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Abstract—In this paper, we propose a method for robustly
determining the vignetting function given only a single image.
Our method is designed to handle both textured and untextured
regions in order to maximize the use of available information.
To extract vignetting information from an image, we present
adaptations of segmentation techniques that locate image regions
with reliable data for vignetting estimation. Within each image
region, our method capitalizes on the frequency characteristics
and physical properties of vignetting to distinguish it from
other sources of intensity variation. Rejection of outlier pixels
is applied to improve the robustness of vignetting estimation.
Comprehensive experiments demonstrate the effectiveness of this
technique on a broad range of images with both simulated and
natural vignetting effects. Causes of failures using the proposed
algorithm are also analyzed.

Index Terms—Vignetting correction, camera calibration, low-
level vision.

I. INTRODUCTION

Vignetting refers to the phenomenon of brightness atten-
uation away from the image center, and is an artifact that
is prevalent in photography (see Fig. 1 (a) for an example).
Although not objectionable to the average viewer, it can
significantly impair computer vision algorithms that rely on
precise intensity data to analyze a scene. Applications in
which vignetting distortions can be particularly damaging
include photometric methods such as shape from shading,
appearance-based techniques such as object recognition, and
image mosaicing. As an example, see the banding effects in
Fig. 1 (b) for the segmentation of the image in Fig. 1 (a).

There are several factors that contribute to vignetting. Some
arise from the optical properties of camera lenses, the most
prominent of which is off-axis illumination falloff or the cos4

law. Here, vignetting is a result of foreshortening of the lens
when viewed at increasing angles from the optical axis [13].
Other sources of vignetting are geometric in nature—light
arriving at oblique angles to the optical axis may be partially
obstructed by the field stop or lens rim.

To determine the vignetting effects in an image, the most
straightforward approach involves capturing an image com-
pletely spanned by a uniform scene region, such that brightness
variations can solely be attributed to vignetting [1], [11], [20],
[28], [29]. In such a calibration image, ratios of intensity with
respect to the pixel on the optical axis describe the vignetting
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Fig. 1. (a) Image with added vignetting to draw interest to the building.
(b) Banding effects in segmentation caused by vignetting. (c) Image after
vignetting is estimated and removed from (a). (d) Segmentation of the image
in (c).

function. Suitable imaging conditions for this approach, how-
ever, can be challenging to produce due to uneven illumination
and camera tilt, and the vignetting measurements are valid only
for images captured by the camera under the same camera
settings. Moreover, a calibration image can be recorded only
if the camera is at hand; consequently, this approach cannot
be used to correct images captured by unknown cameras, such
as images downloaded from the web.

A vignetting function can alternatively be computed from
image sequences with overlapping views of an arbitrary static
scene [7], [8], [12], [15]. In this approach, point corre-
spondences are first determined in the overlapping image
regions. Since a given scene point has a different position
in each image, its brightness may be differently attenuated
by vignetting. From the aggregate attenuation information
from all correspondences, the vignetting function can be
accurately recovered without any assumptions on the scene.
The image sequence can alternatively be obtained by capturing
projector images at different exposures and different aperture
settings [10].

These previous approaches require either a collection of
overlapping images or an image of a calibration scene. How-
ever, often in practice only a single image of an arbitrary
scene is available, e.g., when applying vignetting correction
to images downloaded from the web.

Previous techniques derive information for vignetting cor-
rection from pixels with equal scene radiance but differing
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attenuation of brightness. For a single arbitrary input image,
this information becomes challenging to obtain, since it is
difficult to identify pixels having the same scene radiance
while differing appreciably in vignetting attenuation.

In this paper, we present a method for single-image vi-
gnetting correction that acquires vignetting data by finding
image regions in which vignetting can be distinguished from
other sources of intensity variation. These regions are located
using adaptive segmentation techniques designed to reveal im-
age areas with uniform scene radiance characteristics and grad-
ual brightness variations that can be attributed to vignetting.
To maximize the use of available information in the image,
our technique extracts vignetting data from both textured and
untextured regions. In extracting vignetting information from
a given region, we take advantage of physical vignetting
characteristics to diminish the influence of textures and other
intensity variations. With the vignetting information discerned
from various disparate regions, the vignetting function is
estimated.

In principle, if segmentation is perfect, the vignetting
parameters can be estimated directly. However, vignetting
typically causes inaccuracies in segmentation that can result
in suboptimal estimation. We handle this problem by itera-
tively segmenting, estimating the vignetting parameters, and
correcting the image, with the reasonable assumption that
the accuracy of estimated parameters improves after every
iteration.

The remainder of the paper is structured as follows. Section
II briefly discusses our imaging model and vignetting model.
Section III presents the problem definition and an overview of
our method. Section IV describes vignetting estimation from
a segmented image. Section V details the image segmentation
process with a given estimate of the vignetting function.
Section VI explains how important parameters related to
vignetting estimation and segmentation are determined. Sec-
tion VII demonstrates the effectiveness of our approach with
experiments on a wide variety of images. Concluding remarks
are given in Section VIII.

II. IMAGING MODEL WITH VIGNETTING

For a perfect lens, the imaging model can be approximated
as I = f(R+ ε1)+ ε2 [25], with I being the observed image,
R being the scene radiance, f being the radiometric response
function of the imaging system, ε1 being mostly shot-noise and
thermal noise, and ε2 being other noise effects (quantization
error, amplifier noise, D/A and A/D noise).

Since vignetting occurs at the lens, the scene radiance is
modulated by a vignetting function V , yielding the modified
imaging model I = f(R · V + ε1) + ε2, with “·” representing
pixelwise multiplication. Assuming that the image is captured
under well-lit conditions, ε1 À ε2, and we can ignore ε2 to
obtain

I = f(R · V + ε1). (1)

In this paper, our goal is to estimate V given I. To
accomplish this, we can either solve for V at discrete radii
(where V is a rotationally symmetric function), or solve for
parameters of a physical vignetting model. We chose to use

Fig. 2. Tilt angles τ and χ in the Kang-Weiss vignetting model.

a physical model for two reasons: (1) the parameters tell us
about the nature of vignetting (thus providing us hints on the
lens type), and (2) there is robustness to noise or sparse data.

To model V , most methods for vignetting correction use
a parametric vignetting model to simplify estimation and
minimize the influence of image noise. Typically used are
empirical models such as polynomial functions [7], [20] and
hyperbolic cosine functions [28]. Models based on physical
considerations include that of Asada et al. [1], which accounts
for off-axis illumination and light path obstruction, and that of
Kang and Weiss [11] which additionally incorporates scene-
based tilt effects. Tilt describes intensity variations within a
scene region that are caused by differences in distance from
the camera, i.e., closer points appear brighter due to the inverse
square law of illumination. This is particularly true for indoor
scenes. The tilt results in an elliptical iso-intensity distribution,
and is handled by the Kang-Weiss model. Although not
intrinsic to the imaging system, the intensity attenuation effects
caused by tilt must be accounted for in single-image vignetting
estimation.

In this work, we use an extension of the Kang-Weiss
model, originally designed for a single planar surface of
constant albedo, to multiple surfaces of possibly different
color. Additionally, we generalize its linear model of geometric
vignetting to a polynomial form.

A. Kang-Weiss model

The Kang-Weiss model [11] assumes that the scene radiance
is modulated in the imaging process by a vignetting-tilt
function ϕ which consists of not only the vignetting V but
also a tilt effect T . With this model, Eq. (1) can be rewritten
as

I = f(R · ϕ + ε1). (2)

In the model, the vignetting V is represented by an off-axis
illumination factor A and a geometric factor G. We consider
an image with zero skew, an aspect ratio of 1, and principal
point at the image center with image coordinates (u, v)=(0, 0).
For a pixel i at (ui, vi) with distance ri from the image center,
ϕi is expressed with A’s value Ai, G’s value Gi, T ’s value
Ti and V’s value Vri

as

ϕi = AiGiTi = Vri
Ti for i = 1 · · ·N, (3)
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where
Ai =

1
(1 + (ri/f)2)2

,

Gi = (1− α1ri),

Vri
= AiGi,

Ti = cos τ

(
1 +

tan τ

f
(ui sinχ− vi cos χ)

)3

. (4)

N is the number of pixels in the image, f is the effective
focal length of the camera, and α1 represents a coefficient
in the geometric vignetting factor. The tilt parameters χ, τ
respectively describe the rotation angle of a planar scene
surface around an axis parallel to the optical axis, and the
rotation angle around the x-axis of this rotated plane, as
illustrated in Fig. 2. Note that V is rotationally symmetric;
thus, it can be specified as a 1D function of the radial distance
ri from the image center.

B. Extended vignetting model

In an arbitrary input image, numerous regions with different
local tilt factors may exist. To account for multiple surfaces in
an image, we present an extension of the Kang-Weiss model
in which different image regions can have different tilt angles.
The tilt factor of Eq. (4) is modified to

Ti = cos τsi

(
1 +

tan τsi

f
(ui sinχsi

− vi cos χsi
)
)3

, (5)

where si indexes the region containing pixel i.
We also extend the linear geometric factor to a more general

polynomial form:

Gi = (1− α1ri − · · · − αpr
p
i ), (6)

where p represents a polynomial order that can be arbitrarily
set according to a desired precision. This generalized represen-
tation provides a closer fit to the geometric vignetting effects
that we have observed in practice. The amount of rays being
blocked by the lens’ rim as a function of field height (or radial
distance from optical axis) can be highly nonlinear for wide-
angled views. In contrast to using a polynomial as the overall
vignetting model, representing only the geometric component
by a polynomial allows the overall model to explicitly account
for local tilt effects and global off-axis illumination.

In the next section, we provide the analysis leading to the
estimation of vignetting parameters.

III. PROBLEM DEFINITION AND ALGORITHM OVERVIEW

Given an observed image I (specified by Eq. (1)), we wish
to recover the vignetting function V . Undoing the effects of V
on I leads to a vignetting-free image Y:

Y = f(R · T + ε1). (7)

The corresponding linearized vignetting-free image is Y ′ =
g(Y) = R·T +ε1, where g is the inverse radiometric response
function.

A. Dealing with radiometric response function

To solve for Y , the response function f should be computed
in advance (e.g., using the single image-based radiometric
calibration method of Lin et al. [14]). However, vignetting
V is not considered in the estimation of the response function
in [14], which may adversely affect the result. Although simul-
taneous estimation of f and V can resolve this problem, it is
considerably more complex and may generate a solution space
consisting of many local minima. Instead, we approximate f
based on I first, and then solve for V after accounting for f .

By applying the inverse of the estimated radiometric re-
sponse function f̂ to Eq. (2), we get the linearized version of
I, which we denote as I ′:

I ′ = ĝ(I) = R · ϕ + ε1 = R · V · T + ε1. (8)

A recovered vignetting function V can be factored out to yield
a linearized vignetting-free image Y ′:
Y ′ = R · T + ε1 ≈ I ′/V = R · T + ε1/V = R · T + εV , (9)

where / is the de-vignetting process (pixelwise division).
Assuming that V spatially varies slowly and ε1 ∼ (0, σ2

1),
it is reasonable that εV ∼ (0, σ2

1) as well. Therefore, I ′/V is
a good approximation of Y ′.

B. Estimating vignetting

Given a linearized image I ′, we estimate the vignetting
function V using Eq. (8) and an assumption thatR is piecewise
constant. Natural images formed by a piecewise constant latent
image plus zero-mean Gaussian noise are popularly modeled
by a Markov Random Field (MRF), as in image de-noising and
image segmentation. There are efficient algorithms to solve the
MRF, such as graph cuts [30].

Given I ′, we solve for V by estimating R, V and T
simultaneously with a maximum a posteriori (MAP) criterion:

V, T ,R = arg max
V,T ,R

P(V, T ,R|I ′). (10)

In Eq. (10), the conditional probability of (V, T ,R) may
be stated as follows based on Bayes’ theorem:

P(V, T ,R|I ′) =
P(I ′|V, T ,R)P(V, T ,R)

P(I ′) . (11)

For Eq. (11), we assume the denominator P(I ′) to be a
constant and drop it. Moreover, we assume V , T and R are
statistically independent. These assumptions yield

P(V, T ,R|I ′) = P(I ′|V, T ,R)P(V)P(T )P(R). (12)

To maximize the above probability, we can either simulta-
neously estimate V , T and R in a single step, or alternate
between updating V plus T and R (while keeping the other
constant). The former is usually intractable in practice because
of the large number of unknowns. In contrast, the latter is
considerably simpler, and we employ it in this paper.

To illustrate the alternating process that maximizes the
probability in Eq. (12) for estimating V , T and R, the two
step updating scheme would be

{V, T }(k+1) = arg max
V
P(I ′|V, T ,R(k))P(V)P(T ) (13)
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and

R(k+1) = arg max
R

P
(
I ′|{V, T }(k+1),R

)
P(R). (14)

The two steps in Eqs. (13) and (14) are repeated until
convergence (starting with k = 0).

Equation (13) can be seen as estimating the parameters in
the chosen vignetting-tilt function of the extended Kang-Weiss
vignetting model. We assume the noise in I ′ (Eq. (8)) to have a
Gaussian distribution, so the conditional probability in Eq. (13)
can be represented by a Gaussian function. We set the prior
probabilities of V and T (given by P(V) and P(T )) both
to 1, since vignetting is represented with a physical model.
By taking the negative logarithm on the right hand side of
Eq. (13) and dropping the constant, we get the following
energy function:

E(k+1)
vgn =

∑

i∈Ω

(
I ′i −R

(k)
i ViTi

)2

/σ2
Ri

, (15)

where I ′i , R
(k)
i , Vi and Ti are the values of pixel i in the

image domain Ω of I ′, R(k), V and T , respectively. σ2
Ri

is
the estimated variance of the Gaussian model for Ri. Note that
the vignetting parameters are components of Vi in Eq. (15).

We solve Eq. (14) using an MRF-based segmentation pro-
cess. We first account for the current vignetting and tilt esti-
mation {V, T }(k+1) in I ′, i.e., Y ′′(k+1) = I′

V(k+1)·T (k+1) . We
then treat Y ′′(k+1) as the observed image in the segmentation
process in which R is cast as an MRF. More specifically,
segmentation is accomplished by minimizing the two-term
energy function as

E(k+1)
seg =

∑

i∈Ω

D
(
Ri, Y

′′(k+1)
i

)
+

∑

(i,j)⊂NΩ

S(Ri, Rj), (16)

where the two terms are obtained by taking the negative
logarithm of the right hand side of Eq. (14). These two terms
correspond to the conditional probability and priori probability,
respectively.

D
(
Ri, Y

′′(k+1)
i

)
measures the fidelity between the radi-

ance estimation Ri and the observed value Y
′′(k+1)
i for pixel

i in image domain Ω. We use Y
′′(k+1)
i to denote the value of

a pixel in Y ′′(k+1). We use a Gaussian model to represent the
conditional probability in Eq. (14) (see Eq. (9)):

D
(
Ri, Y

′′(k+1)
i

)
=

(
Ri − Y

′′(k+1)
i

)2

/σ2
Ri

. (17)

S(Ri, Rj) imposes a penalty for a pair of neighboring pixels
i and j in the neighboring-pixel-pair set NΩ to have different
radiance estimations, i.e., enforcing smoothness on radiance
estimations in image space. Graph cut [30] can efficiently
minimize this energy function. The initialization of R(0) in
Eq. (13) is obtained with graph cuts performed directly on I ′.
In the segmentation, in addition to radiance, we also added
other features such as texture features for texture segmentation.
We simply replaced Ri and Y ′′ in Eq. (16) and (17) with
the corresponding feature values. More details on the selected
features for our technique can be found in Section V.

In Eqs. (15) and (17), we can assume σ2
Ri

to be a constant,
or compute estimates for different values of Ri. In this paper,

we treat σ2
Ri

as a constant over the given image. To obtain
this constant value, we first subtract the given image from
a bilateral filtered version of itself [24] (with a photometric
spread σr = 20 and a geometric spread σd = 3 in our
implementation) to get an approximate noise image. The noise
is converted from color to grayscale, and the standard deviation
of the noise is computed with this grayscale noise image. Other
techniques may alternatively be employed for estimating this
constant [16], [21].

The processes for vignetting model estimation and image
segmentation are represented by Eqs. (13) and (14), and
are detailed in Sections IV and V, respectively. To more
robustly estimate the vignetting parameters, we augment our
technique with features such as recursively segmenting regions
at finer scales to get more reliable information for vignetting
estimation, using a robust statistic function in Eq. (15), and
handling texture and outliers in the segmented image regions.

C. Procedural overview

The high-level flow of our algorithm for joint estimation
of V , T and R is illustrated in Fig. 3. In each iteration,
the image is first segmented at a coarse scale, and for each
region a reliability measure of the region data for vignetting
estimation is computed. For regions that exhibit greater con-
sistency with physical vignetting characteristics than other
regions, a higher reliability weight is assigned. Low weights
may indicate regions with multiple distinct surfaces, so these
regions are recursively segmented at incrementally finer scales
until weights of the smaller regions exceed a threshold or
regions become negligible in size. With this segmentation
approach, the segmentation scale varies spatially in a manner
that facilitates collection of vignetting data.

After spatially adaptive segmentation, pixels with high
reliability weights are used to estimate the vignetting model
parameters. Since the preceding segmentations may be cor-
rupted by the presence of vignetting, the subsequent iteration
of the procedure re-computes segmentation boundaries from
an image corrected using the currently estimated vignetting
model. Better segmentation results lead to improved vignetting
estimates, and these iterations are repeated until the estimates
converge.

D. Image pyramid in vignetting estimation

We use an image pyramid in a coarse-to-fine strategy to
improve initialization and solution quality in the vignetting
estimation. Once the image pyramid is obtained, the iterative
algorithm for the MAP estimation of V , T and R is performed
at the coarsest level. Estimation at each successively finer level
uses the result from the previous level as the initial condition.

The Gaussian pyramid is used, which produces a sequence
of copies of the original image by low-pass-filtering and
subsampling by a factor of two to obtain the next pyramid
level. Pyramid construction is equivalent to convolving the
original image with a set of Gaussian filters.

In order to eliminate changes in model parameters due
to different image sizes at the different resolution levels,
these parameters are expressed in terms of the original image
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Fig. 3. Overview of vignetting function estimation.

resolution, and are computed using subsampled image values
at coarser pyramid levels. In this way, the same position
relative to the world coordinate system will have consistent
values for r, u and v in Eqs. (3), (4), (5) and (6).

IV. SEGMENTATION BASED VIGNETTING ESTIMATION

Consider a vignetted image that has been segmented by our
algorithm in Section V. For a scene composed of piecewise
constant regions (based either on color or texture)1, this
segmentation will result in regions each with constant scene
radiance but with variations in vignetting attenuation2. We take
advantage of these variations of color or texture within each
segmented region to infer the vignetting parameters of the
image.

In this estimation, we solve for parameters of the vignetting
model that transform a piecewise constant scene as closely
as possible to the measured image. We construct an energy
function measuring the errors between the original image and
an image simulated using estimated vignetting parameters and
the estimated scene radiances of the segmented, piecewise flat
regions. A smaller error indicates a more accurate estimation
of vignetting and scene radiance.

An important challenge is to effectively deal with noise,
outliers, and texture in this estimation. To handle noise and
outliers, we apply a robust cost function to the error term. Fluc-
tuations in region color due to texture can degrade estimation
as well, so we measure the textureness of a segmented region
and compensate for it in the error term. Since this textureness
compensation may mask outliers with respect to texture in the
robust cost function, a texture-based outlier measure is used
as well.

A. Vignetting energy function

The energy function specified in Eq. (15), while correct
in principle, lacks robustness in handling noise, outliers, and
texture. In this section, we show how the function can be
modified for more accurate estimation. For simplicity, we

1Piecewise constant regions come from the assumption that the scene
radiance are from uniform planar surfaces.

2A piecewise constant scene region will not be piecewise constant in the
observed image due to vignetting. However, most segmentation algorithms
tolerate color/texture variations in a segmented region to get more practical
segmentations. The segmentation algorithm can group together pixels with the
same underlying color/texture but different degrees of vignetting attenuation.

remove the superscripts in Eq. (15) with the understanding that
the energy function is specified based on the latest estimated
value of R.

Let the scene radiance Rs of a piecewise flat region s be
expressed by its ratio λs to the scene radiance R0 of the center
pixel, i.e., Rs = λsR0. Given an image with M regions
of different scene radiance, we formulate the recovery of
vignetting parameters as minimization of the following energy
function:

E =
M∑

s=1

Ns∑

i=1

[
ρ

(
λsR0TiVri

− I ′i
1 + ckKs

)
δ(Hi > Hth)

]
, (18)

where i is the pixel index in region s (with Ns pixels), I ′i is the
pixel value in the linearized image I ′, ρ(.) is the error norm
function, Ks is a measure of textureness for region s, and ck

is a constant (the determination of its value will be explained
in Section VI). Hi represents a measure of likelihood that
pixel i is not an outlier, Hth is a threshold value (set to
0.93 in our implementation), and δ(·) is the Kronecker delta.
The vignetting model fit term λsR0TiVri

− I ′i in the error
norm function ρ(.) is modulated by textureness measure Ks to
downplay errors caused by the texture effect. The δ(.) function
serves to reject outliers with respect to the region’s texture. For
color images, I ′i is an RGB vector. For ease of explanation, we
express I ′i in this paper as a single color channel, and overall
energies are averaged over the separate color components.

We use three mechanisms to improve the robustness of
vignetting estimation in Eq. (18): (1) using a robust statistic
function ρ(.) on the error term to remove outliers recognized
by large intensity errors between a simulated image and the
real one, (2) applying the texture measure Ks to the error term
so as to avoid emphasis on errors due to texture fluctuations
within regions, and (3) using an additional outlier measure Hi

to specify the outliers which might not be detected by ρ(.) due
to the compensation factor Ks in texture regions. We detail
each of these robustness mechanisms in the following.

1) Robust Statistic Function: With an appropriate function
ρ(.) in the energy expressed by Eq. (18), outliers which do
not conform to statistical assumptions can be discarded, thus
making the algorithm more robust [3]. We use the Lorentzian
estimator:

ρ(x) = log
(
1 + (x/σ(t))2/2

)
, (19)

where σ is a scale parameter to control the shape of function
ρ(x) and t is the iteration number of the vignetting estimation.
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Fig. 4. The Lorentzian error norm function (left) and its influence function
(right).

With the Lorentzian function, pixels with small error values
that better fit the current estimated vignetting parameters in
Eq. (18) will have large “influence” on the solution whereas
outlier pixels with large error values will have significantly
less “influence”. Moreover, as σ decreases in Eq. (19), the
“influence” of pixels with smaller error values increases, as
shown in Fig. 4. The influence function characterizes the effect
of an error value on the energy function and is proportional to
the derivative of the error norm function [3]. A larger value
of an influence function corresponds to a larger degree of
“influence” by the pixel.

Since vignetting parameters are more accurate with more
iterations, pixels with smaller errors are given increasingly
higher emphasis while pixels with larger errors are increas-
ingly penalized in Eq. (18). At each image pyramid level, σ in
Eq. (19) is gradually decreased in time (iteration t) according
to σ(t) = σ′

t , where σ′ is computed from the first iteration.
Robust statistics [2], [19] is used to automatically estimate σ′.
By denoting all pixel errors in Eq. (18) with X , σ′ is computed
using

σ′ = cxMED
(∣∣X −MED(X )

∣∣) (20)

where MED refers to the median value, and cx is a constant
that depends on the statistical distribution of X . We simply
set cx = 1.4826 by assuming X is normally distributed.

2) Textureness Measurement: We measure the textureness
in a segmented region by computing the average value of
intensity variance within local windows of a fixed size (7× 7
in our experiments):

Ks =
1

Ns ·NW

∑

i∈Ωs

∑

j∈Wi

(I ′j − µ′i)
2 (21)

where Ωs denotes the pixels in the segmented region s, Ns =
|Ωs|, NW = 49 represents the number of pixels in a local
window, Wi signifies the local window of pixel i, and µ′i is
the mean linearized value of pixels in Wi.

3) Texture Outlier Measurement: We suppose there is a
prevailing texture pattern in a segmented region, and treat
pixels as outliers whose texture pattern deviates too far from
the estimated prevailing texture pattern. More precisely, a
histogram of intensities in a local window is used to represent
the texture pattern of the central pixel. We use the same set
of histogram bins for all pixels in a region, and organize
each histogram into a vector. Then, Principal Components
Analysis (PCA) [9] is performed on the collection of vectors

(a) (b)

Fig. 5. Texture outlier detection. (a) A natural picture in which grass is the
prevailing texture pattern, and flowers are considered outliers in the vignetting
estimation. (b) An image indicating texture outliers according to Hi, where
darker pixels are more likely to be outliers while brighter pixels are likely to
be part of the prevailing texture pattern.

Fig. 6. Vignetting over multiple regions. Left to right: Without vignetting for
a single uniform region, With vignetting for a single uniform region, Without
vignetting for multiple regions, With vignetting for multiple regions.

for the given region. We suppose that the prevailing texture
pattern can be represented by a small number of low-order
principal components. For simplicity, we selected 4 lowest
order principal components, although we note that there exist
various automatic selection methods [26], [27]. Finally, we
compute for each pixel i the angle βi in the high dimensional
space between the original histogram vector and its projection
onto the lower-dimensional subspace spanned by the selected
principal components, and measure the likelihood that i is not
an outlier by

Hi =
−βi

π
+ 1. (22)

Fig. 5 shows the result of using Hi to segment a natural image
consisting of grass and flower regions. The areas associated
with the flowers have low Hi values and are tagged as outliers.

With these three robust estimation components, the vi-
gnetting in an image can be more reliably recovered. In the
energy function (18), the parameters to be estimated are the
focal length f in the off-axis component, the α coefficients
of the geometric factor, the tilt angles τs and χs, the scene
radiance of the center pixel R0, and the radiance ratio λs of
each region. In processing multiple image regions as illustrated
in Fig. 6, minimization of this energy function can intuitively
be viewed as simultaneously solving for local region parame-
ters Rs, τs and χs that give a smooth alignment of vignetting
attenuation between regions, while optimizing the underlying
global vignetting parameters f , α1, · · · , αp. With the estimated
parameters, the vignetting corrected image is then given by
I ′i/Vri

(see Eq. (9)). Note that we retain the local tilt factor in
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the corrected image so as not to produce an unnatural-looking
result.

B. Vignetting estimation

For a collection of segmented regions, the many unknown
parameters create a complicated solution space. To simplify
optimization, we use a stepwise method for parameter initial-
ization prior to estimating the vignetting function.

In the first step, initial values of relative scene radiance
λs are determined for each region without consideration of
vignetting and tilt parameters. For pixels i and j at the same
radius r but from different regions, their vignetting attenuation
should be equal, so their image values I ′i and I ′j should differ
only in scene radiance. Based on this property, relative scene
radiance values are initialized by minimizing the function

E1 =
∑

r

∑

ri,rj=r;si 6=sj

wiwj

(
I ′i
λsi

− I ′j
λsj

)2

(23)

where wi and wj are the weight values (their computation will
be explained in next section).

The λs values in Eq. 23 are solved in the least squares
sense by singular value decomposition (SVD) on a system of
equations √wiwj(

I′i
λsi

− I′j
λsj

) = 0 where 1
λsi

and 1
λsj

are
unknowns. To expedite minimization of this function, a set of
pixels at a given radius and within the same region may be
represented by a single pixel with the average color of the set.

With the initial values of λs, the second step initializes the
parameters f , R0, and α1, ..., αp, where p is the polynomial
order used in the geometric factor of Eq. 6. Ignoring local tilt
factors, this is computed with the energy function

E2 =
M∑

s=1

Ns∑

i=1

wi(λsR0Vri
− I ′i)

2. (24)

This function is iteratively solved by incrementally increasing
the polynomial order from k = 1 to k = p, and using the
previously computed polynomial coefficients α1, ..., αk−1 as
initializations. In our implementation, we use a polynomial
order of p = 4.

In the third step, the local tilt parameters τs, χs are estimated
by optimizing the energy function in Eq. 18 with the other
parameters fixed to their initialization values. After this initial-
ization stage, all the parameters are jointly optimized in Eq. 18
to finally estimate the vignetting function. The optimizations
of Eq. 18 and Eq. 24 are computed using the Levenberg-
Marquardt algorithm [17].

The initialization techniques explained above are performed
only in the first iteration between segmentation and vignetting
estimation. At the end of each iteration, an estimate of the
vignetting function is determined and used as the initializa-
tion in the following iteration. The vignetting parameters are
progressively refined during the iterating process by estimating
jointly all the parameters with the Levenberg-Marquardt algo-
rithm [17]. Meanwhile, more refined estimates of vignetting
lead to more accurate segmentations of the image.

V. VIGNETTING-BASED IMAGE SEGMENTATION

To obtain information for vignetting estimation, pixels hav-
ing the same scene radiance need to be identified in the input
image by minimizing the segmentation energy function shown
in Eqs. (16) and (17). As mentioned in Section III-B, we treat
this as an MRF problem. In our implementation, we employ
graph cut segmentation [30] with per-pixel feature vectors
composed of six color/texture attributes. The color compo-
nents are the RGB values, and the local texture descriptors
are the polarity, anisotropy and normalized texture contrast
described in [5]. As described in Section III-B, we assume
a Gaussian model for each segmented region of Y ′′. For the
MRF problem, we use an 8-neighborhood system and the Potts
smoothness term [30]. Details of the graph cut algorithm can
be found in [4], [30]; its associated parameter setting will be
explained in next section.

In this section, we present the proposed adaptations to
graph cut for obtaining more reliable information in vignetting
estimation. To facilitate the location of reliable vignetting data,
segmentation scales are spatially varied over the image, and the
adverse effects of vignetting on segmentation are progressively
reduced as the vignetting function estimate is refined.

A. Spatial variations in scale

Sets of pixels with the same scene radiance provide more
valuable information if they span a broader range of vignetting
attenuation. In the context of segmentation, larger regions
are therefore preferable. While relatively large regions can
be obtained with a coarse segmentation scale, many of these
regions may be unreliable for vignetting estimation since they
may contain multiple surfaces or include areas with non-
uniform illumination. In an effort to gain useful data from
an unreliable region, our method recursively segments it into
smaller regions that potentially consist of better data for
vignetting estimation. This recursive segmentation proceeds
until regions have a higher reliability weight than a pre-set
weight threshold wth or become of negligible size according to
a threshold of 225 pixels used in our implementation. Regions
of very small size generally contain insignificant changes in
vignetting attenuation, and the inclusion of such regions would
bias the optimization process.

The weight for a region is computed based on its con-
sistency with physical vignetting characteristics (i.e., our
physically-based vignetting model) and how well its vignetting
characteristics conform to that observed elsewhere in the
image. This weight is first computed per pixel as

wi =
1

cw · ρ
(

λsR0TiVri
−I′

i

1+ckKs

)
+ 1

(25)

where cw is determined by

cw =
1− p√

2σp
, p ∈ [0 1]. (26)

In Eq. (25), wi is a value within the range [0 1], and the
input to function ρ is the error term between the original pixel
intensity and its estimation with our vignetting model. Eq. (25)
is a decreasing function relative to the error term, and the
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weight value is equal to p when the error equals to
√

2σ (which
corresponds to the saddle point in the Lorentzian function’s
influence function as shown in Fig. 4.

For our iterative algorithm on segmentation and vignetting
estimation, initially, no vignetting estimates are known, so
reliability is measured in the first iteration of the algorithm
according to how closely the region data can be represented
by our physically-based vignetting model. For a given region,
an estimate V̂ of the vignetting function is computed similarly
to the technique described in Section IV-B.

The weight of an image region is specified as the mean
weight value of the region, and is defined as

ws =
1

Ns

Ns∑

i=1

wi, (27)

where i indexes the pixels in this region.
The weight threshold for the recursive segmentation is

specified as follows:

wth =
1

cw · ρ(
√

2σ) + 1
(28)

where cw is defined in Eq. (26). It is determined that a region
needs to be subdivided when its weight is less than than that
of regions whose error term lies outside the two saddle points
of the Lorentzian influence function.

In the recursive segmentation procedure, incrementally finer
scales of segmentation are used. For methods such as mean
shift [6] and region competition [22], segmentation scale is
essentially controlled by a parameter on variation within each
feature class, where a feature may simply be pixel intensity
or color. With such approaches, a finer partitioning of a low-
weight region can be obtained by segmenting the region with a
decreased parameter value. In other techniques such as graph
cuts [30] and Blobworld [5], the degree of segmentation is set
according to a given number of feature classes in an image.
There exist several ways to set the number of classes, including
user specification, data clustering, and minimum description
length criteria [18]. For recursive segmentation, since each
region belongs to a certain class, a finer partitioning of the
region can be obtained by segmenting it with the number of
feature classes specified as two.

With this general adaptation, segmentation scale varies over
an image in a manner designed to maximize the quality of
vignetting data.

B. Accounting for vignetting
Two pixels with the same scene radiance may exhibit signifi-

cantly different image intensities due to variations in vignetting
attenuation. In segmentation, a consequence of this vignetting
is that a homogeneous scene area may be divided into separate
image regions. Vignetting may also result in heterogeneous
image areas being segmented together due to lower contrasts
at greater radial distances. For better stability in vignetting
estimation, the effects of vignetting on segmentation should
be minimized.

To address vignetting effects in segmentation, after each
iteration through the procedure in Fig. 3, the estimated vi-
gnetting function is accounted for in the segmentation step of

the subsequent iteration. Specifically, the vignetting corrected
image computed with the currently estimated parameters is
used in place of the original input image in determining
segmentation boundaries. The corrected image is used only
for segmentation purposes, and the colors in the original image
are still used for vignetting estimation.

As the segmentations improve from reduced vignetting
effects, the estimated vignetting function also is progressively
refined. This process is repeated until the difference between
vignetting functions in consecutive iterations falls below a
prescribed threshold, where the difference is measured as

∆V =
1
k

∑
r

||Vr(t)− Vr(t− 1)||. (29)

V(t) represents the global vignetting function at iteration t, and
radial distances r are sampled at k uniform intervals, where
k = 100 in our implementation.

VI. PARAMETER ESTIMATION

In our segment-based vignetting estimation technique, there
are two key parameters: ck in Eq. (18) used in vignetting
estimation with a given segmentation, and a parameter for the
graph cut algorithm [4], [30] used in segmentation with a given
vignetting estimate. We determine their values empirically as
explained below.

The value of ck ≥ 0 in Eq. (18) controls the emphasis
on texture regions in comparison to non-texture regions in
vignetting estimation. When ck = 0, the texture regions and
non-texture regions are treated equally in the error measure.
As ck is increased, the error norm decreases for pixels in
texture regions in relation to pixels in non-texture regions.
This is because pixels in texture regions have a larger value
of textureness Ks, and results in de-emphasis of pixels within
texture regions. This feature is desirable because errors in
texture regions are mostly caused by texture fluctuations. How-
ever, texture regions do contain useful information, and can
particularly help in cases of relatively homogeneous textures.
Based on extensive experimentation, we found ck = 13 to be
a effective setting.

As Eq. (16) shows, the energy function used in the graph
cut algorithm [4], [30] consists of two terms: the fidelity term
and the smoothness term. Only one parameter is involved as
a penalty term for violating the smoothness constraint [23].
It determines the value of the smoothness term in Eq. (16).
If this parameter is too small, there will be little coherence
between neighboring pixels. This leads to over-segmentation,
and the small segments will not contribute in an optimal
manner to vignetting estimation. Conversely, an overly large
parameter results in under- segmentation. Such segments are
likely to straddle regions with different radiances, which
in turn, produces incorrect vignetting parameters. Based on
experiments, satisfactory segmentation results are obtained by
setting the parameter to 1.3.

VII. RESULTS

To evaluate our algorithm, we design multiple experiments
on a wide variety of images with both simulated and real
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(a) (b) (c) (d) (e)

(f) (g)

Fig. 7. Effects of vignetting compensation in segmentation. (a) Original image; (b) Vignetting correction without vignetting compensation; (c) Segmentation
without vignetting compensation; (d) Vignetting correction with vignetting compensation; (e) Segmentation with vignetting compensation; (f) Estimated
vignetting functions after each iteration in comparison to the ground truth; (g) Intensity profile before (red) and after (blue) correction, shown for the image
row that passes through the image center.

vignetting. First, we present experiments to examine the effects
of the proposed segmentation adaptation. Second, we provide a
quantitative analysis on vignetting parameter estimation based
on images with simulated vignetting, and explain how to ob-
tain the ground truth vignetting in practice. Third, we evaluate
our algorithm on images with real vignetting, and provide
a quantitative error analysis. Fourth, we compare the speed
between our method and our previous single-image vignetting
correction method [31]. Fifth, we show our algorithm’s per-
formance on estimating tilt effects, and present some results
on image mosaicing. Finally, we present some failure mode
examples of our algorithm and analyze the causes.

A. Segmentation Adaptation

Accounting for vignetting in segmentation leads to progres-
sive improvements in the estimated vignetting function. To
exemplify this, we run our algorithm on an image captured
indoors with heavy vignetting (see Fig. 7 (a)). The original
image is directly processed without an image pyramid in
these experiments. The correction and segmentation results in
(b) and (c) without vignetting compensation are equivalent
to those after a single pass through the overall procedure
shown in Fig. 3. With additional iterations, the enhanced
segmentations lead to vignetting estimates that trend towards
the ground truth.

The effect of recursive segmentation on a given region is
illustrated in Fig. 8. Further segmentation of a low-weight
region can produce sub-regions of higher weight. With this
improvement in data quality, a more accurate vignetting func-
tion can be estimated.

(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 8. Recursive segmentation on low-weight regions. (a) Original image;
(b) Regions prior to recursive segmentation; (c) Regions after recursive
segmentation of one region; (d) Region weights of (b), where higher intensity
indicates a higher weight; (e) Region weights of (c); (f) Vignetting correction
result using region information of (b); (g) Vignetting correction result using
region information of (c).
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f , mean of error std of error
α1, · · · , α5 f , (α1, · · ·α5)× 10−3 f , (α1, · · ·α5)× 10−3

800, 0.02, 0, 0, 0, 0 10.2, 1.0, 4.3, 5.0, 2.6, 4.2 2.5, 0.1, 0.9, 2.4, 4.9, 24.0
800, 0.0, 0.3, 0, 0, 0 25.1, 1.3, 6.2, 3.7, 3.0, 14.3 2.8, 0.1, 0.3, 1.5, 2.8, 19.8

800, 0.0, 0.0, 0.4, 0, 0 13.7, 0.9, 5.7, 3.1, 3.3, 10.1 1.7, 0.3, 1.1, 0.9, 3.9, 22.4
800, 0, 0, 0, 0, 0.7 5.1, 0.3, 4.4, 5.1, 6.0, 8.1 3.7, 0.2, 1.4, 1.8, 12.1, 13.9
800, 0, 0, 0, 0, 0 4.3, 0.4, 5.7, 6.1, 1.3, 7.4 1.8, 0.3, 3.7, 4.7, 6.1, 7.9

1900, 0.001, 0, 0, 0, 0.5 50.5, 1.8, 6.6, 6.4, 2.7, 8.1 14.2, 2.6, 3.1, 1.7, 2.4, 9.3

TABLE I
ERROR IN ESTIMATED OPTICAL AND GEOMETRIC FACTORS OF THE DIFFERENT SIMULATED VIGNETTING FUNCTIONS. THE MEAN AND STANDARD

VARIANCE OF THE ERRORS FOR OUR 50 TEST IMAGES ARE LISTED.

Fig. 9. On the left is the vignetting free image. Right image is produced by
adding vignetting with model parameters f = 1342, α1 = α4 = α5 = 0,
α2 = 0.02 and α3 = 0.03.

B. Evaluations on Image with Simulated Vignetting

We obtained images free of vignetting, simulated various
vignetting effects by setting different parameter values of
the vignetting model explained in Section II, and added
the simulated vignetting to the vignetting free images. The
vignetting model parameters estimated by our algorithm are
then compared with the simulated vignetting values.

It is not an easy task to acquire images totally free of
vignetting. Although variable density filters or postprocessing
techniques have been used to compensate for vignetting, the
effect usually cannot be completely accounted for.

We design a variational experimental method to obtain the
ground truth vignetting with a given camera setting. Then,
we capture images with the same settings, and account for the
ground truth vignetting to produce ground truth vignetting free
images.

Ground truth vignetting functions of the cameras at different
focal lengths were computed from multiple images of a distant
white surface under approximately uniform illumination. A
distant surface was used to minimize tilt effects, but generally
a distant surface does not fully cover the image plane. We
captured multiple images with camera translation such that
each image pixel views the surface in at least one view. The
image fragments of the white surface were joined and blended
to obtain an accurate calibration image. We note that the
illumination variation during the capturing process needs to be
reduced as much as possible, in order to bring higher accuracy.

We used a Nikon E775 camera to capture more than 50
images. After the ground truth vignetting was removed, the
simulated vignetting was imposed with multiple kinds of
camera settings which are shown in Table I. An example image
with simulated vignetting is shown in Fig. 9. The statistics of
the differences between the simulated and recovered vignetting

Fig. 11. Errors by our new method and previous method in [31] in removing
vignetting in the images of Fig. 10.

Our previous method [31] Our new method
Outdoor 1.9/0.5 1.7/0.3
Indoor 2.9/1.8 2.6/1.3
Texture 5.7/2.1 5.1/0.8

TABLE II
COMPARISON OF MEAN/STANDARD-DEVIATION OF THE MEAN SQUARED

ERRORS (×10−3) FOR 90 IMAGES.

parameters, given by mean and variance, are shown in Table I.
Note that we did not include tilt effects in this error analysis
because tilt is always region specific and it is difficult to
determine ground truth tilt values in natural images.

In Table I, errors in α1 are seen to be lower than those
of the other coefficients in the geometric factor. This can
be explained by the more pronounced effect of α1 on the
vignetting function, particularly towards the center of the
image.

C. Evaluations on Images with Real Vignetting

Our algorithm was evaluated on a total of 90 outdoor, in-
door, and texture images, captured with a Canon G3, a Canon
EOS 20D, and a Nikon E775. The ground truth vignetting
was obtained for all cameras and settings with the method
described in the preceding subsection.

Some vignetting correction results of our technique are
presented in Fig. 10, along with the vignetting-based segmen-
tation regions and their weights.

Errors computed (similarly to Eq. (29)) between the esti-
mated vignetting functions and the ground truth functions for
the images in Fig. 10 are listed in the chart of Fig. 11. In
the chart, we also list the errors produced by our preliminary
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 10. Vignetting correction results. Each set from top to bottom: original image, vignetting corrected image, vignetting-based segmentation, region weights
(brighter pixels indicate higher weights).
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(a) (b)

(c) (d)

Fig. 12. Tilt effects in vignetting estimation. (a) Original image with
vignetting and tilt; (b) Image corrected for only vignetting using the proposed
method; (c) Tilt image, where brighter areas indicate more distant points on
a surface; (d) Estimated attenuation function with both vignetting and tilt.

work [31]. Moreover, we list in Table II the residual errors
for our new method as well as our previous method [31]
on the 90 images. It is obvious that the introduction of the
robust cost function and texture outlier detection improves the
performance of our previous single image based vignetting
estimation method [31].

While some slight vignetting artifacts may be visible under
close examination, the correction quality is reasonable espe-
cially considering that only a single arbitrary input image is
processed. For some indoor images, the amount of reliable
data can possibly be low due to greater illumination non-
uniformity. Images with poor data quality could potentially be
identified within our method by examination of region weights,
and indicated to the user.

D. Speed

We have compared the speed between the new method in
this paper and our previous single-image vignetting correction
method [31] on the 90 outdoor, indoor, and textured images.
All images have a resolution of 450× 600 and all algorithms
were implemented in Matlab (except for the segmentation
component of [31] in C++) and run on a Dell PC with 2.39
GHz Intel Core 2 CPU. Our previous method [31] on average
spends 285 seconds on one image while the method in this
paper takes 347 seconds with the coarse-to-fine scheme based
on an image pyramid as explained in Section III.

E. Other usages

While the goal of this work is to estimate and correct for the
global vignetting function of the camera, tilt effects computed
in vignetting estimation as shown in Fig. 12 could potentially
provide some geometric information of the scene. It should be
noted though that estimated tilt values are only accurate for
reliable regions with high weights.

In Fig. 13, we show the application of our method to image
mosaicing. Even though vignetting correction was performed
independently on each image of the sequence, a reasonable

(a)

(b)

(c)

Fig. 13. The image mosaic on top exhibits obvious vignetting effects. (a) No
image blending has been applied. (b) After vignetting is corrected separately
in each image using our method. (c) Intensity profiles before (red) and after
(blue) correction shown for one image row passing through the “sky” for the
images in (a) and (b).

Fig. 14. Upper and lower rows show two failed examples of the proposed
algorithm. On left side are original images with vignetting, and the right side
displays the weight values computed in our algorithm.
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mosaic was still obtained. In cases where overlapping images
are available, joint consideration of the vignetting data among
all images in the sequence would likely lead to better results.
In contrast to previous works on image mosaicing [7], [8],
[15], our proposed method can also jointly process data from
images containing completely different content if they are
captured by the same camera under the same camera setting.

F. Failure mode examples

The proposed algorithm can fail when only few useful
segmented regions are available in the test image. On the one
hand, a region is not useful to vignetting estimation when it
contains illumination variations which cannot be captured by
the tilt effect in our vignetting model. Ideally, tilt encompasses
only smooth changes for which a plot of pixel intensities with
respect to 2-D spatial coordinates forms a plane in the 3-D
space. In practice, the illumination might be more complex.
Both of the example images shown in Fig. 14 have this kind
of non-useful regions, e.g., the wall and leaves regions in the
upper and lower rows, respectively. On the other hand, a region
is unsuitable for vignetting estimation when it is composed of
highly non-homogeneous textures. The texture components in
a region are possibly very complicated and full of variation,
such as exhibited in the segmented flowers and shrub regions
in Fig. 14. Regions with highly non-homogeneous texture
patterns bring larger errors to vignetting estimation.

Our algorithm will produce poor results if no useful regions
are found in an image. We note that all of the segmented
regions in Fig. 14 received low weights in our estimation
procedure because they were deemed to be not useful for
vignetting estimation.

VIII. CONCLUSION

In this paper, we introduced a method for vignetting correc-
tion using only the information available in a single arbitrary
image. Adaptations to general segmentation techniques were
presented for locating regions with reliable vignetting data.
Within an image region, the proposed method takes advantage
of the frequency characteristics and physical properties of
vignetting to distinguish it from other sources of intensity vari-
ation. Experimental results demonstrate effective vignetting
correction on a broad range of images.

Two mechanisms were introduced to improve robustness in
estimating the proposed vignetting model’s parameters, i.e.,
the robust statistic function and the texture outlier measure.
They were shown by our experiments to improve accuracy in
vignetting estimation.

Accurate correction results are generally obtained despite
many regions having non-planar geometry and non-uniform
illumination. The detrimental effects of non-planar geometry
are reduced when distance variations of surface points from the
camera are small in comparison to the distance of the surface
itself, since variations in scene radiance become negligible.
In many instances, the effects of non-uniform illumination
appear similar to tilt, such that its effects on image intensity
are incorporated into the estimated tilt factor. Low frequency

vignetting effects also remain distinct when geometry and il-
lumination exhibit texture-like high-frequency variations, such
as among leaves on a tree. As a result, reliable vignetting data
often exists even in image areas with significant geometry and
illumination variation.

We also showed that our algorithm fails for scenes with sub-
stantial non-uniform illumination that cannot be represented
by tilt effect. Our algorithm also has difficulties with images
composed primarily of highly non-uniform texture regions.

Directions for future work include joint estimation of cam-
era parameters such as the principal point, aspect ratio, and
skew, in addition to the vignetting function. In our current
method, these camera parameters are assumed to be known
from prior geometric calibration, but could potentially be
recovered from vignetting information. Another interesting
topic for future investigation is the examination of data in the
RGB channels for region weighting, since vignetting should
attenuate RGB values in a similar way, while other causes of
region variation may not affect the channels equally.
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