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Abstract— Applying high level parallel runtimes to 

data/compute intensive applications is becoming increasingly 

common. The simplicity of the MapReduce programming 

model and the availability of open source MapReduce 

runtimes such as Hadoop, are attracting more users to the 

MapReduce programming model. Recently, Microsoft has 

released DryadLINQ for academic use, allowing users to 

experience a new programming model and a runtime that is 

capable of performing large scale data/compute intensive 

analyses. In this paper, we present our experience in 

applying DryadLINQ for a series of scientific data analysis 

applications, identify their mapping to the DryadLINQ 

programming model, and compare their performances with 

Hadoop implementations of the same applications. 
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I.  INTRODUCTION 

Among the benefits offered by cloud technologies, the 
ability to tackle data/compute intensive problems with 
frameworks such as DryadLINQ [1] and Hadoop [2] is one 
of the most important. The deluge of data and the highly 
compute intensive applications found in many domains 
such as particle physics, biology,  chemistry,  finance, and 
information retrieval,  mandate the use of large computing 
infrastructures and parallel runtimes to achieve 
considerable performance gains. The support for handling 
large data sets, the concept of moving computation to data, 
and the better quality of services provided by Hadoop and 
DryadLINQ make them favorable choice of technologies 
to solve such problems. 

Cloud technologies such as Hadoop and Hadoop 
Distributed File System (HDFS), Microsoft DryadLINQ, 
and CGL-MapReduce [3] adopt a more data-centered 
approach to parallel processing. In these frameworks, the 
data is staged in data/compute nodes of clusters or large-
scale data centers and the computations are shipped to the 
data in order to perform data processing.  HDFS allows 
Hadoop to access data via a customized distributed storage 
system built on top of heterogeneous compute nodes, while 
the academic version of DryadLINQ and CGL-
MapReduce access data from local disks and shared file 
systems.  The simplicity of these programming models 

enables better support for quality of services such as fault 
tolerance and monitoring. 

Although DryadLINQ comes with standard samples 
such as sort of large data sets, word count, etc., its 
applicability for large scale data/compute intensive 
scientific applications is not well studied. A comparison of 
these programming models and their performances would 
benefit many users who need to select the appropriate 
technology for the problem at hand. 

We have developed a series of scientific applications 
using DryadLINQ, namely, CAP3 DNA sequence 
assembly program [4], High Energy Physics data analysis, 
CloudBurst [5] - a parallel seed-and-extend read-mapping 
application, and K-means Clustering [6]. Each of these 
applications has unique requirements for parallel runtimes. 
For example, the HEP data analysis application requires 
ROOT [7] data analysis framework to be available in all 
the compute nodes and in CloudBurst the framework must 
handle worker tasks with very heterogeneous workloads at 
identical stages of the computation. We have implemented 
all these applications using DryadLINQ and Hadoop, and 
used them to compare the performance of these two 
runtimes. CGL-MapReduce and MPI are used in 
applications where the contrast in performance needs to be 
highlighted.  

In the sections that follow, we first present the 
DryadLINQ programming model and its architecture on 
Windows HPC Server 2008 platform, and a brief 
introduction to Hadoop. In section 3, we discuss the data 
analysis applications, our experience implementing them, 
and a performance analysis of these applications. In 
section 4, we present work related to this research, and in 
section 5 we present our conclusions and future work. 

II. DRYADLINQ AND HADOOP 

A central goal of DryadLINQ is to provide a wide 

array of developers with an easy way to write applications 

that run on clusters of computers to process large amounts 

of data. The DryadLINQ environment shields the 

developer from many of the complexities associated with 

writing robust and efficient distributed applications by 

layering the set of technologies shown in Fig. 1. 



 
Figure 1.  DryadLINQ software stack 

Working at his workstation, the programmer writes 

code in one of the managed languages of the .NET 

Framework using Language Integrated Query [8]. The 

LINQ operators are mixed with imperative code to 

process data held in collection of strongly typed objects. 

A single collection can span multiple computers thereby 

allowing for scalable storage and efficient execution.  The 

code produced by a DryadLINQ programmer looks like 

the code for a sequential LINQ application. Behind the 

scene, however, DryadLINQ translates LINQ queries into 

Dryad computations (Directed Acyclic Graph (DAG) 

based execution flows [9]. While the Dryad engine 

executes the distributed computation, the DryadLINQ 

client application typically waits for the results to 

continue with further processing. The DryadLINQ system 

and its programming model are described in details in [1]. 

Our paper describes results obtained with the so-called 

Academic Release of Dryad and DryadLINQ, which is 

publically available [10]. This newer version includes 

changes in the DryadLINQ API since the original paper. 

Most notably, all DryadLINQ collections are represented 

by the PartitionedTable<T> type. Hence, the example 

computation cited in Section 3.2 of [1] is now expressed 

as: 
 

var input = 

PartitionedTable.Get<LineRecord>(“file://in.tbl”

); 

var result = MainProgram(input, …); 

var output = 

result.ToPartitionedTable(“file://out.tbl”); 
 

As noted in Fig. 1, the Dryad execution engine 

operates on top of an environment which provides certain 

cluster services. In [1][9] Dryad is used in conjunction 

with the proprietary Cosmos environment. In the 

Academic Release, Dryad operates in the context of a 

cluster running Windows High-Performance Computing 

(HPC) Server 2008. While the core of Dryad and 

DryadLINQ does not change, the bindings to a specific 

execution environment are different and may lead to 

differences in performance. In addition, not all features 

available in internal versions of Dryad are exposed in the 

external release. Please note that in the remainder of this 

paper, we use the terms Dryad or DryadLINQ to refer to 

the academic release of these systems. 

 Apache Hadoop has a similar architecture to Google’s 

MapReduce [11] runtime, where it accesses data via 

HDFS, which maps all the local disks of the compute 

nodes to a single file system hierarchy allowing the data 

to be  

TABLE I.  COMPARISON OF FEATURES SUPPORTED BY  DRYAD AND 

HADOOP 

Feature Hadoop Dryad/DryadLINQ 

Programmi
ng Model 

& 

Language 
Support 

MapReduce 
Implemented using Java 

Other languages are 

supported via Hadoop 
Streaming 

DAG based execution flows. 
DryadLINQ provides LINQ 

programming API for Dryad 

using a managed language 
(e.g. C#) 

Data 

Handling 

HDFS Shared directories/ Local 

disks 

Intermediat

e Data 

Communic
ation 

HDFS/ 

Point-to-point via HTTP 

Files/TCP pipes/ Shared 

memory FIFO 

Scheduling 

Data locality/ 

Rack aware 

Data locality/ Network 

topology based 
run time graph optimizations 

Failure 

Handling 

Persistence via HDFS 

Re-execution of map 
and reduce tasks 

Re-execution of vertices 

Monitoring Monitoring support of 

HDFS, and MapReduce 

computations 

Monitoring  support for 

execution graphs 

 

dispersed to all the data/compute nodes. Hadoop 

schedules the MapReduce computation tasks depending 

on the data locality to improve the overall I/O bandwidth. 

The outputs of the map tasks are first stored in local disks 

until later, when the reduce tasks access them (pull) via 

HTTP connections. Although this approach simplifies the 

fault handling mechanism in Hadoop, it adds significant 

communication overhead to the intermediate data 

transfers, especially for applications that produce small 

intermediate results frequently. The current release of 

DryadLINQ also communicates using files, and hence we 

expect similar overheads in DryadLINQ as well.  Table 1 

presents a comparison of DryadLINQ and Hadoop on 

various features supported by these technologies.  

III. SCIENTIFIC APPLICATIONS 

In this section, we present the details of the 

DryadLINQ applications that we developed, the 

techniques we adopted in optimizing the applications, and 

their performance characteristics compared with Hadoop 

implementations. For all our benchmarks, we used two 

clusters with almost identical hardware configurations as 

shown in Table 2. 

TABLE II.  DIFFERENT COMPUTATION CLUSTERS USED FOR THE 

ANALYSES 

Feature Linux Cluster(Ref A) Windows Cluster (Ref B) 

CPU Intel(R) Xeon(R) 
CPU L5420  2.50GHz 

Intel(R) Xeon(R) 
CPU L5420  2.50GHz 

# CPU 

# Cores 

2 

8 

2 

8 

Memory 32GB 16 GB 

# Disk 1 2 

Network Giga bit Ethernet Giga bit Ethernet 

Operating 

System 

Red Hat Enterprise Linux 

Server release 5.3 -64 bit 

Windows Server 2008 

Enterprise (Service Pack 1) 
- 64 bit 

# Nodes 32 32 

 

 



A. CAP3 

 CAP3 is a DNA sequence assembly program, 

developed by Huang and Madan [4], which performs 

several major assembly steps such as computation of 

overlaps, construction of contigs, construction of multiple 

sequence alignments and generation of consensus 

sequences, to a given set of gene sequences. The program 

reads a collection of gene sequences from an input file 

(FASTA file format) and writes its output to several 

output files and to the standard output as shown below. 

During an actual analysis, the CAP3 program is invoked 

repeatedly to process a large collection of input FASTA 

file.  

Input.fasta -> Cap3.exe -> Stdout + Other output files 

 We developed a DryadLINQ application to perform 

the above data analysis in parallel. This application takes 

as input a PartitionedTable defining the complete list of 

FASTA files to process. For each file, the CAP3 

executable is invoked by starting a process. The input 

collection of file locations is built as follows: (i) the input 

data files are distributed among the nodes of the cluster so 

that each node of the cluster stores roughly the same 

number of input data files; (ii) a “data partition” (A text 

file for this application) is created in each node containing 

the file paths of the original data files available in that 

node; (iii) a DryadLINQ “partitioned file” (a meta-data 

file understood by DryadLINQ) is created to point to the 

individual data partitions located in the nodes of the 

cluster. 

 Following the above steps, a DryadLINQ program can 

be developed to read the data file paths from the provided 

partitioned-file, and execute the CAP3 program using the 

following two lines of code. 
 

IQueryable<Line Record> filenames = 

PartitionedTable.Get<LineRecord>(uri); 

IQueryable<int> exitCodes= filenames.Select(s => 

ExecuteCAP3(s.line)); 
 

 Although we use this program specifically for the 

CAP3 application, the same pattern can be used to execute 

other programs, scripts, and analysis functions written 

using the frameworks such as R and Matlab, on a 

collection of data files. (Note: In this application, we rely 

on DryadLINQ to process the input data files on the same 

compute nodes where they are located. If the nodes 

containing the data are free during the execution of the 

program, the DryadLINQ runtime will schedule the 

parallel tasks to the appropriate nodes to ensure co-

location of process and data; otherwise, the data will be 

accessed via the shared directories.) 

 When we first deployed the application on the cluster, 

we noticed a sub-optimal CPU utilization, which seemed 

highly unlikely for a compute intensive program such as 

CAP3. A trace of job scheduling in the HPC cluster 

revealed that the scheduling of individual CAP3 

executables in a given node was not always utilizing all 

CPU cores. We traced this behavior to the use of an early 

version of the PLINQ [12] library (June 2008 Community 

Technology Preview), which DryadLINQ uses to achieve 

core level parallelism on a single machine. 

 When an application is scheduled, DryadLINQ uses 

the number of data partitions as a guideline to determine 

the number of vertices to run. Then DryadLINQ schedules 

these partitions as vertices to the nodes (rather than 

individual CPU cores) and, uses the PLINQ runtime to 

achieve further parallelism within each vertex by taking 

full advantage of all the cores. The academic release of 

DryadLINQ uses the June 2008 preview version of 

PLINQ and this version of PLINQ does not always handle 

the scheduling of coarse grained parallel tasks well. We 

verified that this issue has been fixed in the current 

version of PLINQ and future releases of DryadLINQ will 

benefit from these improvements. 

 While using the preview version of PLINQ (which is 

publically available), we were able to reach full CPU 

utilization using the Academic release of DryadLINQ by 

changing the way we partition the data. Instead of 

partitioning input data to a single data-partition per node, 

we created data-partitions containing at most 8 (=number 

of CPU cores) line records (actual input file names). This 

way, we used DryadLINQ’s scheduler to schedule series 

of vertices corresponding to different data-partitions in 

nodes while PLINQ always schedules 8 tasks at once, 

which gave us 100% CPU utilization. For the DryadLINQ 

application, note that the partitioning workaround will not 

be necessary to achieve these results once a version of 

DryadLINQ taking advantage of the improved version of 

the PLINQ library becomes publically available. 

 
Figure 2.  Performance of different implementations of CAP3 

application. 

 
Figure 3.  Scalability of different implementations of CAP3. 

 

 



Fig. 2 and 3 show comparisons of performance and the 

scalability of the DryadLINQ application, with the 

Hadoop and CGL-MapReduce versions of the CAP3 

application.  

 The performance and the scalability graphs shows that 

all three runtimes work almost equally well for the CAP3 

program, and we would expect them to behave in the 

same way for similar applications with simple parallel 

topologies. 

B. High Energy Physics 

 Next, we developed a high energy physics (HEP) data 

analysis application and compared it with the previous 

implementations of Hadoop and CGL-MapReduce 

versions. As in CAP3, in this application the input is also 

available as a collection of large number of binary files, 

each with roughly 33MB of data, which will not be 

directly accessed by the DryadLINQ program. We 

manually partitioned the input data to the compute nodes 

of the cluster and generated data-partitions containing 

only the file names available in a given node. The first 

step of the analysis requires applying a function coded in 

ROOT to all the input files. The analysis script we used 

can process multiple input files at once, therefore we used 

a homomorphic Apply (shown below) operation in 

DryadLINQ to perform the first stage (corresponding to 

the map() stage in MapReduce) of the analysis.  
 

[Homomorphic] 

ApplyROOT(string fileName){..} 
 

IQueryable<HistoFile> histograms = 

dataFileNames.Apply(s => ApplyROOT (s)); 
 

 Unlike the Select operation that processes records one 

by one, the Apply operation allows a function to be 

applied to an entire data set, and produce multiple output 

values. Therefore, in each vertex the program can access a 

data partition available in that node (provided that the 

node is available for executing this application – please 

refer to the “Note” under CAP3 section).  Inside the 

ApplyROOT() method, the program iterates over the data 

set and groups the input data files, and execute the ROOT 

script passing these files names along with other 

necessary parameters. The output of this operation is a 

binary file containing a histogram of identified features of 

the input data.  

 
Figure 4.  Performance of different implementations of HEP data 

analysis applications. 

The ApplyROOT() method saves the output histograms in a 

predefined shared directory and produces its location as 

the return value. 

 In the next step of the program, we perform a 

combining operation of these partial histograms. Again, 

we use a homomorphic Apply operation to combine partial 

histograms. Inside the function that is applied to the 

collection of histograms, we use another ROOT script to 

combine collections of histograms in a given data 

partition. (Before this step, the main program generates 

the data-partitions containing the histogram file names). 

The output partial histograms produced by the previous 

step will be combined by the main program to produce the 

final histogram of identified features. 

 We measure the performance of this application with 

different input sizes up to 1TB of data and compare the 

results with Hadoop and CGL-MapReduce 

implementations that we have developed previously. The 

results of this analysis are shown in Fig. 4. 

 The results in Fig. 4 highlight that Hadoop 

implementation has a considerable overhead compared to 

DraydLINQ and CGL-MapReduce implementations. This 

is mainly due to differences in the storage mechanisms 

used in these frameworks. DryadLINQ and CGL-

MapReduce access the input from local disks where the 

data is partitioned and distributed before the computation. 

Currently, HDFS can only be accessed using Java or C++ 

clients, and the ROOT – data analysis framework is not 

capable of accessing the input from HDFS.  Therefore, we 

placed the input data in IU Data Capacitor – a high 

performance parallel file system based on Lustre file 

system, and allowed each map task in Hadoop to directly 

access the input from this file system. This dynamic data 

movement in the Hadoop implementation incurred 

considerable overhead to the computation. In contrast, the 

ability of reading input from the local disks gives 

significant performance improvements to both Dryad and 

CGL-MapReduce implementations. 

 As in CAP3 program, we noticed sub-optimal 

utilization of CPU cores by the HEP application due to the 

above mention problem in the early version of PLINQ 

(June 2008 CTP). With heterogeneous processing times of 

different input files, we were able to correct this partially 

by carefully selecting the number of data partitions and 

the amount of records accessed at once by the 

ApplyROOT() function. Additionally, in the DryadLINQ 

implementation, we stored the intermediate partial 

histograms in a shared directory and combined them 

during the second phase as a separate analysis. In Hadoop 

and CGL-MapReduce implementations, the partial 

histograms are directly transferred to the reducers where 

they are saved in local file systems and combined. These 

differences can explain the performance difference 

between the CGL-MapReduce version and the 

DryadLINQ version of the program. We are planning to 

develop a better version of this application for 

DryadLINQ in the future.  

 



C. CloudBurst 

CloudBurst is an open source Hadoop application that 

performs a parallel seed-and-extend read-mapping 

algorithm optimized for mapping next generation 

sequence data to the human genome and other reference 

genomes. It reports all alignments for each read with up to 

a user specified number of differences including 

mismatches and indels [5]. 

It parallelizes execution by seed, so that the reference 

and query sequences sharing the same seed are grouped 

together and sent to a reducer for further analysis. It is 

composed of a two stage MapReduce workflow: The first 

stage is to compute the alignments for each read with at 

most k differences where k is a user specified input. The 

second stage is optional, and it is used as a filter to report 

only the best unambiguous alignment for each read rather 

than the full catalog of all alignments. The execution time 

is typically dominated by the reduce phase.  

An important characteristic of the application is that 

the time spent by each worker process in the reduce phase 

varies considerably. Seeds composed of a single DNA 

character occur a disproportionate number of times in the 

input data and therefore reducers assigned to these “low 

complexity” seeds spend considerably more time than the 

others. CloudBurst tries to minimize this effect by 

emitting redundant copies of each “low complexity” seed 

in the reference and assigning them to multiple reducers to 

re-balance the workload. However, calculating the 

alignments for a “low complexity” seed in a reducer still 

takes more time compared to the others. This 

characteristic can be a limiting factor to scale, depending 

on the scheduling policies of the framework running the 

algorithm.  

We developed a DryadLINQ application based on the 

available source code written for Hadoop. The Hadoop 

workflow can be expressed as:  

Map -> Shuffle -> Reduce -> Identity Map -> 

Shuffle -> Reduce  

The identity map at the second stage is used for grouping 

the alignments together and sending them to a reducer. In 

DryadLINQ, the same workflow is expressed as follows: 
Map -> GroupBy -> Reduce -> GroupBy -> Reduce 

 Notice that we omit the identity map by doing an on-

the-fly GroupBy right after the reduce step. 

 
Figure 5.  Scalability of CloudBurst with different implementations. 

Although these two workflows are identical in terms of 

functionality, DryadLINQ runs the whole computation as 

one large query rather than two separate MapReduce jobs 

followed by one another. 

 
Figure 6.  Performance comparison of DryadLINQ and Hadoop for 

CloudBurst. 

The reduce function takes a set of reference and query 
seeds sharing the same key as input, and produces one or 
more alignments as output. For each input record, query 
seeds are grouped in batches, and each batch is sent to an 
alignment function sequentially to reduce the memory 
limitations. We developed another DryadLINQ 
implementation that can process each batch in parallel 
assigning them as separate threads running at the same 
time using .NET Parallel Extensions. 
 We compared the scalability of these three 

implementations by mapping 7 million publicly available 

Illumina/Solexa sequencing reads [13] to the full human 

genome chromosome1. 

 The results in Fig. 5 show that all three 

implementations follow a similar pattern although the 

DryadLINQ implementation is not as fast with small 

number of nodes. As we mentioned in the previous 

section, DryadLINQ assigns vertices to nodes rather than 

cores and PLINQ handles the core level parallelism 

automatically by assigning records to separate threads 

running concurrently. Conversely, in Hadoop, we start 

multiple reduce tasks per node and each task runs is a 

separate process.  

 In order to better understand the performance 

difference, we isolated the reduce function as a standalone 

program and ran it on complex records with two different 

implementations. In the first implementation, we 

processed the records launching multiple reduce processes 

running independently. In the second one, we launched a 

single process and created multiple concurrent reduce 

tasks inside, each working on a separate record. Although 

both implementations were identical in functionality, we 

observed that the second implementation was slower. 

Since DryadLINQ creates multiple tasks using PLINQ in 

each node, this likely explains the performance reduction 

in the DryadLINQ implementation of CloudBurst. The 

root of the problem is still under inspection; it may be 

originating from several reasons such as excessive 

memory allocation in the code, garbage collection issues 

and complications with thread scheduling. 

 

 



 Another difference between DryadLINQ and Hadoop 

implementations is the number of partitions created before 

the reduce step. DryadLINQ creates vertices based on the 

initial number of partitions given as input. If we start the 

computation with 32 partitions, DryadLINQ creates 32 

groups using a hash function and assigns each group to a 

vertex for the reduce operation. In Hadoop, the number of 

partitions is equal to the number of reduce tasks, which is 

specified as an input parameter. For example, with 32 

nodes (8 cores each), Hadoop creates 256 partitions when 

we set the number of reduce tasks to 256. Having more 

partitions results in smaller groups and thus decreases the 

overall variance in the group size. Since Hadoop creates 

more partitions, it balances the workload among reducers 

more equally.  

 In the case of the DryadLINQ implementation, we 

can also start the computation with more partitions. 

However, DryadLINQ waits for one vertex to finish 

before scheduling the second vertex on the same node, but 

the first vertex may be busy with only one record, and 

thus holding the rest of the cores idle. We observed that 

scheduling too many vertices (of the same type) to a node 

is not efficient for this application due to its 

heterogeneous record structure. Our main motivation 

behind using the .NET parallel extensions was to reduce 

this gap by fully utilizing the idle cores, although it is not 

identical to Hadoop’s level of parallelism. 

 Fig. 6 shows the performance comparison of 

DryadLINQ and Hadoop with increasing data size. Both 

implementations scale linearly, and the time gap is mainly 

related to the differences in job scheduling policies 

explained above. However, Hadoop shows a non linear 

behavior with the last data set and we will do further 

investigations with larger data sets to better understand 

the difference in the shapes. 

D. K-means Clustering 

 We implemented a K-means Clustering application 

using DryadLINQ to evaluate its performance under 

iterative computations. We used K-means clustering to 

cluster a collection of 2D data points (vectors) to a given 

number of cluster centers. The MapReduce algorithm we 

used is shown below. (Assume that the input is already 

partitioned and available in the compute nodes). In this 

algorithm, Vi refers to the i
th

 vector, Cn,j refers to the j
th

  

cluster center in n
th

 iteration, Dij refers to the Euclidian 

distance between i
th

 vector and j
th 

cluster center, and K is 

the number of cluster centers. 

The DryadLINQ implementation uses an Apply 

operation, which executes in parallel in terms of the data 

vectors, to calculate the partial cluster centers. Another 

Apply operation, which runs sequentially, calculates the 

new cluster centers for the n
th

 iteration. Finally, we 

calculate the distance between the previous cluster centers 

and the new cluster centers using a Join operation to 

compute the Euclidian distance between the 

corresponding cluster centers. DryadLINQ support “loop 

unrolling”, using which multiple iterations of the 

computation can be performed as a single DryadLINQ 

query. Deferred query evaluation is a feature of LINQ, 

whereby a query is not evaluated until the program 

accesses the query results.. Thus, in the K-means 

program, we accumulate the computations performed in 

several iterations (we used 4 as our unrolling factor) into 

one query and only “materialize” the value of the new 

cluster centers every 4
th

 iteration. In Hadoop’s 

MapReduce model, each iteration is represented as a 

separate MapReduce computation. Notice that without the 

loop unrolling feature in DryadLINQ, each iteration 

would be represented by a separate execution graph as 

well. Fig. 7 shows a comparison of performances of 

different implementations of K-means clustering.  
K-means Clustering Algorithm for MapReduce 

Do 

Broadcast Cn  
[Perform in parallel] –the map() operation 

for each Vi 

 for each Cn,j 
Dij <= Euclidian (Vi,Cn,j) 

Assign point Vi to Cn,j with minimum Dij 

 
for each Cn,j 

 Cn,j <=Cn,j/K 
 

[Perform Sequentially] –the reduce() operation 

Collect all Cn 
Calculate new cluster centers Cn+1 

Diff<= Euclidian (Cn, Cn+1) 

while (Diff <THRESHOLD) 
 

 
Figure 7.  Performance of different implementations of  clustering 

algorithm. 

Although we used a fixed number of iterations, we 

changed the number of data points from 500k to 20 

millions. Increase in the number of data points triggers the 

amount of computation. However, it was not sufficient to 

ameliorate the overheads introduced by Hadoop and 

DryadLINQ runtimes. As a result, the graph in Fig. 7 

mainly shows the overhead of the different runtimes. The 

use of file system based communication mechanisms and 

the loading of static input data at each iteration (in 

Hadoop) and in each unrolled loop (in DryadLINQ) 

results in higher overheads compared to CGL-MapReduce 

and MPI. Iterative applications which perform more 

computations or access larger volumes of data may 

produce better results for Hadoop and DryadLINQ as the 

higher overhead induced by these runtimes becomes 

relatively less significant. 

 



IV. RELATED WORK 

Cloud technologies adopts a more data centered 

approach to parallel programming compared to the 

traditional parallel runtimes such as MPI, Workflow 

runtimes, and individual job scheduling runtimes in which 

the scheduling decisions are made mainly by the 

availability of the computation resources. In cloud 

technologies the computations move to the locations of 

data to process them and are specifically designed to 

handle large volumes of data. 

Parallel topologies supported by various parallel 

runtimes and the problems that can be implemented using 

these parallel topologies determine the applicability of 

many parallel runtimes to the problems in hand. For 

example, many job scheduling infrastructures such as 

TORQUE [14] and SWARM [15] can be used to execute 

parallel applications such as CAP3 consisting of a simple 

parallel topology of a collection of large number of 

independent tasks. Applications that perform parametric 

sweeps, document conversions, and brute-force searches 

are few other examples of this category. MapReduce 

programming model provides more parallel topologies 

than the simple job scheduling infrastructures with its 

support for the “reduction” phase. In typical MapReduce 

model, the outputs of the map tasks are partitioned using a 

hash function and assigned to a collection of reduce tasks. 

With the support of overloaded “key selectors” or hashes 

and by selecting the appropriate key selector function, this 

simple process can be extended to support additional 

models producing customized topologies under the 

umbrella of MapReduce model. For example, in the 

MapReduce version of tera-sort [16]  application, Hadoop 

uses a customized hashing function to model the bucket 

sort algorithm.  

Sector/Sphere [17] is a parallel runtime developed by 

Y. Gu, and R. L. Grossman that can be used to implement 

MapReduce style applications. Sphere adopts a streaming 

based computation model used in GPUs which can be 

used to develop applications with parallel topologies as a 

collection of MapReduce style applications. All Pairs [18] 

solves the specific problems of comparing elements in 

two data sets with each other and several other specific 

parallel topologies. We have used DryadLINQ to perform 

a similar computation to calculate pair-wise distances of a 

large collection of genes and our algorithm is explained in 

details in [19]. Swift [20]  provides a scripting language 

and a execution and management runtime for developing 

parallel applications with the added support for defining 

typed data products via schemas. DryadLINQ allows user 

to define data types as C# structures or classes allowing 

users to handle various data types seamlessly with the 

runtime with the advantage of strong typing. Hadoop 

allows user to define “record readers” depending on the 

data that needs to be processed. 

Parallel runtimes that support DAG based execution 

flows provide more parallel topologies compared to the 

mere MapReduce programming model or the models that 

support scheduling of large number of individual jobs. 

Condor DAGMan [21] is a well-known parallel runtime 

that supports applications expressible as DAGs and many 

workflow runtimes supports DAG based execution flows. 

However, the granularity of tasks handled at the vertices 

of Dryad/DryadLINQ and the tasks handled at map/reduce 

tasks in MapReduce is more fine grained than the tasks 

handled in Condor DAGMan and other workflow 

runtimes. This distinction become blurred when it comes 

to the parallel applications such as CAP3 where the entire 

application can be viewed as a collection of independent 

jobs, but for many other applications the parallel tasks of 

cloud technologies such as Hadoop and Dryad are more 

fine grained than the ones in workflow runtimes. For 

example, during the processing of the GroupBy 

operation used in DryadLINQ, which can be used to 

group a collection of records using a user defined key 

field, a vertex of the DAG generated for this operation 

may only process few records. In contrary the vertices 

DAGMan may be a complete programs performing 

considerable amount of processing. 

Although in our analysis we compared DryadLINQ 

with Hadoop, DryadLINQ provides higher level language 

support for data processing than Hadoop. Hadoop’s sub 

project Pig [22] is a more natural comparison to 

DryadLINQ. Our experience suggests that the scientific 

applications we used maps more naturally to Hadoop and 

Dryad (currently not available for public use) 

programming models than the high level runtimes such as 

Pig and DryadLINQ. However, we expect the high level 

programming models provided by the runtimes such as 

DryadLINQ and Pig are more suitable for applications 

that process structured data that can be fit into tabular 

structures.  

Our work on CGL-MapReduce (we called it 

MapReduce++) extends capabilities of the MapReduce 

programming to applications that perform iterative 

MapReduce computations with minimum overheads. The 

use of streaming for communication and the support for 

cacheable map/reduce tasks enable MapReduce++ to 

operate with minimum overheads. Currently CGL-

MapReduce does not provide any fault tolerance support 

for applications and we are investigating the mechanisms 

to support fault tolerance with the streaming based 

communication mechanisms we use. 

Various scientific applications have been adapted to the 

MapReduce model in the past few years and Hadoop 

gained significant attention from the scientific research 

community. Kang et al. studied [23] efficient map reduce 

algorithms for finding the diameter of very large graphs 

and applied their algorithm to real web graphs. Dyer et al. 

described [24] map reduce implementations of parameter 

estimation algorithms to use in word alignment models 

and a phrase based translation model. Michael Schatz 

introduced CloudBurst for mapping short reads from 

sequences to a reference genome. In our previous works 

[3][25], we have discussed the usability of MapReduce 

programming model for data/compute intensive scientific 

applications and the possible improvements to the 

programming model and the architectures of the runtimes. 

Our experience suggests that most pleasingly parallel 

applications can be implemented using MapReduce 

programming model either by directly exploiting their 



data/task parallelism or by adopting different algorithms 

compared to the algorithms used in traditional parallel 

implementations. 

V. CONCLUSIONS AND FUTURE WORKS 

We have applied DryadLINQ to a series of 

data/compute intensive applications with unique 

requirements. The applications range from simple map-

only operations such as CAP3 to multiple stages of 

MapReduce jobs in CloudBurst and iterative MapReduce 

in K-means clustering. We showed that all these 

applications can be implemented using the DAG based 

programming model of DryadLINQ, and their 

performances are comparable to the MapReduce 

implementations of the same applications developed using 

Hadoop.  

We also observed that cloud technologies such as 

DryadLINQ and Hadoop work well for many applications 

with simple communication topologies. The rich set of 

programming constructs available in DryadLINQ allows 

the users to develop such applications with minimum 

programming effort. However, we noticed that higher 

level of abstractions in DryadLINQ model sometimes 

make fine-tuning the applications more challenging. 

Hadoop and DryadLINQ differ in their approach to 

fully utilize the many cores available on today’s compute 

nodes. Hadoop allows scheduling of a worker process per 

core. On the other hand, DryadLINQ assigns vertices (i.e. 

worker processes) to nodes and achieves multi-core 

parallelism with PLINQ. The simplicity and flexibility of 

the Hadoop model proved effective for some of our 

benchmarks. The coarser granularity of scheduling offered 

by DryadLINQ performed equally well once we got a 

version DryadLINQ working with a newer build of the 

PLINQ library. Future releases of DryadLINQ and 

PLINQ will make those improvements available to the 

wider community. They will remove current needs for 

manual fine-tuning, which could also be alleviated by 

adding a tuning option that would allow a DryadLINQ 

user to choose the scheduling mode that best fits their 

workload. 

Features such as loop unrolling let DryadLINQ 

perform iterative applications faster, but still the amount 

of overheads in DryadLINQ and Hadoop is extremely 

large for this type of applications compared to other 

runtimes such as MPI and CGL-MapReduce. 

As our future work, we plan to investigate the use of 

DryadLINQ and Hadoop on commercial cloud 

infrastructures. 
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