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Abstract

We took part in the Web and Relevance Feedback tracks, using the ClueWeb09 corpus. To process the corpus,
we developed a parallel processing pipeline which avoids the generation of an inverted file. We describe the
components of the parallel architecture and the pipeline and how we ran the TREC experiments, and we present
effectiveness results.

1 Introduction

This report is from a transatlantic team from Microsoft Research, comprising members of the Silicon Valley and
Cambridge UK labs. We processed the billion-page ClueWeb09 corpus using a framework for data-parallel compu-
tation running on a cluster of 240 machines, as described in section. 2. Features used in our runs included BM25 [7],
BM25F [10], SALSA-SETR [5], matching anchor counts, tf-idf, various language model scores, PageRank [6], and
inter-domain in-degree; further details are provided in section 3. Some tuning was done using home-grown evalua-
tion data, described in sections 4. We used the same data-processing setup to take part in the Web track (section 5)
and the Relevance Feedback track (section 6), although in the latter case we were unable to complete any significant
work in time for the deadlines.

2 Computational Infrastructure

We processed the corpus using DryadLINQ [9], a platform for data-parallel computation that empowers program-
mers to utilize large clusters of computers without having to worry about the intricacies of distributed systems.
DryadLINQ programs are written in C# utilizing LINQ (Language INtegrated Queries), a declarative query lan-
guage in the SQL tradition. The bulk of a typical program consists of straightforward, sequential C# statements,
with LINQ expressions embedded to process relational data. As the program is executed, the DryadLINQ system
ships each LINQ expression to all machines in the cluster, where the query is processed in parallel, and the results
are being sent back to the machine running the sequential C# program. The following C# method for computing
document frequencies for all query terms provides a flavor of how we used DryadLINQ:

static void DFs(HashSet<string> queryTerms, string docsURL, string freqsURL) {
PartitionedTable<TextDocument> docs = PartitionedTable.Get<TextDocument>(docsURL);
var words = from doc in docs

from word in doc.words.Distinct()
where queryTerms.Contains(word)
select word;

var docFreqs = from term in words.Merge()
group term by term into g
select new Pair<string, int>(g.Key, g.Count());

docFreqs.ToPartitionedTable(freqsURL);
}



To compute certain link-based features (most notably SALSA), we used the Scalable Hyperlink Store [4], a
special-purpose storage system for web graphs. SHS keeps a compressed version of the web graph in main memory,
distributed over a cluster of machines. It provides a simple API to its clients that hides the details of data distribution,
fault tolerance, etc. We created an SHS database over 12 servers containing the inter-domain web graph induced by
the ClueWeb09 corpus, totaling 4.8 billion nodes and 5.2 billion edges.

Finally, we computed PageRank scores using a custom distributed program. We could have used DryadLINQ as
well, but we happened to have a pre-existing implementation that could handle the ClueWeb09 corpus quite easily.

3 Processing pipeline

Our processing pipeline consisted of the following stages:

1. Parsing: We used DryadLINQ to parse the HTML web pages, tokenizing them into individual words and
hyperlinks. We associated each title and content word occurrence with the document containing it; in addition,
we associated each anchor word occurrence with the document referenced by the anchor’s hyperlink.

2. Document Frequencies: We computed DFs for the union of all terms of the 172 (training and test) queries we
were considering.

3. Initial scoring: Still in DryadLINQ, we computed a single score for each query and each document in the
collection, retaining the top 5000 results per query. For the Web track, the single score was BM25F and the
process was run on the entire category A collection. For the Relevance Feedback track, the single score was
plain BM25 and the process was run only on the restricted category B set; on the same pass, however, tf-idf
and language model scores were also calculated.

4. Inter-domain in-degree (IDID): We used SHS to compute the inter-domain in-degree (IDID) for each of the
top-5000 (according to BM25F) results of each query, that is, the number of pages in different domains linking
to the result.

5. SALSA: Furthermore, we used SHS to run SALSA-SETR [5] on the top-5000 results of each query. SALSA-
SETR is a variant of Lempel & Moran’s SALSA algorithm [3], which in turn is a variant of Kleinberg’s HITS
algorithm [2], one of the best-known link-based ranking algorithms.

6. PageRank: We computed PageRank scores for each page in the ClueWeb09 corpus, using a special-purpose
distributed program.

7. Matching anchor count (MAC): We resolved all the symbolic hostnames in ClueWeb09 URLs/links into IP
addresses. Then using DryadLINQ we identified unique 〈s, t, a〉 triples, where s is the IP address of a docu-
ment, t is the target URL of a link within that document and a is the anchor text of that link. Then we built the
MAC ranking feature for each query-target pair 〈q, t〉, counting the number of source IPs s that link to target
t with anchor a = q.

8. Extraction: For each query we identified a pool of documents and collated our ranking features. The resulting
“extraction” file could be used for training or for generating submitted runs.

9. Training: Using an extraction of training queries and some surrogate qrels (see Section 4), we trained a single-
layer LambdaRank model [1].

10. Runs: Using an extraction of the 50 test queries, we ran our trained model to produce our submitted runs.



4 Ranking Model

Various free parameters of our methods, including the BM25F parameters, those used in SALSA-SETR, and the
various weighted linear combinations) needed to be tuned in some way. The basic approach to this was two-fold.
We selected 118 queries from a search engine log as a training set. We ran these queries against the Bing search
engine, and used Bing ranks to define a set of relevance labels, on the assumption that the Bing results were good.
Rather than using the entire top-5000 BM25F as our training documents, we first take the intersection between
top-5000 and the Bing top-10 (‘Good’) documents. We then add random (‘Bad’) documents to get a pool of 10
documents. This is further augmented by adding top-5000 documents that are in the top-4 on one of several features:
BM25F, SALSA-SETR, PageRank and Anchor We then manually assessed all the pooled query-result pairs, using a
3-point scale. When Bing ranks are used to assign relevance labels to documents, documents retrieved at rank 1 were
assumed to be perfect, ranks 2-3 excellent, 4-5 good, 6-10 fair, and documents retrieved lower down are assumed to
be nonrelevant.

We used both the Bing-induced labels and the manual assessments to guide the tuning of the free parameters.
We trained a single layer LambdaRank model for 300 epochs and we used a separate validation set to pick the best
performing epoch. When the manual labels are used for training, the Bing-induced labels are used as the validation
set and vice versa.

5 Web track submissions

We submitted three runs to the diversity task:

MSDiv1 A linear combination of BM25F, IDID, SALSA and PageRank. Manual labels are used as the training set
and the Bing-induced labels are used as the validation set.

MSDiv2 A linear combination of BM25F, IDID, SALSA, PageRank and MAC. Manual labels are used as the
training set and the Bing-induced labels are used as the validation set.

MSDiv3 A linear combination of BM25F, PageRank and MAC. We attempted to perform “host collapsing” – in-
cluding only the two highest-scoring results from each host – so as to increase result diversity.

We also submitted MSDiv1 as MS1 and MSDiv2 as MS2 to the ad-hoc task. Table 1 shows the performance of our
submitted runs. MSDiv2 and MSDiv3 (which both include the MAC feature) clearly outperform MSDiv1 (which
does not include MAC), and their relative ordering varies depending on which performance measure is considered.

Run-ID αnDCG@5 αnDCG@10 αnDCG@20 IA-P@5 IA-P@10 IA-P@20
MSDiv1/MS1 0.178 0.234 0.275 0.083 0.098 0.091
MSDiv2/MS2 0.267 0.306 0.352 0.130 0.109 0.102
MSDiv3 0.268 0.309 0.346 0.127 0.117 0.105

Table 1: Performance of of web track submissions

After the submission and while performing additional analysis for the final version of this paper, we discovered
that our “host collapse” implementation used in preparing the MSDiv3 submission contained a bug – it excluded
many more results than it should have. Table 2 shows how a bug-free implementation would have performed.
The four rows in the table illustrate the effect of including the top one, two, three, or all results for a given host.
We can draw three conclusions from this data: first, fixing the bug in the host collapse implementation improved
performance; second, showing only two results per host produces only a mild improvement under some measures
(e.g. αnDCG@5) and is detrimental under others; and third, the ranking function that produced MSDiv3 without
host collapse (which used only three features) did better than the five-feature function that produced MSDiv2.



Run-ID αnDCG@5 αnDCG@10 αnDCG@20 IA-P@5 IA-P@10 IA-P@20
MSDiv3(1) 0.279 0.317 0.352 0.129 0.117 0.104
MSDiv3(2) 0.285 0.321 0.359 0.136 0.121 0.109
MSDiv3(3) 0.283 0.321 0.359 0.137 0.120 0.110
MSDiv3(∞) 0.283 0.320 0.363 0.139 0.118 0.109

Table 2: Performance of MSDiv3, after fixing bug in “host-collapse” code

In order to understand why a ranking function incorporating fewer features did better, we measured the perfor-
mance of each of the five features in isolation. Table 3 shows the results. According to the table, the matching anchor
count feature in isolation performs about as well as any of the ranking functions in Table 2 for low document cut-off
values, and not much worse for higher cut-offs. BM25F also performed quite well, but worse than MAC. Among
the link-based features, inter-domain in-indegree outperformed SALSA and PageRank – which greatly surprised us,
since earlier work suggested that SALSA should significantly outperform in-degree and PageRank [5].

Run-ID αnDCG@5 αnDCG@10 αnDCG@20 IA-P@5 IA-P@10 IA-P@20
MAC 0.283 0.312 0.355 0.133 0.109 0.092
BM25F 0.175 0.218 0.251 0.083 0.082 0.072
IDID 0.131 0.162 0.181 0.053 0.055 0.045
SALSA 0.127 0.155 0.183 0.049 0.048 0.041
PageRank 0.095 0.118 0.136 0.042 0.042 0.034

Table 3: Performance of individual features

Inspection of scores and judgments of a few queries revealed why the link-based features performed counter to
previous observations: Many of the results with high SALSA scores were not judged (the same is true for PageRank,
albeit to a lesser degree). In order to account for this fact, we devised a simple measure that is inspired by the standard
precision measure, but ignores unjudged results: we consider the twenty highest-scoring results and simply divide
the number of relevant results by the number of judged results. Table 4 shows the number of judged and relevant
results together with their ratio, for each individual feature. Under this measure, SALSA performs best, closely
followed by matching anchor count. We hypothesize that SALSA performs differently under the relevant/judged
measure versus standard measures because it is a fairly orthogonal feature: It surfaces many results that are not
surfaced by other features. The judgment process was driven by the pooling of submitted runs, and we did not
submit any runs using SALSA as the sole feature.

Run-ID judged relevant relevant/judged
SALSA 6.96 2.50 0.359
MAC 15.78 5.58 0.354
BM25F 15.30 4.20 0.275
IDID 12.36 3.04 0.246
PageRank 9.72 2.32 0.239

Table 4: Performance of individual features, ignoring results without judgments

Finally, Table 5 shows the number of judged and relevant results together with their ratio, for the three submitted
runs (bottom rows) as well as MSDiv3 with the host-collapse bug fixed (top rows). Under this measure, MSDiv3
slightly outperforms MSDiv2 and greatly outperforms MSDiv1 (consistent with Table 1), fixing the host-collapse
bug improves performance (consistent with Table 2), and SALSA and MAC in isolation perform better than the best



parametrization of MSDiv3. There are two plausible explanations for this: one, the relevant/judged measure may
become more fragile as the fraction of unjudged results goes up; and two, we may have combined features in a less
than optimal way in our submissions.

Run-ID judged relevant relevant/judged
MSDiv3(3) 19.80 6.62 0.334
MSDiv3(2) 19.64 6.56 0.334
MSDiv3(∞) 19.86 6.62 0.333
MSDiv3(1) 19.34 6.28 0.325
MSDiv3 19.96 6.32 0.317
MSDiv2/MS2 19.98 6.24 0.312
MSDiv1/MS1 19.94 5.46 0.274

Table 5: Performance of our runs, ignoring results without judgments

In order to check whether we combined features in a suboptimal way, we performed two sets of experiments
pertaining to combination of evidence. First, we experimented with weighted linear combinations of BM25F and
MAC, i.e. score = BM25F + w ·MAC. We found that performance plateaued for w ≥ 2, as shown in the top half
of Table 6. We also tried applying a log-based transform to MAC, i.e. score = BM25F + w · log MAC, and found
that performance plateaued for w ≥ 1, as shown in the bottom half of Table 6. In other words, MAC is the dominant
ranking signal, and BM25F serves as a “tie-breaker”.

w αnDCG@5 αnDCG@10 αnDCG@20 IA-P@5 IA-P@10 IA-P@20
0.5 0.273 0.307 0.356 0.133 0.114 0.108
1 0.274 0.319 0.361 0.133 0.118 0.109
2 0.283 0.320 0.363 0.139 0.118 0.109
10 0.283 0.320 0.363 0.139 0.118 0.109
100 0.283 0.320 0.363 0.139 0.118 0.109
1000 0.283 0.320 0.363 0.139 0.118 0.109
10000 0.283 0.320 0.363 0.139 0.118 0.109
0.1 0.265 0.309 0.355 0.126 0.115 0.105
1 0.283 0.320 0.363 0.139 0.118 0.109
10 0.283 0.320 0.363 0.139 0.118 0.109
100 0.283 0.320 0.363 0.139 0.118 0.109
1000 0.283 0.320 0.363 0.139 0.118 0.109

Table 6: Combining BM25F and MAC

Next, we tried three-way combinations using the scoring function score = BM25F + MAC +w · logL, with L
being one of the link-based features PageRank, IDID and SALSA. We found that the performance of each three-way
combination showed a sharp peak for a particular value of w, unlike what we observed for the two-way combination
of BM25F and MAC. Table 7 shows the results for the best-performing values of w. Adding SALSA as the third
feature increased performance more than either PageRank or IDID did. Comparing PageRank and IDID, PageRank
contributed more under αnDCG@5 and IA-P@5, while IDID was preferable at higher document cut-off values. We
also note that the fairly simple combination of MAC, BM25F and SALSA performs substantially better than any of
our submitted runs (cf. Table 1), even after discounting the “host-collapse bug” (cf. Table 2). In other words, when
preparing our submitted runs, we did indeed combine features in a suboptimal fashion.

Finally, Table 8 shows the performance of three-way combinations of evidence when ignoring unjudged results.
The combination of SALSA, BM25F and MAC performs best as expected. Two things to note are that the best



score = BM25F + MAC + . . . αnDCG@5 αnDCG@10 αnDCG@20 IA-P@5 IA-P@10 IA-P@20
. . . 500 · log SALSA 0.291 0.331 0.375 0.138 0.122 0.112
. . . 0.1 · log IDID 0.279 0.328 0.372 0.134 0.120 0.109
. . . 106 · log PageRank 0.285 0.322 0.364 0.139 0.117 0.109

Table 7: Combining BM25F and MAC with one of SALSA, IDID or PageRank

performance is higher than that of MSDiv3(3) (cf. Table 5) as well as that of SALSA in isolation (cf. Table 4),
further supporting the notion that MSDiv3 combines features in a suboptimal way. Second, performance is maximal
for w ≈ 5000 (as opposed to w ≈ 500 in Table 7. This is because giving higher weight to SALSA draws in more
unjudged results, which is being penalized by the metrics used in Table 7 but not those used in Table 8.

Weight judged relevant relevant/judged
BM25F + MAC + w log SALSA

100 19.76 6.64 0.336
500 19.04 6.72 0.353
1000 18.44 6.56 0.356
5000 13.86 5.16 0.372
10000 11.16 3.98 0.357

BM25F + MAC + w log IDID
0 19.86 6.62 0.333
0.001 19.88 6.64 0.334
0.01 19.88 6.66 0.335
0.05 19.54 6.66 0.341
0.1 19.04 6.56 0.345
0.2 18.82 6.38 0.339
0.5 17.22 5.54 0.322
1 15.50 4.54 0.293

BM25F + MAC + w log PageRank
109 18.46 5.90 0.320
108 19.82 6.66 0.336
107 19.86 6.64 0.334
106 19.86 6.64 0.334
105 19.84 6.62 0.334
104 19.84 6.62 0.334
103 19.86 6.62 0.333
102 19.86 6.62 0.333
101 19.86 6.62 0.333
100 19.86 6.62 0.333
0 19.86 6.62 0.333

Table 8: Combining BM25F and MAC with SALSA, IDID or PageRank, and ignoring results without judgments
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Figure 1: Improvements over the 5 folds when the feedback documents are (left) the top 5 documents, and (right)
the top 10 documents in the initial ranking.

6 Relevance feedback track submissions

In the first phase of the Relevance Feedback Track, we used BM25, tf-idf and language modeling parameters com-
puted on the Category B collection as features. To pick the feedback documents, a baseline ranker was obtained
by forming a weighted linear combination of these parameters. The feedback documents were picked using two
different methodologies:

MSRC1 Top 5 documents retrieved by our baseline ranker are submitted for feedback.

MSRC2 Top 20 documents were extracted using our baseline ranker. The top document is always picked for
feedback. The second document picked for feedback is the one that is the least similar of the remaining
documents to the first document, and so on. The similarities between different documents are computed using
cosine similarity as the metric.

For the second phase of the track, our intention was to use a relevance feedback model based on manifold
regularization and document contents. Using some previous training set (formed from the Bing-induced labels or
manual assessments), we use a regression based model to assign some initial weight to each of our features. Given
the feedback documents for each query, we would then like to update these weights separately for each query as
different features may be important for different queries. Hence, we learn a different ranker separately for each
query. This could be done by updating the initial weights using regression on the feedback documents. However,
since the number of judged documents is very limited, using simple regression on the feedback documents will
easily run into the problem of overfitting. To overcome this problem, we add a regularizer to the regression model
to include the information provided by thousands of unjudged documents. The regression model guarantees that
the feature weights are updated so that the scores of the feedback documents match their labels, and the regularizer
guarantees that the documents that are similar to each other in terms of contents are ranked similarly.

Figure 1 shows the result of our initial experiments using data from TREC 6, 7 and 8 Ad-hoc retrieval track.
Collectively, this dataset contains 150 queries and is split into five parts in order to conduct five-fold cross validation.
For each fold, we use one part for training the baseline ranker, one fold for validation and three folds for testing our
relevance feedback algorithm. The left and right plots in the figure shows how relevance feedback using manifold
regularization compares with the quality of the baseline ranker using top 5 and 10 documents from the baseline
ranker as the feedback documents, respectively. The x axis in the figure show the fold number and the y axis shows
the average precision value. It can be seen that using the manifold regularization based relevance feedback algo-
rithm, one can obtain significant improvements over the baseline ranker. The differences are statistically significant
according to a Wilcoxon sign-rank test at p = 0.5 significance level. The details of both the experiments and the
manifold regularization based relevance feedback algorithm will be published elsewhere.



Unfortunately, we were unable to finish the formulation of this algorithm in time for the Relevance Feedback
Track. Instead we submitted one run using a single feedback set (from one of the other participants) and a method
inspired by the usual Rocchio approach [8]. We extract the top 50 terms from the positive (relevant) documents
according to their term frequencies (largest sum of term frequencies over the relevant set). We then alter the query
using these terms, retrieve a new list of documents according to BM25 and language modeling features for the altered
query. If s1 is the score of a document in the original ranked list and s2 is the score of a document in the ranked list
for the altered query, we now merge the two results lists using a score of s1 + 0.02 ∗ s2.

7 Conclusions

Although most TREC participants use systems based on the usual inverted-file structure, there have been occasional
forays into different experimental infrastructures (at the first TREC, for example, there was one system based on a
hardware text scanner, another on passing documents sequentially for matching against an inverted file of queries).
For this submission we have begun experimenting with a new setup which avoids inverted-file building. As a
preliminary impression, it appears to provide a flexible environment in which to do a range of experiments. But we
need to do many more to discover its benefits and limitations. As regards the value of the specific approaches to the
Web and Relevance Feedback tasks, we have yet to perform the necessary analyses and further experiments.
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