
DryadLINQ for Scientific Analyses

Jaliya Ekanayake
a
, Thilina Gunarathne

a
, Geoffrey Fox

a,b

a
School of Informatics and Computing,

b
Pervasive Technology Institute

 Indiana University Bloomington

{jekanaya, tgunarat, gcf}@indiana.edu

Atilla Soner Balkir

Department of Computer Science, University of Chicago

soner@uchicago.edu

Christophe Poulain, Nelson Araujo, Roger Barga

Microsoft Research

{cpoulain,nelson,barga}@microsoft.com

Abstract— Applying high level parallel runtimes to

data/compute intensive applications is becoming increasingly

common. The simplicity of the MapReduce programming

model and the availability of open source MapReduce

runtimes such as Hadoop, are attracting more users to the

MapReduce programming model. Recently, Microsoft has

released DryadLINQ for academic use, allowing users to

experience a new programming model and a runtime that is

capable of performing large scale data/compute intensive

analyses. In this paper, we present our experience in

applying DryadLINQ for a series of scientific data analysis

applications, identify their mapping to the DryadLINQ

programming model, and compare their performances with

Hadoop implementations of the same applications.

Keywords-Cloud, MapReduce, DryadLINQ, Hadoop

I. INTRODUCTION

Among the benefits offered by cloud technologies, the
ability to tackle data/compute intensive problems with
frameworks such as DryadLINQ [1] and Hadoop [2] is one
of the most important. The deluge of data and the highly
compute intensive applications found in many domains
such as particle physics, biology, chemistry, finance, and
information retrieval, mandate the use of large computing
infrastructures and parallel runtimes to achieve
considerable performance gains. The support for handling
large data sets, the concept of moving computation to data,
and the better quality of services provided by Hadoop and
DryadLINQ make them favorable choice of technologies
to solve such problems.

Cloud technologies such as Hadoop and Hadoop
Distributed File System (HDFS), Microsoft DryadLINQ,
and CGL-MapReduce [3] adopt a more data-centered
approach to parallel processing. In these frameworks, the
data is staged in data/compute nodes of clusters or large-
scale data centers and the computations are shipped to the
data in order to perform data processing. HDFS allows
Hadoop to access data via a customized distributed storage
system built on top of heterogeneous compute nodes, while
the academic version of DryadLINQ and CGL-
MapReduce access data from local disks and shared file
systems. The simplicity of these programming models

enables better support for quality of services such as fault
tolerance and monitoring.

Although DryadLINQ comes with standard samples
such as sort of large data sets, word count, etc., its
applicability for large scale data/compute intensive
scientific applications is not well studied. A comparison of
these programming models and their performances would
benefit many users who need to select the appropriate
technology for the problem at hand.

We have developed a series of scientific applications
using DryadLINQ, namely, CAP3 DNA sequence
assembly program [4], High Energy Physics data analysis,
CloudBurst [5] - a parallel seed-and-extend read-mapping
application, and K-means Clustering [6]. Each of these
applications has unique requirements for parallel runtimes.
For example, the HEP data analysis application requires
ROOT [7] data analysis framework to be available in all
the compute nodes and in CloudBurst the framework must
handle worker tasks with very heterogeneous workloads at
identical stages of the computation. We have implemented
all these applications using DryadLINQ and Hadoop, and
used them to compare the performance of these two
runtimes. CGL-MapReduce and MPI are used in
applications where the contrast in performance needs to be
highlighted.

In the sections that follow, we first present the
DryadLINQ programming model and its architecture on
Windows HPC Server 2008 platform, and a brief
introduction to Hadoop. In section 3, we discuss the data
analysis applications, our experience implementing them,
and a performance analysis of these applications. In
section 4, we present work related to this research, and in
section 5 we present our conclusions and future work.

II. DRYADLINQ AND HADOOP

A central goal of DryadLINQ is to provide a wide

array of developers with an easy way to write applications

that run on clusters of computers to process large amounts

of data. The DryadLINQ environment shields the

developer from many of the complexities associated with

writing robust and efficient distributed applications by

layering the set of technologies shown in Fig. 1.

Figure 1. DryadLINQ software stack

Working at his workstation, the programmer writes

code in one of the managed languages of the .NET

Framework using Language Integrated Query [8]. The

LINQ operators are mixed with imperative code to

process data held in collection of strongly typed objects.

A single collection can span multiple computers thereby

allowing for scalable storage and efficient execution. The

code produced by a DryadLINQ programmer looks like

the code for a sequential LINQ application. Behind the

scene, however, DryadLINQ translates LINQ queries into

Dryad computations (Directed Acyclic Graph (DAG)

based execution flows [9]. While the Dryad engine

executes the distributed computation, the DryadLINQ

client application typically waits for the results to

continue with further processing. The DryadLINQ system

and its programming model are described in details in [1].

Our paper describes results obtained with the so-called

Academic Release of Dryad and DryadLINQ, which is

publically available [10]. This newer version includes

changes in the DryadLINQ API since the original paper.

Most notably, all DryadLINQ collections are represented

by the PartitionedTable<T> type. Hence, the example

computation cited in Section 3.2 of [1] is now expressed

as:

var input =

PartitionedTable.Get<LineRecord>(“file://in.tbl”

);

var result = MainProgram(input, …);

var output =

result.ToPartitionedTable(“file://out.tbl”);

As noted in Fig. 1, the Dryad execution engine

operates on top of an environment which provides certain

cluster services. In [1][9] Dryad is used in conjunction

with the proprietary Cosmos environment. In the

Academic Release, Dryad operates in the context of a

cluster running Windows High-Performance Computing

(HPC) Server 2008. While the core of Dryad and

DryadLINQ does not change, the bindings to a specific

execution environment are different and may lead to

differences in performance. In addition, not all features

available in internal versions of Dryad are exposed in the

external release. Please note that in the remainder of this

paper, we use the terms Dryad or DryadLINQ to refer to

the academic release of these systems.

 Apache Hadoop has a similar architecture to Google’s

MapReduce [11] runtime, where it accesses data via

HDFS, which maps all the local disks of the compute

nodes to a single file system hierarchy allowing the data

to be

TABLE I. COMPARISON OF FEATURES SUPPORTED BY DRYAD AND

HADOOP

Feature Hadoop Dryad/DryadLINQ

Programmi
ng Model

&

Language
Support

MapReduce
Implemented using Java

Other languages are

supported via Hadoop
Streaming

DAG based execution flows.
DryadLINQ provides LINQ

programming API for Dryad

using a managed language
(e.g. C#)

Data

Handling

HDFS Shared directories/ Local

disks

Intermediat

e Data

Communic
ation

HDFS/

Point-to-point via HTTP

Files/TCP pipes/ Shared

memory FIFO

Scheduling

Data locality/

Rack aware

Data locality/ Network

topology based
run time graph optimizations

Failure

Handling

Persistence via HDFS

Re-execution of map
and reduce tasks

Re-execution of vertices

Monitoring Monitoring support of

HDFS, and MapReduce

computations

Monitoring support for

execution graphs

dispersed to all the data/compute nodes. Hadoop

schedules the MapReduce computation tasks depending

on the data locality to improve the overall I/O bandwidth.

The outputs of the map tasks are first stored in local disks

until later, when the reduce tasks access them (pull) via

HTTP connections. Although this approach simplifies the

fault handling mechanism in Hadoop, it adds significant

communication overhead to the intermediate data

transfers, especially for applications that produce small

intermediate results frequently. The current release of

DryadLINQ also communicates using files, and hence we

expect similar overheads in DryadLINQ as well. Table 1

presents a comparison of DryadLINQ and Hadoop on

various features supported by these technologies.

III. SCIENTIFIC APPLICATIONS

In this section, we present the details of the

DryadLINQ applications that we developed, the

techniques we adopted in optimizing the applications, and

their performance characteristics compared with Hadoop

implementations. For all our benchmarks, we used two

clusters with almost identical hardware configurations as

shown in Table 2.

TABLE II. DIFFERENT COMPUTATION CLUSTERS USED FOR THE

ANALYSES

Feature Linux Cluster(Ref A) Windows Cluster (Ref B)

CPU Intel(R) Xeon(R)
CPU L5420 2.50GHz

Intel(R) Xeon(R)
CPU L5420 2.50GHz

CPU

Cores

2

8

2

8

Memory 32GB 16 GB

Disk 1 2

Network Giga bit Ethernet Giga bit Ethernet

Operating

System

Red Hat Enterprise Linux

Server release 5.3 -64 bit

Windows Server 2008

Enterprise (Service Pack 1)
- 64 bit

Nodes 32 32

A. CAP3

 CAP3 is a DNA sequence assembly program,

developed by Huang and Madan [4], which performs

several major assembly steps such as computation of

overlaps, construction of contigs, construction of multiple

sequence alignments and generation of consensus

sequences, to a given set of gene sequences. The program

reads a collection of gene sequences from an input file

(FASTA file format) and writes its output to several

output files and to the standard output as shown below.

During an actual analysis, the CAP3 program is invoked

repeatedly to process a large collection of input FASTA

file.

Input.fasta -> Cap3.exe -> Stdout + Other output files

 We developed a DryadLINQ application to perform

the above data analysis in parallel. This application takes

as input a PartitionedTable defining the complete list of

FASTA files to process. For each file, the CAP3

executable is invoked by starting a process. The input

collection of file locations is built as follows: (i) the input

data files are distributed among the nodes of the cluster so

that each node of the cluster stores roughly the same

number of input data files; (ii) a “data partition” (A text

file for this application) is created in each node containing

the file paths of the original data files available in that

node; (iii) a DryadLINQ “partitioned file” (a meta-data

file understood by DryadLINQ) is created to point to the

individual data partitions located in the nodes of the

cluster.

 Following the above steps, a DryadLINQ program can

be developed to read the data file paths from the provided

partitioned-file, and execute the CAP3 program using the

following two lines of code.

IQueryable<Line Record> filenames =

PartitionedTable.Get<LineRecord>(uri);

IQueryable<int> exitCodes= filenames.Select(s =>

ExecuteCAP3(s.line));

 Although we use this program specifically for the

CAP3 application, the same pattern can be used to execute

other programs, scripts, and analysis functions written

using the frameworks such as R and Matlab, on a

collection of data files. (Note: In this application, we rely

on DryadLINQ to process the input data files on the same

compute nodes where they are located. If the nodes

containing the data are free during the execution of the

program, the DryadLINQ runtime will schedule the

parallel tasks to the appropriate nodes to ensure co-

location of process and data; otherwise, the data will be

accessed via the shared directories.)

 When we first deployed the application on the cluster,

we noticed a sub-optimal CPU utilization, which seemed

highly unlikely for a compute intensive program such as

CAP3. A trace of job scheduling in the HPC cluster

revealed that the scheduling of individual CAP3

executables in a given node was not always utilizing all

CPU cores. We traced this behavior to the use of an early

version of the PLINQ [12] library (June 2008 Community

Technology Preview), which DryadLINQ uses to achieve

core level parallelism on a single machine.

 When an application is scheduled, DryadLINQ uses

the number of data partitions as a guideline to determine

the number of vertices to run. Then DryadLINQ schedules

these partitions as vertices to the nodes (rather than

individual CPU cores) and, uses the PLINQ runtime to

achieve further parallelism within each vertex by taking

full advantage of all the cores. The academic release of

DryadLINQ uses the June 2008 preview version of

PLINQ and this version of PLINQ does not always handle

the scheduling of coarse grained parallel tasks well. We

verified that this issue has been fixed in the current

version of PLINQ and future releases of DryadLINQ will

benefit from these improvements.

 While using the preview version of PLINQ (which is

publically available), we were able to reach full CPU

utilization using the Academic release of DryadLINQ by

changing the way we partition the data. Instead of

partitioning input data to a single data-partition per node,

we created data-partitions containing at most 8 (=number

of CPU cores) line records (actual input file names). This

way, we used DryadLINQ’s scheduler to schedule series

of vertices corresponding to different data-partitions in

nodes while PLINQ always schedules 8 tasks at once,

which gave us 100% CPU utilization. For the DryadLINQ

application, note that the partitioning workaround will not

be necessary to achieve these results once a version of

DryadLINQ taking advantage of the improved version of

the PLINQ library becomes publically available.

Figure 2. Performance of different implementations of CAP3

application.

Figure 3. Scalability of different implementations of CAP3.

Fig. 2 and 3 show comparisons of performance and the

scalability of the DryadLINQ application, with the

Hadoop and CGL-MapReduce versions of the CAP3

application.

 The performance and the scalability graphs shows that

all three runtimes work almost equally well for the CAP3

program, and we would expect them to behave in the

same way for similar applications with simple parallel

topologies.

B. High Energy Physics

 Next, we developed a high energy physics (HEP) data

analysis application and compared it with the previous

implementations of Hadoop and CGL-MapReduce

versions. As in CAP3, in this application the input is also

available as a collection of large number of binary files,

each with roughly 33MB of data, which will not be

directly accessed by the DryadLINQ program. We

manually partitioned the input data to the compute nodes

of the cluster and generated data-partitions containing

only the file names available in a given node. The first

step of the analysis requires applying a function coded in

ROOT to all the input files. The analysis script we used

can process multiple input files at once, therefore we used

a homomorphic Apply (shown below) operation in

DryadLINQ to perform the first stage (corresponding to

the map() stage in MapReduce) of the analysis.

[Homomorphic]

ApplyROOT(string fileName){..}

IQueryable<HistoFile> histograms =

dataFileNames.Apply(s => ApplyROOT (s));

 Unlike the Select operation that processes records one

by one, the Apply operation allows a function to be

applied to an entire data set, and produce multiple output

values. Therefore, in each vertex the program can access a

data partition available in that node (provided that the

node is available for executing this application – please

refer to the “Note” under CAP3 section). Inside the

ApplyROOT() method, the program iterates over the data

set and groups the input data files, and execute the ROOT

script passing these files names along with other

necessary parameters. The output of this operation is a

binary file containing a histogram of identified features of

the input data.

Figure 4. Performance of different implementations of HEP data

analysis applications.

The ApplyROOT() method saves the output histograms in a

predefined shared directory and produces its location as

the return value.

 In the next step of the program, we perform a

combining operation of these partial histograms. Again,

we use a homomorphic Apply operation to combine partial

histograms. Inside the function that is applied to the

collection of histograms, we use another ROOT script to

combine collections of histograms in a given data

partition. (Before this step, the main program generates

the data-partitions containing the histogram file names).

The output partial histograms produced by the previous

step will be combined by the main program to produce the

final histogram of identified features.

 We measure the performance of this application with

different input sizes up to 1TB of data and compare the

results with Hadoop and CGL-MapReduce

implementations that we have developed previously. The

results of this analysis are shown in Fig. 4.

 The results in Fig. 4 highlight that Hadoop

implementation has a considerable overhead compared to

DraydLINQ and CGL-MapReduce implementations. This

is mainly due to differences in the storage mechanisms

used in these frameworks. DryadLINQ and CGL-

MapReduce access the input from local disks where the

data is partitioned and distributed before the computation.

Currently, HDFS can only be accessed using Java or C++

clients, and the ROOT – data analysis framework is not

capable of accessing the input from HDFS. Therefore, we

placed the input data in IU Data Capacitor – a high

performance parallel file system based on Lustre file

system, and allowed each map task in Hadoop to directly

access the input from this file system. This dynamic data

movement in the Hadoop implementation incurred

considerable overhead to the computation. In contrast, the

ability of reading input from the local disks gives

significant performance improvements to both Dryad and

CGL-MapReduce implementations.

 As in CAP3 program, we noticed sub-optimal

utilization of CPU cores by the HEP application due to the

above mention problem in the early version of PLINQ

(June 2008 CTP). With heterogeneous processing times of

different input files, we were able to correct this partially

by carefully selecting the number of data partitions and

the amount of records accessed at once by the

ApplyROOT() function. Additionally, in the DryadLINQ

implementation, we stored the intermediate partial

histograms in a shared directory and combined them

during the second phase as a separate analysis. In Hadoop

and CGL-MapReduce implementations, the partial

histograms are directly transferred to the reducers where

they are saved in local file systems and combined. These

differences can explain the performance difference

between the CGL-MapReduce version and the

DryadLINQ version of the program. We are planning to

develop a better version of this application for

DryadLINQ in the future.

C. CloudBurst

CloudBurst is an open source Hadoop application that

performs a parallel seed-and-extend read-mapping

algorithm optimized for mapping next generation

sequence data to the human genome and other reference

genomes. It reports all alignments for each read with up to

a user specified number of differences including

mismatches and indels [5].

It parallelizes execution by seed, so that the reference

and query sequences sharing the same seed are grouped

together and sent to a reducer for further analysis. It is

composed of a two stage MapReduce workflow: The first

stage is to compute the alignments for each read with at

most k differences where k is a user specified input. The

second stage is optional, and it is used as a filter to report

only the best unambiguous alignment for each read rather

than the full catalog of all alignments. The execution time

is typically dominated by the reduce phase.

An important characteristic of the application is that

the time spent by each worker process in the reduce phase

varies considerably. Seeds composed of a single DNA

character occur a disproportionate number of times in the

input data and therefore reducers assigned to these “low

complexity” seeds spend considerably more time than the

others. CloudBurst tries to minimize this effect by

emitting redundant copies of each “low complexity” seed

in the reference and assigning them to multiple reducers to

re-balance the workload. However, calculating the

alignments for a “low complexity” seed in a reducer still

takes more time compared to the others. This

characteristic can be a limiting factor to scale, depending

on the scheduling policies of the framework running the

algorithm.

We developed a DryadLINQ application based on the

available source code written for Hadoop. The Hadoop

workflow can be expressed as:

Map -> Shuffle -> Reduce -> Identity Map ->

Shuffle -> Reduce

The identity map at the second stage is used for grouping

the alignments together and sending them to a reducer. In

DryadLINQ, the same workflow is expressed as follows:
Map -> GroupBy -> Reduce -> GroupBy -> Reduce

 Notice that we omit the identity map by doing an on-

the-fly GroupBy right after the reduce step.

Figure 5. Scalability of CloudBurst with different implementations.

Although these two workflows are identical in terms of

functionality, DryadLINQ runs the whole computation as

one large query rather than two separate MapReduce jobs

followed by one another.

Figure 6. Performance comparison of DryadLINQ and Hadoop for

CloudBurst.

The reduce function takes a set of reference and query
seeds sharing the same key as input, and produces one or
more alignments as output. For each input record, query
seeds are grouped in batches, and each batch is sent to an
alignment function sequentially to reduce the memory
limitations. We developed another DryadLINQ
implementation that can process each batch in parallel
assigning them as separate threads running at the same
time using .NET Parallel Extensions.
 We compared the scalability of these three

implementations by mapping 7 million publicly available

Illumina/Solexa sequencing reads [13] to the full human

genome chromosome1.

 The results in Fig. 5 show that all three

implementations follow a similar pattern although the

DryadLINQ implementation is not as fast with small

number of nodes. As we mentioned in the previous

section, DryadLINQ assigns vertices to nodes rather than

cores and PLINQ handles the core level parallelism

automatically by assigning records to separate threads

running concurrently. Conversely, in Hadoop, we start

multiple reduce tasks per node and each task runs is a

separate process.

 In order to better understand the performance

difference, we isolated the reduce function as a standalone

program and ran it on complex records with two different

implementations. In the first implementation, we

processed the records launching multiple reduce processes

running independently. In the second one, we launched a

single process and created multiple concurrent reduce

tasks inside, each working on a separate record. Although

both implementations were identical in functionality, we

observed that the second implementation was slower.

Since DryadLINQ creates multiple tasks using PLINQ in

each node, this likely explains the performance reduction

in the DryadLINQ implementation of CloudBurst. The

root of the problem is still under inspection; it may be

originating from several reasons such as excessive

memory allocation in the code, garbage collection issues

and complications with thread scheduling.

 Another difference between DryadLINQ and Hadoop

implementations is the number of partitions created before

the reduce step. DryadLINQ creates vertices based on the

initial number of partitions given as input. If we start the

computation with 32 partitions, DryadLINQ creates 32

groups using a hash function and assigns each group to a

vertex for the reduce operation. In Hadoop, the number of

partitions is equal to the number of reduce tasks, which is

specified as an input parameter. For example, with 32

nodes (8 cores each), Hadoop creates 256 partitions when

we set the number of reduce tasks to 256. Having more

partitions results in smaller groups and thus decreases the

overall variance in the group size. Since Hadoop creates

more partitions, it balances the workload among reducers

more equally.

 In the case of the DryadLINQ implementation, we

can also start the computation with more partitions.

However, DryadLINQ waits for one vertex to finish

before scheduling the second vertex on the same node, but

the first vertex may be busy with only one record, and

thus holding the rest of the cores idle. We observed that

scheduling too many vertices (of the same type) to a node

is not efficient for this application due to its

heterogeneous record structure. Our main motivation

behind using the .NET parallel extensions was to reduce

this gap by fully utilizing the idle cores, although it is not

identical to Hadoop’s level of parallelism.

 Fig. 6 shows the performance comparison of

DryadLINQ and Hadoop with increasing data size. Both

implementations scale linearly, and the time gap is mainly

related to the differences in job scheduling policies

explained above. However, Hadoop shows a non linear

behavior with the last data set and we will do further

investigations with larger data sets to better understand

the difference in the shapes.

D. K-means Clustering

 We implemented a K-means Clustering application

using DryadLINQ to evaluate its performance under

iterative computations. We used K-means clustering to

cluster a collection of 2D data points (vectors) to a given

number of cluster centers. The MapReduce algorithm we

used is shown below. (Assume that the input is already

partitioned and available in the compute nodes). In this

algorithm, Vi refers to the i
th

 vector, Cn,j refers to the j
th

cluster center in n
th

 iteration, Dij refers to the Euclidian

distance between i
th

 vector and j
th

cluster center, and K is

the number of cluster centers.

The DryadLINQ implementation uses an Apply

operation, which executes in parallel in terms of the data

vectors, to calculate the partial cluster centers. Another

Apply operation, which runs sequentially, calculates the

new cluster centers for the n
th

 iteration. Finally, we

calculate the distance between the previous cluster centers

and the new cluster centers using a Join operation to

compute the Euclidian distance between the

corresponding cluster centers. DryadLINQ support “loop

unrolling”, using which multiple iterations of the

computation can be performed as a single DryadLINQ

query. Deferred query evaluation is a feature of LINQ,

whereby a query is not evaluated until the program

accesses the query results.. Thus, in the K-means

program, we accumulate the computations performed in

several iterations (we used 4 as our unrolling factor) into

one query and only “materialize” the value of the new

cluster centers every 4
th

 iteration. In Hadoop’s

MapReduce model, each iteration is represented as a

separate MapReduce computation. Notice that without the

loop unrolling feature in DryadLINQ, each iteration

would be represented by a separate execution graph as

well. Fig. 7 shows a comparison of performances of

different implementations of K-means clustering.
K-means Clustering Algorithm for MapReduce

Do

Broadcast Cn
[Perform in parallel] –the map() operation

for each Vi

 for each Cn,j
Dij <= Euclidian (Vi,Cn,j)

Assign point Vi to Cn,j with minimum Dij

for each Cn,j

 Cn,j <=Cn,j/K

[Perform Sequentially] –the reduce() operation

Collect all Cn
Calculate new cluster centers Cn+1

Diff<= Euclidian (Cn, Cn+1)

while (Diff <THRESHOLD)

Figure 7. Performance of different implementations of clustering

algorithm.

Although we used a fixed number of iterations, we

changed the number of data points from 500k to 20

millions. Increase in the number of data points triggers the

amount of computation. However, it was not sufficient to

ameliorate the overheads introduced by Hadoop and

DryadLINQ runtimes. As a result, the graph in Fig. 7

mainly shows the overhead of the different runtimes. The

use of file system based communication mechanisms and

the loading of static input data at each iteration (in

Hadoop) and in each unrolled loop (in DryadLINQ)

results in higher overheads compared to CGL-MapReduce

and MPI. Iterative applications which perform more

computations or access larger volumes of data may

produce better results for Hadoop and DryadLINQ as the

higher overhead induced by these runtimes becomes

relatively less significant.

IV. RELATED WORK

Cloud technologies adopts a more data centered

approach to parallel programming compared to the

traditional parallel runtimes such as MPI, Workflow

runtimes, and individual job scheduling runtimes in which

the scheduling decisions are made mainly by the

availability of the computation resources. In cloud

technologies the computations move to the locations of

data to process them and are specifically designed to

handle large volumes of data.

Parallel topologies supported by various parallel

runtimes and the problems that can be implemented using

these parallel topologies determine the applicability of

many parallel runtimes to the problems in hand. For

example, many job scheduling infrastructures such as

TORQUE [14] and SWARM [15] can be used to execute

parallel applications such as CAP3 consisting of a simple

parallel topology of a collection of large number of

independent tasks. Applications that perform parametric

sweeps, document conversions, and brute-force searches

are few other examples of this category. MapReduce

programming model provides more parallel topologies

than the simple job scheduling infrastructures with its

support for the “reduction” phase. In typical MapReduce

model, the outputs of the map tasks are partitioned using a

hash function and assigned to a collection of reduce tasks.

With the support of overloaded “key selectors” or hashes

and by selecting the appropriate key selector function, this

simple process can be extended to support additional

models producing customized topologies under the

umbrella of MapReduce model. For example, in the

MapReduce version of tera-sort [16] application, Hadoop

uses a customized hashing function to model the bucket

sort algorithm.

Sector/Sphere [17] is a parallel runtime developed by

Y. Gu, and R. L. Grossman that can be used to implement

MapReduce style applications. Sphere adopts a streaming

based computation model used in GPUs which can be

used to develop applications with parallel topologies as a

collection of MapReduce style applications. All Pairs [18]

solves the specific problems of comparing elements in

two data sets with each other and several other specific

parallel topologies. We have used DryadLINQ to perform

a similar computation to calculate pair-wise distances of a

large collection of genes and our algorithm is explained in

details in [19]. Swift [20] provides a scripting language

and a execution and management runtime for developing

parallel applications with the added support for defining

typed data products via schemas. DryadLINQ allows user

to define data types as C# structures or classes allowing

users to handle various data types seamlessly with the

runtime with the advantage of strong typing. Hadoop

allows user to define “record readers” depending on the

data that needs to be processed.

Parallel runtimes that support DAG based execution

flows provide more parallel topologies compared to the

mere MapReduce programming model or the models that

support scheduling of large number of individual jobs.

Condor DAGMan [21] is a well-known parallel runtime

that supports applications expressible as DAGs and many

workflow runtimes supports DAG based execution flows.

However, the granularity of tasks handled at the vertices

of Dryad/DryadLINQ and the tasks handled at map/reduce

tasks in MapReduce is more fine grained than the tasks

handled in Condor DAGMan and other workflow

runtimes. This distinction become blurred when it comes

to the parallel applications such as CAP3 where the entire

application can be viewed as a collection of independent

jobs, but for many other applications the parallel tasks of

cloud technologies such as Hadoop and Dryad are more

fine grained than the ones in workflow runtimes. For

example, during the processing of the GroupBy

operation used in DryadLINQ, which can be used to

group a collection of records using a user defined key

field, a vertex of the DAG generated for this operation

may only process few records. In contrary the vertices

DAGMan may be a complete programs performing

considerable amount of processing.

Although in our analysis we compared DryadLINQ

with Hadoop, DryadLINQ provides higher level language

support for data processing than Hadoop. Hadoop’s sub

project Pig [22] is a more natural comparison to

DryadLINQ. Our experience suggests that the scientific

applications we used maps more naturally to Hadoop and

Dryad (currently not available for public use)

programming models than the high level runtimes such as

Pig and DryadLINQ. However, we expect the high level

programming models provided by the runtimes such as

DryadLINQ and Pig are more suitable for applications

that process structured data that can be fit into tabular

structures.

Our work on CGL-MapReduce (we called it

MapReduce++) extends capabilities of the MapReduce

programming to applications that perform iterative

MapReduce computations with minimum overheads. The

use of streaming for communication and the support for

cacheable map/reduce tasks enable MapReduce++ to

operate with minimum overheads. Currently CGL-

MapReduce does not provide any fault tolerance support

for applications and we are investigating the mechanisms

to support fault tolerance with the streaming based

communication mechanisms we use.

Various scientific applications have been adapted to the

MapReduce model in the past few years and Hadoop

gained significant attention from the scientific research

community. Kang et al. studied [23] efficient map reduce

algorithms for finding the diameter of very large graphs

and applied their algorithm to real web graphs. Dyer et al.

described [24] map reduce implementations of parameter

estimation algorithms to use in word alignment models

and a phrase based translation model. Michael Schatz

introduced CloudBurst for mapping short reads from

sequences to a reference genome. In our previous works

[3][25], we have discussed the usability of MapReduce

programming model for data/compute intensive scientific

applications and the possible improvements to the

programming model and the architectures of the runtimes.

Our experience suggests that most pleasingly parallel

applications can be implemented using MapReduce

programming model either by directly exploiting their

data/task parallelism or by adopting different algorithms

compared to the algorithms used in traditional parallel

implementations.

V. CONCLUSIONS AND FUTURE WORKS

We have applied DryadLINQ to a series of

data/compute intensive applications with unique

requirements. The applications range from simple map-

only operations such as CAP3 to multiple stages of

MapReduce jobs in CloudBurst and iterative MapReduce

in K-means clustering. We showed that all these

applications can be implemented using the DAG based

programming model of DryadLINQ, and their

performances are comparable to the MapReduce

implementations of the same applications developed using

Hadoop.

We also observed that cloud technologies such as

DryadLINQ and Hadoop work well for many applications

with simple communication topologies. The rich set of

programming constructs available in DryadLINQ allows

the users to develop such applications with minimum

programming effort. However, we noticed that higher

level of abstractions in DryadLINQ model sometimes

make fine-tuning the applications more challenging.

Hadoop and DryadLINQ differ in their approach to

fully utilize the many cores available on today’s compute

nodes. Hadoop allows scheduling of a worker process per

core. On the other hand, DryadLINQ assigns vertices (i.e.

worker processes) to nodes and achieves multi-core

parallelism with PLINQ. The simplicity and flexibility of

the Hadoop model proved effective for some of our

benchmarks. The coarser granularity of scheduling offered

by DryadLINQ performed equally well once we got a

version DryadLINQ working with a newer build of the

PLINQ library. Future releases of DryadLINQ and

PLINQ will make those improvements available to the

wider community. They will remove current needs for

manual fine-tuning, which could also be alleviated by

adding a tuning option that would allow a DryadLINQ

user to choose the scheduling mode that best fits their

workload.

Features such as loop unrolling let DryadLINQ

perform iterative applications faster, but still the amount

of overheads in DryadLINQ and Hadoop is extremely

large for this type of applications compared to other

runtimes such as MPI and CGL-MapReduce.

As our future work, we plan to investigate the use of

DryadLINQ and Hadoop on commercial cloud

infrastructures.

VI. ACKNOWLEDGEMENTS

We would like to thank the Dryad/DryadLINQ team at

Microsoft Research, including Michael Isard, Yuan Yu,

Mihai Budiu, and Derek Murray for their support in

DryadLINQ applications, and Ed Essey, Igor Ostrovsky

and Stephen Toub from the PLINQ team. We would also

like to thank Joe Rinkovsky from IU UITS for his

dedicated support in setting up the compute clusters.

REFERENCES

[1] Y.Yu, M. Isard, D. Fetterly, M. Budiu, Ú. Erlingsson, P. Gunda,
and J. Currey, “DryadLINQ: A System for General-Purpose
Distributed Data-Parallel Computing Using a High-Level
Language,” Symposium on Operating System Design and
Implementation (OSDI), CA, December 8-10, 2008.

[2] Apache Hadoop, http://hadoop.apache.org/core/

[3] J. Ekanayake and S. Pallickara, “MapReduce for Data Intensive
Scientific Analysis,” Fourth IEEE International Conference on
eScience, 2008, pp.277-284.

[4] X. Huang and A. Madan, “CAP3: A DNA Sequence Assembly
Program,” Genome Research, vol. 9, no. 9, pp. 868-877, 1999.

[5] M. Schatz, "CloudBurst: highly sensitive read mapping with
MapReduce", Bioinformatics. 2009 June 1; 25(11): 1363–1369.

[6] J. Hartigan. Clustering Algorithms. Wiley, 1975.

[7] ROOT Data Analysis Framework, http://root.cern.ch/drupal/

[8] Language Integrated Query (LINQ), http://msdn.microsoft.com/en-
us/netframework/aa904594.aspx

[9] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
Distributed data-parallel programs from sequential building
blocks,” European Conference on Computer Systems, March 2007.

[10] http://research.microsoft.com/en-us/downloads/03960cab-bb92-
4c5c-be23-ce51aee0792c/

[11] J. Dean, and S. Ghemawat. 2008. MapReduce: simplified data
processing on large clusters. Commun. ACM 51(1): 107-113.

[12] Parallel LINQ : Running Queries On Multi-Core
Processors,http://msdn.microsoft.com/en-
us/magazine/cc163329.aspx

[13] The 1000 Genomes Project, “A Deep Catalog of Human Genetic
Variation”, January 2008, _http://www.1000genomes.org/page.php

[14] Torque Resource Manager,
http://www.clusterresources.com/products/torque-resource-
manager.php

[15] S. Pallickara, and M. Pierce. 2008. SWARM: Scheduling Large-
Scale Jobs over the Loosely-Coupled HPC Clusters. Proc of IEEE
Fourth International Conference on eScience '08(eScience,
2008).Indianapolis, USA

[16] Tera-sort benchmark, http://sortbenchmark.org/

[17] Y. Gu, and R. L. Grossman. 2009. Sector and Sphere: the design
and implementation of a high-performance data cloud. Philos
Transact A Math Phys Eng Sci 367(1897): 2429-45.

[18] C. Moretti, H. Bui, K. Hollingsworth, B. Rich, P. Flynn, D. Thain,
"All-Pairs: An Abstraction for Data Intensive Computing on
Campus Grids," IEEE Transactions on Parallel and Distributed
Systems, 13 Mar. 2009.

[19] J. Ekanayake, X. Qiu, T. Gunarathne, S. Beason, G. Fox High
Performance Parallel Computing with Clouds and Cloud
Technologies Technical Report August 25 2009 to appear as Book
Chapter

[20] Zhao Y., Hategan, M., Clifford, B., Foster, I., vonLaszewski, G.,
Raicu, I., Stef-Praun, T. and Wilde, M Swift: Fast, Reliable,
Loosely Coupled Parallel Computation IEEE International
Workshop on Scientific Workflows 2007

[21] Codor DAGMan, http://www.cs.wisc.edu/condor/dagman/.

[22] Apache Pig project, http://hadoop.apache.org/pig/

[23] U. Kang, C. Tsourakakis, A. P. Appel, C. Faloutsos, J. Leskovec,
“HADI: Fast Diameter Estimation and Mining in Massive Graphs
with Hadoop”, CMU ML Tech Report CMU-ML-08-117, 2008.

[24] C. Dyer, A. Cordova, A. Mont, J. Lin, “Fast, Easy, and Cheap:
Construction of Statistical Machine Translation Models with
MapReduce”, Proceedings of the Third Workshop on Statistical
Machine Translation at ACL 2008, Columbus, Ohio.

[25] G. Fox, S. Bae, J. Ekanayake, X. Qiu, and H. Yuan, “Parallel Data
Mining from Multicore to Cloudy Grids,” High Performance
Computing and Grids workshop, 2008.

