i, z;

}

public class Neighbor

{

 public long objId, neighborObjId;

}

public class PhotoObjNeighbor

{

 public long objId, neighborObjId;

 public bool mode;

 public float u, g, r, i, z;

 public PhotoObjNeighbor();

 public PhotoObjNeighbor(PhotoObjAll p, Neighbor n);

}

public class PhotoObjNeighborAll

{

 public PhotoObjAll l;

 public PhotoObjNeighbor p;

 public PhotoObjNeighborAll() { }

 public PhotoObjNeighborAll(PhotoObjAll l, PhotoObjNeighbor p);

}

http://www.sdss.jhu.edu/SQL/SQLQueries.html

30

public class SkyServer

{

 public static void Query18() {

 PartitionedTable<PhotoObjAll> photoObjAll =

 Partitioned.Get<PhotoObjAll>("ugriz-u9.txt");

 PartitionedTable<Neighbor> neighbors =

 Partitioned.Get<Neighbor>("neighbor-u9.txt");

 var j1 = from p in photoObjAll

 join n in neighbors on p.objId equals n.objId

 select new PhotoObjNeighbor(p, n);

 var w1 = from pn in j1

 where pn.objId < pn.neighborObjId && pn.mode

 select pn;

 var j2 = from l in photoObjAll

 join pn in w1 on l.objId equals pn.neighborObjId

 select new PhotoObjNeighborAll(l, pn);

 var w2 = from lp in j2

 where lp.l.mode

 && Math.Abs((lp.p.u-lp.p.g)-(lp.l.u-lp.l.g)) < 0.05

 && Math.Abs((lp.p.g-lp.p.r)-(lp.l.g-lp.l.r)) < 0.05

 && Math.Abs((lp.p.r-lp.p.i)-(lp.l.r-lp.l.i)) < 0.05

 && Math.Abs((lp.p.i-lp.p.z)-(lp.l.i-lp.l.z)) < 0.05

 select lp.p.objId;

 var q = w2.Distinct();

 q.ToPartitionedTable(“result.pt”);

 }

}

31

2 Using the Large Vector Library

Using the techniques in Section 1.15 we have built a generic simple library geared towards mathematical
operations operating on large partitioned collections of typed objects. The library contains two main
datatypes: PartitionedVector<T>, and Scalar<T>. A Scalar<T> always contains a single
value of type T. Here are the signatures of these classes:

public class Scalar<T> : IQueryable<T>

{

 public Scalar(IQueryable<T> q);

 public Scalar(T v);

 public T Value { get; }

 public Scalar<T1> Map<T1>(Expression<Func<T,T1>> func);

 public Scalar<T2>

 Map<T1,T2>(Scalar<T1> input,

 Expression<Func<T,T1,T2>> func);

 public Scalar<T3>

 Map<T1,T2,T3>(Scalar<T1> input1,

 Scalar<T2> input2,

 Expression<Func<T,T1,T2,T3>> func);

 public Scalar<T4>

 Map<T1,T2,T3,T4>(Scalar<T1> input1,

 Scalar<T2> input2,

 Scalar<T3> input3,

 Expression<Func<T,T1,T2,T3,T4>> func);

}

public class PartitionedVector<T> : IQueryable<T>

{

 public PartitionedVector(IQueryable<T> q);

 public DryarTable<T> Materialize(string partitionedfilename);

 public T Value { get; }

 public Scalar<UInt64> Count();

 public PartitionedVector<T1> Map<T1>(Expression<Func<T,T1>> func);

 public PartitionedVector<T2>

 Map<T1,T2>(PartitionedVector<T1> input1,

 Expression<Func<T,T1,T2>> func);

 public PartitionedVector<T2>

 Map<T1,T2>(Scalar<T1> input1,

 Expression<Func<T,T1,T2>> func);

 public PartitionedVector<T2>

 Map<T1,T2>(T1 input1,

 Expression<Func<T,T1,T2>> func);

 public Scalar<T> Reduce(Expression<T,T,T> reducer,

 T seed);

 public Scalar<T> Reduce(Expression<T,T,T> reducer,

 Scalar<T> seed);

}

32

We have also built a linear algebra library which provides a DoubleVector, SparseVector and

DoubleMatrix class. For increased performance, these classes are not generic, they only handle
double values. These classes contain the expected assortment of algebraic operations.

We have also predefined the following classes:

public class Vectors : PartitionedVector<DoubleVector>;

public class Matrices : PartitionedVector<DoubleMatrix>;

public class OneVector : Scalar<DoubleVector>;

public class OneMatrix : Scalar<DoubleMatrix>;

All the DoubleVector elements of a Vectors object have to have the same dimension; the same is
true for all the DoubleMatrix elements in a Matrices object. We provide some convenient
methods for Vectors and Matrices. Here are some examples:

public class Vectors : PartitionedVector<DoubleVector>

{

 public Vectors(IQueryable<DoubleVector> v, uint dimension);

 public uint Dimension { get; }

 static DoubleVector Zero(); // with proper dimension

 public OneVector Sum() {

 return this.Reduce((x,y) => x.Add(y), this.Zero());

 }

 public Vectors Add(Vectors other) {

 return new Vectors(this.Map(other, (a,b) => a.Add(b),

 Dimension);

 }

 public Vectors Subtract(Vectors other) {

 return new Vectors(this.Map(other, (a,b) => a.Subtract(b),

 Dimension);

 }

 public static OneVector Mean(Scalar<UInt64 count> count) {

 Expression<Func<DoubleVector, UInt64, DoubleVector>> scale =

 (v, s) => v.ScalarDivide(s);

 OneVector sum = this.Sum();

 OneVector result = sum.Map(count, scale);

 return result;

 }

 public Vectors Map(Func<DoubleVector, DoubleVector> map,

 uint dim);

 // etc.

}

2.1 Statistics Revisited

Here we rewrite the program from Section 1.12 using the large vector library we have just described. To
compute the mean and standard deviation of a Vectors v we can write:

33

public static void Statistics(Vectors v)

{

 Scalar<UInt64> count = v.Count();

 OneVector mean = v.Mean(count);

 Vectors vnorm = v.Map(mean, (a,b) => SqDiff(a,b), v.Dimension);

 OneVector sum = vnorm.Sum();

 OneVector variance = sum.Map(count, (a,b) => a.ScalarDivide(b));

 OneVector sigma = variance.Map(x => x.SqRoot());

 // materialize(mean, sigma) not shown

}

2.2 Linear Regression
We are given a set of N-dimensional input vectors 𝑥𝑡 𝜖 ℛ𝑁 and a set of M-dimensional output vectors
𝑦𝑡 𝜖 ℛ𝑀 . We want to compute a linear transformation 𝐴 which maps each 𝑥𝑡 into the corresponding 𝑦𝑡
minimizing the square root error: 𝐴𝑥𝑡 = 𝑦𝑡 . Fortunately this problem has an analytical solution:

𝐴 = 𝑥𝑡 × 𝑦𝑡
𝑇

𝑡 (𝑥𝑡𝑡 × 𝑥𝑡
𝑇)−1. We assume that M and N are relatively small.

Figure 16: Linear Regression Plan

The main assumption is that the input vectors x and y are partitioned in the same way. Then we can
write the computation as follows, by using the classes we have described:

Vectors x = input(0);

Vectors y = input(1);

Matrices xx = x.PairwiseOuterProduct(x);

OneMatrix xxs = xx.Sum();

Matrices yx = y.PairwiseOuterProduct(x);

OneMatrix yxs = yx.Sum();

OneMatrix xxinv = xxs.Map(a => a.Inverse());

OneMatrix A = yxs.Map(xxinv, (a, b) => a.Multiply(b));

2.3 Expectation Maximization (Mixture of Gaussians)
This is a typical iterative algorithm. We describe here a slightly simpler version, which always performs a
fixed number of iterations. It is straightforward to adapt this algorithm to a dynamic version, by using
multiple queries. The statistics are stored in an object MixtureModel, which we do not describe. The
main E-M loop is as follows:

34

Vectors x = input(0);

MixtureModel initial = new MixtureModel(dimension, clusters);

Scalar<MixtureModel> mm = null;

Scalar<UInt64> T = x.Count();

for (uint iteration=0; iteration < max_iterations; iteration++) {

 // E step is a method of the MixtureModel

 Vectors e;

 if (iteration == 0)

 e = x.Map(initial, (inp, mm) => mm.Estep(inp), clusters);

 else

 e = x.Map(mm, (inp, mm) => mm.Estep(inp), clusters);

 // M Step

 OneVector pi = e.Sum();

 Matrices xe = x.PairwiseOuterProduct(e);

 OneMatrix mu = xe.Sum();

 Mu = new OneMatrix(mu.Map(pi, (X,Y)=>X.DivideColumnwise(Y)));

 Matrices sqdiff = x.Map(mu,

 (X,Y) => X.squaredDiff(Y),

 clusters, // matrix size

 dimension);

 Matrices sq_e = sqdiff.Map(e,

 (p, sqd) => sqd.MultiplyColumnwise(p),

 sqdiff.Columns,

 sqdiff.Rows);

 Matrices sigma = sq_e.Sum();

 sigma = new OneMatrix(sigma.Map(pi,

 (X,Y) => X.DivideColumnwise(Y)));

 pi = new OneVector(pi.Map(p => p.ScalarDivide(T)));

 m = new Scalar<MixtureModel>(

 pi.Map(mu, sigma, (p,m,s) => new MixtureModel(p,m,s)));

}

35

The plan generated for three partitions and three iterations looks as follows:

Figure 17: E-M plan for 3 iterations and 3 input partitions.

Note how the current value of the mixture model m is used to concatenate the queries corresponding to
different iterations.

2.4 Principal Component Analysis
Principal Component Analysis (PCA) is a technique used for reducing the dimensionality of data. Given a
high-dimensional data set 𝑋 = 𝑥𝑖 , 0 ≤ 𝑖 < 𝑇, 𝑥𝑖 ∈ ℜ𝑛 , PCA involves projecting the input data onto a
hyperplane whose basis vectors align with directions of high variance in the input dataset.

To achieve this, we first compute the mean 𝜇 and covariance matrix 𝐶𝑜𝑣 𝑋 =
1

𝑇
 (𝑥𝑖𝑖 − 𝜇)(𝑥𝑖 − 𝜇)𝑇

of the high dimensional input data. The basis vectors of the projection hyperplane are the top 𝐾 eigen
vectors of the covariance matrix (ordered by their eigen values). 𝐾 is provided by the user and in general
is chosen to reflect on the fraction of total variance necessary to explain the input data. 𝐾 is also the
dimension of the resulting low dimensional data. The rows of the projection matrix Λ correspond the

36

top 𝐾 eigen vectors of 𝐶𝑜𝑣(𝑋) in order. The projection 𝑌 of 𝑋 to the 𝐾-dimensional subspace proceeds
as: 𝑦𝑖 = Λ 𝑥𝑖 − 𝜇 .
Our implementation uses reduction for the count, mean and covariance computation. The computation
of Λ is done on a single machine with singular value decomposition. The final projection and
computation of 𝑦𝑖 is done using a map (vector-scalar) stage. The whole implementation requires 60
lines of code. The complete body of the main algorithm, requiring 7 statements, is the following:

Scalar<UInt64> count = x.Count();

OneVector mx = x.Mean(count);

Matrices prods = x.Map(mx,

 (a, b) => Cov(a, b),

 x.Dimension, x.Dimension);

OneMatrix sum = prods.Sum();

OneMatrix cov = sum.Map(count, (a,b) => ReduceDegFreedom(a, b));

OneMatrix proj = cov.Map(

 a => ProjectionMatrix(a, reduced_dimension, xdimension));

Vectors xreduced = x.Map(proj,

 (a, b) => b.Multiply(a),

 reduced_dimension);

2.5 Image Processing
We show the sketch of a code fragment which loads image data into a PartitionedVector from a set
of directories, specified as text lines in an input table. This is part of an algorithm for image
summarization.

37

public class ImgData { /* not shown */ }

static IEnumerable<ImgData>

loadFile(FileInfo file, uint patchSize, uint overlap)

{

 Bitmap img = Image.FromFile(file.FullName);

 /* split the bitmap into pieces and yield return each piece */

}

public static IEnumerable<FileInfo>

listDirectory(string directory)

{

 System.IO.DirectoryInfo dir = new System.IO.DirectoryInfo(directory);

 System.IO.FileInfo[] filelist = dir.GetFiles(“*.jpg”);

 return filelist.AsEnumerable();

}

static IEnumerable<ImgData>

loadDirectory(string directory, uint patchsize, uint overlap)

{

 IEnumerable<FileInfo> files = listDirectory(directory);

 foreach (FileInfo f in files) {

 IEnumerable<ImgData> explodedFile = loadFile(f, patchsize, overlap);

 foreach (ImgData d in explodedFile)

 yield return d;

 }

}

static public IEnumerable<ImgData>

loadDirectory(LineRecord line, uint patchsize, uint overlap)

{

 string content = line.line;

 int comment = content.IndexOf('#');

 if (comment >= 0)

 content = content.Remove(comment);

 if (content.Length == 0) yield break;

 Console.WriteLine("Reading directory {0}", content);

 IEnumerable<ImgData> dircontents =

 loadDirectory(line.line, patchsize, overlap).AsQueryable<ImgData>();

 foreach (ImgData i in dircontents)

 yield return i;

}

public static

PartitionedVector<ImgData> ReadData(string dir, string input)

{

 PartitionedTable<LineRecord> inputtable =

 PartitionedTable.Get<LineRecord>(input);

 return new PartitionedVector<ImgData>(

 inputtable.SelectMany<LineRecord, ImgData>(x =>

 loadDirectory(x, s_patchSize, s_overlap));

}

