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ABSTRACT
Data-intensive applications are increasingly designed to ex-
ecute on large computing clusters. Grouped aggregation
is a core primitive of many distributed programming mod-
els, and it is often the most efficient available mechanism
for computations such as matrix multiplication and graph
traversal. Such algorithms typically require non-standard
aggregations that are more sophisticated than traditional
built-in database functions such as Sum and Max. As a re-
sult, the ease of programming user-defined aggregations, and
the efficiency of their implementation, is of great current in-
terest.

This paper evaluates the interfaces and implementations
for user-defined aggregation in several state of the art dis-
tributed computing systems: Hadoop, databases such as Or-
acle Parallel Server, and DryadLINQ. We show that: the
degree of language integration between user-defined func-
tions and the high-level query language has an impact on
code legibility and simplicity; the choice of programming
interface has a material effect on the performance of com-
putations; some execution plans perform better than others
on average; and that in order to get good performance on
a variety of workloads a system must be able to select be-
tween execution plans depending on the computation. The
interface and execution plan described in the MapReduce
paper, and implemented by Hadoop, are found to be among
the worst-performing choices.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming

General Terms
Design, Languages, Performance
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1. INTRODUCTION
Many data-mining computations have as a fundamental

subroutine a “GroupBy-Aggregate” operation. This takes
a dataset, partitions its records into groups according to
some key, then performs an aggregation over each resulting
group. GroupBy-Aggregate is useful for summarization, e.g.
finding average household income by zip code from a census
dataset, but it is also at the heart of the distributed imple-
mentation of algorithms such as matrix multiplication [23,
28]. The ability to perform GroupBy-Aggregate at scale is
therefore increasingly important, both for traditional data-
mining tasks and also for emerging applications such as web-
scale machine learning and graph analysis.

This paper examines the programming models that are
supplied for user-defined aggregation by several state of the
art distributed systems, evaluates a variety of optimizations
that are suitable for aggregations with differing properties,
and investigates the interaction between the two. In partic-
ular, we show that the choice of programming interface not
only affects the ease of programming complex user-defined
aggregations, but can also make a material difference to the
performance of some optimizations.

GroupBy-Aggregate has emerged as a canonical execution
model in the general-purpose distributed computing litera-
ture. Systems such as MapReduce [10] and Hadoop [3] allow
programmers to decompose an arbitrary computation into
a sequence of maps and reductions, which are written in
a full-fledged high level programming language (C++ and
Java, respectively) using arbitrary complex types. The re-
sulting systems can perform quite general tasks at scale,
but offer a low-level programming interface: even common
operations such as database Join require a sophisticated un-
derstanding of manual optimizations on the part of the pro-
grammer. Consequently, layers such as Pig Latin [20] and
HIVE [1] have been developed on top of Hadoop, offering
a SQL-like programming interface that simplifies common
data-processing tasks. Unfortunately the underlying execu-
tion plan must still be converted into a sequence of maps and
reductions for Hadoop to execute, precluding many standard
parallel database optimizations.

Parallel databases have for some time permitted user-
defined selection and aggregation operations [16] that have
the same computational expressiveness as MapReduce, al-
though with a slightly different interface. For simple com-
putations the user-defined functions are written using built-
in languages that integrate tightly with SQL but have re-
stricted type systems and limited ability to interact with
legacy code or libraries. Functions of even moderate com-



plexity, however, must be written using external calls to
languages such as C and C++ whose integration with the
database type system can be difficult to manage [25].

Dryad [17] and DryadLINQ [27] were designed to address
some of the limitations of databases and MapReduce. Dryad
is a distributed execution engine that lies between databases
and MapReduce: it abandons much of the traditional func-
tionality of a database (transactions, in-place updates, etc.)
while providing fault-tolerant execution of complex query
plans on large-scale clusters. DryadLINQ is a language layer
built on top of Dryad that tightly integrates distributed
queries into high level .NET programming languages. It
provides a unified data model and programming language
for relational queries and user-defined functions. Dryad and
DryadLINQ offer an attractive research platform because
Dryad supports complex execution plans that cannot be
performed by a system such as Hadoop, while the Dryad-
LINQ source is available for modification, unlike that of most
parallel databases. This paper explains in detail how dis-
tributed aggregation can be treated efficiently by the Dryad-
LINQ optimization phase, and extends the DryadLINQ pro-
gramming interface as well as the set of optimizations the
system may apply.

The contributions of this paper are as follows:

• We compare the programming models for user-defined
aggregation in Hadoop, DryadLINQ, and parallel data-
bases, and show the impact of interface-design choices
on optimizations.

• We describe and implement a general, rigorous treat-
ment of distributed grouping and aggregation in the
DryadLINQ system.

• We use DryadLINQ to evaluate several optimization
techniques for distributed aggregation in real appli-
cations running on a medium-sized cluster of several
hundred computers.

The structure of this paper is as follows. Section 2 ex-
plains user-defined aggregation and gives an overview of how
a GroupBy-Aggregate computation can be distributed. Sec-
tion 3 describes the programming interfaces for user-defined
aggregation offered by the three systems we consider, and
Section 4 outlines the programs we use for our evaluation.
Section 5 presents several implementation strategies which
are then evaluated in Section 6 using a variety of workloads.
Section 7 surveys related work, and Section 8 contains a
discussion and conclusions.

2. DISTRIBUTED AGGREGATION
This section discusses the functions that must be supplied

in order to perform general-purpose user-defined aggrega-
tions. Our example execution plan shows a map followed by
an aggregation, however in general an aggregation might,
for example, consume the output of more complex process-
ing such as a Join or a previous aggregation. We explain
the concepts using the iterator-based programming model
adopted by MapReduce [10] and Hadoop [20], and discuss
alternatives used by parallel databases and DryadLINQ be-
low in Section 3. We use an integer-average computation as
a running example. It is much simpler than most interest-
ing user-defined aggregations, and is included as a primitive
in many systems, however its implementation has the same
structure as that of many much more complex functions.
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Figure 1: Distributed execution plan for MapRe-
duce when reduce cannot be decomposed to perform
partial aggregation.

2.1 User-defined aggregation
The MapReduce programming model [10] supports grouped

aggregation using a user-supplied functional programming
primitive called Reduce:

• Reduce: 〈K, Sequence of R〉 → Sequence of S takes a
sequence of records of type R, all with the same key of
type K, and outputs zero or more records of type S.

Here is the pseudocode for a Reduce function to compute
integer average:

double Reduce(Key k, Sequence<int> recordSequence)
{
// key is ignored
int count = 0, sum = 0;
foreach (r in recordSequence) {
sum += r; ++count;

}
return (double)sum / (double)count;

}

With this user-defined function, and merge and grouping
operators provided by the system, it is possible to execute a
simple distributed computation as shown in Figure 1. The
computation has exactly two phases: the first phase executes
a Map function on the inputs to extract keys and records,
then performs a partitioning of these outputs based on the
keys of the records. The second phase collects and merges all
the records with the same key, and passes them to the Re-

duce function. (This second phase is equivalent to GroupBy

followed by Aggregate in the database literature.)
As we shall see in the following sections, many optimiza-

tions for distributed aggregation rely on computing and com-
bining “partial aggregations.” Suppose that aggregating the
sequence Rk of all the records with a particular key k results
in output Sk. A partial aggregation computed from a sub-
sequence r of Rk is an intermediate result with the property
that partial aggregations of all the subsequences of Rk can
be combined to generate Sk. Partial aggregations may exist,
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Figure 2: Distributed execution plan for MapRe-
duce when reduce supports partial aggregation. The
implementation of GroupBy in the first stage may
be different to that in the later stages, as discussed
in Section 5.

for example, when the aggregation function is commutative
and associative, and Section 2.2 below formalizes the notion
of decomposable functions which generalize this case. For
our running example of integer average, a partial aggregate
contains a partial sum and a partial count:

struct Partial {
int partialSum;
int partialCount;

}

Often the partial aggregation of a subsequence r is much
smaller than r itself: in the case of average for example
the partial sum is just two values, regardless of the number
of integers that have been processed. When there is such
substantial data reduction, partial aggregation can be intro-
duced both as part of the initial Map phase and in an aggre-
gation tree, as shown in Figure 2, to greatly reduce network
traffic. In order to decompose a user-defined aggregation us-
ing partial aggregation it is necessary to introduce auxiliary
functions, called “Combiners” in [10], that synthesize the in-
termediate results into the final output. The MapReduce
system described in [10] can perform partial aggregation on
each local computer before transmitting data across the net-
work, but does not use an aggregation tree.

In order to enable partial aggregation a user of MapRe-
duce must supply three functions:

1. InitialReduce: 〈K, Sequence of R〉 → 〈K, X〉 which
takes a sequence of records of type R, all with the
same key of type K, and outputs a partial aggregation
encoded as the key of type K and an intermediate type
X.

2. Combine: 〈K, Sequence of X〉 → 〈K, X〉 which takes
a sequence of partial aggregations of type X, all with
the same key of type K, and outputs a new, combined,
partial aggregation again encoded as an object of type
X with the shared key of type K.

3. FinalReduce: 〈K, Sequence of X〉 → Sequence of S
which takes a sequence of partial aggregations of type
X, all with the same key of type K, and outputs zero
or more records of type S.

In simple cases such as Sum or Min the types R, X and S are
all the same, and InitialReduce, Combine and FinalReduce

can all be computed using the same function. Three separate
functions are needed even for straightforward computations
such as integer average:

Partial InitialReduce(Key k,
Sequence<int> recordSequence) {

Partial p = { 0, 0 };
foreach (r in recordSequence) {
p.partialSum += r;
++p.partialCount;

}
return <k, p>;

}

Partial Combine(Key k,
Sequence<Partial> partialSequence) {

Partial p = { 0, 0 };
foreach (r in partialSequence) {
p.partialSum += r.partialSum;
p.partialCount += r.partialCount;

}
return <k, p>;

}

double FinalReduce(Key k,
Sequence<Partial> partialSequence)

{
// key is ignored
Partial p = Combine(k, partialSequence);
return (double)p.partialSum/(double)p.partialCount;

}

2.2 Decomposable functions
We can formalize the above discussion by introducing the

notion of decomposable functions.

Definition 1. We use x to denote a sequence of data
items, and use x1 ⊕ x2 to denote the concatenation of x1

and x2. A function H is decomposable if there exist two
functions I and C satisfying the following conditions:

1) H is the composition of I and C: ∀x1, x2 : H(x1⊕x2) =
C(I(x1 ⊕ x2)) = C(I(x1)⊕ I(x2))

2) I is commutative: ∀x1, x2 : I(x1 ⊕ x2) = I(x2 ⊕ x1)

3) C is commutative: ∀x1, x2 : C(x1 ⊕ x2) = C(x2 ⊕ x1)



Definition 2. A function H is associative-decomposable
if there exist two functions I and C satisfying conditions
1–3 above, and in addition C is associative: ∀x1, x2, x3 :
C(C(x1 ⊕ x2)⊕ x3) = C(x1 ⊕ C(x2 ⊕ x3))

If an aggregation computation can be represented as a set
of associative-decomposable functions followed by some fi-
nal processing, then it can be split up in such a way that
the query plan in Figure 2 can be applied. If the computa-
tion is instead formed from decomposable functions followed
by final processing then the plan from Figure 2 can be ap-
plied, but without any intermediate aggregation stages. If
the computation is not decomposable then the plan from
Figure 1 is required.

Intuitively speaking, I and C correspond to the Initial-

Reduce and Combine functions for MapReduce that were de-
scribed in the preceding section. However, there is a small
but important difference. Decomposable functions define a
class of functions with certain algebraic properties without
referring to the aggregation-specific key. This separation of
the key type from the aggregation logic makes it possible
for the system to automatically optimize the execution of
complex reducers that are built up from a combination of
decomposable functions, as we show below in Section 3.4.

3. PROGRAMMING MODELS
This section compares the programming models for user-

defined aggregation provided by the Hadoop system, a dis-
tributed SQL database, and DryadLINQ. We briefly note
differences in the way that user-defined aggregation is inte-
grated into the query language in each model, but mostly
concentrate on how the user specifies the decomposition of
the aggregation computation so that distributed optimiza-
tions like those in Figure 2 can be employed. Section 5
discusses how the decomposed aggregation is implemented
in a distributed execution.

The systems we consider adopt two different styles of in-
terface for user-defined aggregation. The first is iterator-
based, as in the examples in Section 2—the user-defined
aggregation function is called once and supplied with an
iterator that can be used to access all the records in the
sequence. The second is accumulator-based. In this style,
which is covered in more detail below in Section 3.2, each
partial aggregation is performed by an object that is ini-
tialized before first use then repeatedly called with either
a singleton record to be accumulated, or another partial-
aggregation object to be combined. The iterator-based and
accumulator-based interfaces have the same computational
expressiveness, however as we shall see in Section 5 the
choice has a material effect on the efficiency of different im-
plementations of GroupBy. While there is an automatic and
efficient translation from the accumulator interface to the
iterator interface, the other direction in general appears to
be much more difficult.

3.1 User-defined aggregation in Hadoop
The precise function signatures used for combiners are

not stated in the MapReduce paper [10] however they ap-
pear to be similar to those provided by the Pig Latin layer
of the Hadoop system [20]. The Hadoop implementations of
InitialReduce, Combine and FinalReduce for integer aver-
aging are provided in Figure 3. The functions are supplied
as overrides of a base class that deals with system-defined

// InitialReduce: input is a sequence of raw data tuples;
// produces a single intermediate result as output
static public class Initial extends EvalFunc<Tuple> {
@Override public void exec(Tuple input, Tuple output)

throws IOException {
try {
output.appendField(new DataAtom(sum(input)));
output.appendField(new DataAtom(count(input)));

} catch(RuntimeException t) {
throw new RuntimeException([...]);

}
}

}

// Combiner: input is a sequence of intermediate results;
// produces a single (coalesced) intermediate result
static public class Intermed extends EvalFunc<Tuple> {
@Override public void exec(Tuple input, Tuple output)

throws IOException {
combine(input.getBagField(0), output);

}
}

// FinalReduce: input is one or more intermediate results;
// produces final output of aggregation function
static public class Final extends EvalFunc<DataAtom> {
@Override public void exec(Tuple input, DataAtom output)

throws IOException {
Tuple combined = new Tuple();
if(input.getField(0) instanceof DataBag) {
combine(input.getBagField(0), combined);

} else {
throw new RuntimeException([...]);

}
double sum = combined.getAtomField(0).numval();
double count = combined.getAtomField(1).numval();
double avg = 0;
if (count > 0) {
avg = sum / count;

}
output.setValue(avg);

}
}

static protected void combine(DataBag values, Tuple output)
throws IOException {

double sum = 0;
double count = 0;
for (Iterator it = values.iterator(); it.hasNext();) {
Tuple t = (Tuple) it.next();
sum += t.getAtomField(0).numval();
count += t.getAtomField(1).numval();

}
output.appendField(new DataAtom(sum));
output.appendField(new DataAtom(count));

}

static protected long count(Tuple input)
throws IOException {

DataBag values = input.getBagField(0);
return values.size();

}

static protected double sum(Tuple input)
throws IOException {

DataBag values = input.getBagField(0);
double sum = 0;
for (Iterator it = values.iterator(); it.hasNext();) {
Tuple t = (Tuple) it.next();
sum += t.getAtomField(0).numval();

}
return sum;

}

Figure 3: A user-defined aggregator to implement
integer averaging in Hadoop. The supplied functions
are conceptually simple, but the user is responsi-
ble for marshalling between the underlying data and
system types such as DataAtom and Tuple for which
we do not include full definitions here.



“container” objects DataAtom, corresponding to an arbitrary
record, and Tuple, corresponding to a sequence of records.
The user is responsible for understanding these types, using
casts and accessor functions to fill in the required fields, and
manually checking that the casts are valid. This circum-
vents to some degree the strong static typing of Java and
adds substantial apparent complexity to a trivial computa-
tion like that in Figure 3, but of course for more interesting
aggregation functions the overhead of casting between sys-
tem types will be less noticeable, and the benefits of hav-
ing access to a full-featured high-level language, in this case
Java, will be more apparent.

3.2 User-defined aggregation in a database
MapReduce can be expressed in a database system that

supports user-defined functions and aggregates as follows:

SELECT Reduce()
FROM (SELECT Map() FROM T) R
GROUPBY R.key

where Map is a user-defined function outputting to a tempo-
rary table R whose rows contain a key R.key, and Reduce

is a user-defined aggregator. (The statement above restricts
Map and Reduce to each produce a single output per input
row, however many databases support “table functions” [2,
13] which relax this constraint.) Such user-defined aggre-
gators were introduced in Postgres [24] and are supported
in commercial parallel database systems including Oracle
and Teradata. Database interfaces for user-defined aggrega-
tion are typically object-oriented and accumulator-based, in
contrast to the iterator-based Hadoop approach above. For
example, in Oracle the user must supply four methods:

1. Initialize: This is called once before any data is
supplied with a given key, to initialize the state of the
aggregation object.

2. Iterate: This may be called multiple times, each time
with a single record with the matching key. It causes
that record to be accumulated by the aggregation ob-
ject.

3. Merge: This may be called multiple times, each time
with another aggregation object with the matching
key. It combines the two partial aggregations.

4. Final: This is called once to output the final record
that is the result of the aggregation.

Figure 4 shows an implementation of integer average as
an Oracle user-defined aggregator. For functions like av-
erage whose types map well to SQL base types and which
can be written entirely using Oracle’s built-in extension lan-
guage, the type-integration is better than that of Hadoop.
However if the user-defined functions and types are more
complex and must be implemented in a full-fledged language
such as C/C++, the database implementation becomes sub-
stantially more difficult to understand and manage [25].

3.3 User-defined aggregation in DryadLINQ
DryadLINQ integrates relational operators with user code

by embedding the operators in an existing language, rather
than calling into user-defined functions from within a query
language like Pig Latin or SQL. A distributed grouping and
aggregation can be expressed in DryadLINQ as follows:

STATIC FUNCTION ODCIAggregateInitialize
( actx IN OUT AvgInterval
) RETURN NUMBER IS
BEGIN
IF actx IS NULL THEN
actx := AvgInterval (INTERVAL ’0 0:0:0.0’ DAY TO

SECOND, 0);
ELSE
actx.runningSum := INTERVAL ’0 0:0:0.0’ DAY TO SECOND;
actx.runningCount := 0;

END IF;
RETURN ODCIConst.Success;

END;

MEMBER FUNCTION ODCIAggregateIterate
( self IN OUT AvgInterval,
val IN DSINTERVAL_UNCONSTRAINED

) RETURN NUMBER IS
BEGIN
self.runningSum := self.runningSum + val;
self.runningCount := self.runningCount + 1;
RETURN ODCIConst.Success;

END;

MEMBER FUNCTION ODCIAggregateMerge
(self IN OUT AvgInterval,
ctx2 IN AvgInterval
) RETURN NUMBER IS
BEGIN
self.runningSum := self.runningSum + ctx2.runningSum;
self.runningCount := self.runningCount +

ctx2.runningCount;
RETURN ODCIConst.Success;

END;

MEMBER FUNCTION ODCIAggregateTerminate
( self IN AvgInterval,
ReturnValue OUT DSINTERVAL_UNCONSTRAINED,
flags IN NUMBER

) RETURN NUMBER IS
BEGIN
IF self.runningCount <> 0 THEN
returnValue := self.runningSum / self.runningCount;

ELSE
returnValue := self.runningSum;

END IF;
RETURN ODCIConst.Success;

END;

Figure 4: A user-defined combiner in the Oracle
database system that implements integer averaging.
This example is taken from http://www.oracle.com/

technology/oramag/oracle/06-jul/o46sql.html.

var groups = source.GroupBy(KeySelect);
var reduced = groups.SelectMany(Reduce);

In this fragment, source is a DryadLINQ collection (which
is analagous to a SQL table) of .NET objects of type R. Key-
Select is an expression that computes a key of type K from
an object of type R, and groups is a collection in which each
element is a “group” (an object of type IGrouping<K,R>)
consisting of a key of type K and a collection of objects of
type R. Finally, Reduce is an expression that transforms an
element of groups into a sequence of zero or more objects
of type S, and reduced is a collection of objects of type S.
DryadLINQ programs are statically strongly typed, so the
Reduce expression could for example be any function that
takes an object of type IGrouping<K,R> and returns a collec-
tion of objects of type S, and no type-casting is necessary.
Aggregation without grouping is expressed in DryadLINQ
using the Aggregate operator. We added a new overloaded
Aggregate operator to DryadLINQ to mirror the use of Se-



public static IntPair InitialReduce(IEnumerable<int> g) {
return new IntPair(g.Sum(), g.Count());

}

public static IntPair Combine(IEnumerable<IntPair> g) {
return new IntPair(g.Select(x => x.first).Sum(),

g.Select(x => x.second).Sum());
}

[AssociativeDecomposable("InitialReduce", "Combine")]
public static IntPair PartialSum(IEnumerable<int> g) {
return InitialReduce(g);

}

public static double Average(IEnumerable<int> g) {
IntPair final = g.Aggregate(x => PartialSum(x));
if (final.second == 0) return 0.0;
return (double)final.first / (double)final.second;

}

Figure 5: An iterator-based implementation of
Average in DryadLINQ that uses an associative-
decomposable subroutine PartialSum. The annota-
tion on PartialSum indicates that the system may
split the computation into calls to the two func-
tions InitialReduce and Combine when executing a
distributed expression plan.

lect since the standard LINQ Aggregate operator uses a
slightly different interface.

We have implememented both accumulator- and iterator-
based interfaces for user-defined aggregation in DryadLINQ.
We first describe the iterator-based interface in some detail,
then briefly outline the accumulator-based style.

Iterator-based aggregation. We hard-coded into Dryad-
LINQ the fact that standard functions such as Max and Sum

are associative-decomposable and we added the following
annotation syntax

[AssociativeDecomposable("I", "C")]
public static X H(IEnumerable<R> g) {
[ ... ]

}

which a programmer can use to indicate that a function H

is associative-decomposable with respect to iterator-based
functions I and C, along with a similar annotation to indi-
cate a Decomposable function. The DryadLINQ implemen-
tation of iterator-based integer averaging is shown in Fig-
ure 5. The implementations match the Hadoop versions in
Figure 3 quite closely, but DryadLINQ’s tighter language in-
tegration means that no marshaling is necessary. Note also
the LINQ idiom in InitialReduce and Combine of using
subqueries instead of loops to compute sums and counts.

Accumulator-based aggregation. We also implemented
support for an accumulator interface for partial aggregation.
The user must define three static functions:

public X Initialize();
public X Iterate(X partialObject, R record);
public X Merge(X partialObject, X objectToMerge);

where X is the type of the object that is used to accumu-
late the partial aggregation, and supply them using a three-
argument variant of the AssociativeDecomposable annota-
tion. Figure 6 shows integer averaging using DryadLINQ’s
accumulator-based interface.

public static IntPair Initialize() {
return new IntPair(0, 0);

}

public static IntPair Iterate(IntPair x, int r) {
x.first += r;
x.second += 1;
return x;

}

public static IntPair Merge(IntPair x, IntPair o) {
x.first += o.first;
x.second += o.second;
return x;

}

[AssociativeDecomposable("Initialize", "Iterate", "Merge")]
public static IntPair PartialSum(IEnumerable<int> g) {
return new IntPair(g.Sum(), g.Count());

}

public static double Average(IEnumerable<int> g) {
IntPair final = g.Aggregate(x => PartialSum(x));
if (final.second == 0) return 0.0;
else return (double)final.first / (double)final.second;

}

Figure 6: An accumulator-based implementation
of Average in DryadLINQ that uses an associative-
decomposable subroutine PartialSum. The annota-
tion on PartialSum indicates that the system may
split the computation into calls to the three func-
tions Initialize, Iterate and Merge when executing
a distributed expression plan.

3.4 Aggregating multiple functions
We implemented support within DryadLINQ to automat-

ically generate the equivalent of combiner functions in some
cases. We define a reducer in DryadLINQ to be an expres-
sion that maps an IEnumerable or IGrouping object to a
sequence of objects of some other type.

Definition 3. Let g be the formal argument of a reducer.
A reducer is decomposable if every terminal node of its ex-
pression tree satisfies one of the following conditions:

1) It is a constant or, if g is an IGrouping, of the form
g.Key, where Key is the property of the IGrouping interface
that returns the group’s key.

2) It is of the form H(g) for a decomposable function H.

3) It is a constructor or method call whose arguments each
recursively satisfies one of these conditions.

Similarly a reducer is associative-decomposable if it can be
broken into associative-decomposable functions.

It is a common LINQ idiom to write a statement such as

var reduced =
groups.Select(x => new T(x.Key, x.Sum(), x.Count()));

The expression inside the Select statement in this example
is associative-decomposable since Sum and Count are built-in
associative-decomposable functions. When DryadLINQ en-
counters such a statement we use reflection to discover all
the decomposable function calls in the reducer’s expression
tree and their decompositions. In this example the decom-
posable functions are Sum with decomposition I=Sum, C=Sum

and Count with decomposition I=Count, C=Sum.
Our system then automatically generates InitialReduce,

Combine and FinalReduce functions from these decompo-



sitions, along with a tuple type to store the partial aggre-
gation. For example, the InitialReduce function in this
example would compute both the Sum and the Count of its
input records and output a pair of integers encoding this
partial sum and partial count. The ability to do this auto-
matic inference on function compositions is very useful, since
it allows programmers to reason about and annotate their
library functions using Definition 1 independent of their us-
age in distributed aggregation. Any reducer expression that
is composed of built-in and user-annotated decomposable
functions will enable the optimization of partial aggrega-
tion. A similar automatic combination of multiple aggrega-
tions could be implemented by the Pig Latin compiler or a
database query planner.

Thus the integer average computation could simply be
written

public static double Average(IEnumerable<int> g)
{
IntPair final = g.Aggregate(x =>

new IntPair(x.Sum(), x.Count()));
if (final.second == 0) return 0.0;
else return (double)final.first /

(double)final.second);
}

and the system would automatically synthesize essentially
the same code as is written in Figure 5 or Figure 6 depend-
ing on whether the optimizer chooses the iterator-based or
accumulator-based implementation.

As a more interesting example, the following code com-
putes the standard deviation of a sequence of integers.

g.Aggregate(s => Sqrt(s.Sum(x => x*x) -
s.Sum()*s.Sum()))

Because Sum is an associative-decomposable function, the
system automatically determines that the expression passed
to Aggregate is also associative-decomposable. DryadLINQ
therefore chooses the execution plan shown in Figure 2, mak-
ing use of partial aggregation for efficiency.

4. EXAMPLE APPLICATIONS
This section lists the three DryadLINQ example programs

that we will evaluate in Section 6. Each example contains
at least one distributed aggregation step, and though the
programs are quite simple they further illustrate the use
of the user-defined aggregation primitives we introduced in
Section 3.3. For conciseness, the examples use LINQ’s SQL-
style syntax instead of the object-oriented syntax adopted
in Section 3.1. All of these programs could be implemented
in Pig Latin, native Hadoop or SQL, though perhaps less
elegantly in some cases.

4.1 Word Statistics
The first program computes statistics about word occur-

rences in a corpus of documents.

var wordStats =
from doc in docs
from wc in from word in doc.words

group word by word into g
select new WordCount(g.Key, g.Count()))

group wc.count by wc.word into g
select ComputeStats(g.Key, g.Count(),

g.Max(), g.Sum());

The nested query “from wc ...” iterates over each doc-
ument doc in the corpus and assembles a document-specific

collection of records wc, one for each unique word in doc,
specifying the word and the number of times it appears in
doc.

The outer query “group wc.count...” combines the per-
document collections and computes, for each unique word
in the corpus, a group containing all of its per-document
counts. So for example if the word “confabulate” appears
in three documents in the corpus, once in one document
and twice in each of the other two documents, then the
outer query would include a group with key “confabulate”
and counts {1, 2, 2}.

The output of the full query is a collection of records, one
for each unique word in the collection, where each record
is generated by calling the user-defined function ComputeS-

tats. In the case above, for example, one record will be the
result of calling

ComputeStats("confabulate", 3, 2, 5).

Since Count, Max and Sum are all associative-decomposable
functions, DryadLINQ will use the execution plan given in
Figure 2. The Map phase computes the inner query for
each document, and the InitialReduce, Combine and Fi-

nalReduce stages together aggregate the triple (g.Count(),

g.Max(), g.Sum()) using automatically generated functions
as described in Section 3.4.

4.2 Word Top Documents
The second example computes, for each unique word in a

corpus, the three documents that have the highest number
of occurences of that word.

[AssociativeDecomposable("ITop3", "CTop3")]
public static WInfo[] Top3(IEnumerable<WInfo> g)
{
return g.OrderBy(x => x.count).Take(3).ToArray();

}

public static WInfo[] ITop3(IEnumerable<WInfo> g)
{
return g.OrderBy(x => x.count).Take(3).ToArray();

}

public static WInfo[] CTop3(IEnumerable<WInfo[]> g)
{
return g.SelectMany(x => x).OrderBy(x => x.count).

Take(3).ToArray();
}

var tops =
from doc in docs
from wc in from word in doc.words

group word by word into g
select new WInfo(g.Key, g.URL, g.Count())

group wc by wc.word into g
select new WordTopDocs(g.Key, Top3(g))

The program first computes the per-document count of oc-
currences of each word using a nested query as in the pre-
vious example, though this time we also record the URL
of the document associated with each count. Once again
the outer query regroups the computed totals according to
unique words across the corpus, but now for each unique
word w we use the function Top3 to compute the three doc-
uments in which w occurs most frequently. While Top3 is
associative-decomposable, our implementation cannot infer
its decomposition because we do not know simple rules to
infer that operator compositions such as OrderBy.Take are
associative-decomposable. We therefore use an annotation



to tell the system that Top3 is associative-decomposable with
respect to ITop3 and CTop3. With this annotation, Dryad-
LINQ can determine that the expression

new WordTopDocs(g.Key, Top3(g))

is associative-decomposable, so once again the system adopts
the execution plan given in Figure 2. While we only show
the iterator-based decomposition of Top3 here, we have also
implemented the accumulator-based form and we compare
the two in our evaluation in Section 6.

4.3 PageRank
The final example performs an iterative PageRank com-

putation on a web graph. For clarity we present a simplified
implementation of PageRank but interested readers can find
more highly optimized implementations in [27] and [28].

var ranks = pages.Select(p => new Rank(p.name, 1.0));
for (int i = 0; i < interations; i++)
{

// join pages with ranks, and disperse updates
var updates =

from p in pages
join rank in ranks on p.name equals rank.name
select p.Distribute(rank);

// re-accumulate.
ranks = from list in updates

from rank in list
group rank.rank by rank.name into g
select new Rank(g.Key, g.Sum());

}

Each element p of the collection pages contains a unique
identifier p.name and a list of identifiers specifying all the
pages in the graph that p links to. Elements of ranks are
pairs specifying the identifier of a page and its current es-
timated rank. The first statement initializes ranks with a
default rank for every page in pages. Each iteration then
calls a method on the page object p to distribute p’s current
rank evenly along its outgoing edges: Distribute returns a
list of destination page identifiers each with their share of p’s
rank. Finally the iteration collects these distributed ranks,
accumulates the incoming total for each page, and generates
a new estimated rank value for that page. One iteration is
analogous to a step of MapReduce in which the “Map” is ac-
tually a Join pipelined with the distribution of scores, and
the “Reduce” is used to re-aggregate the scores. The final
select is associative-decomposable so once more DryadLINQ
uses the optimized execution plan in Figure 2.

The collection pages has been pre-partitioned according
to a hash of p.name, and the initialization of ranks causes
that collection to inherit the same partitioning. Figure 7
shows the execution plan for multiple iterations of Page-
Rank. Each iteration computes a new value for ranks. Be-
cause DryadLINQ knows that ranks and pages have the
same partitioning, the Join in the next iteration can be com-
puted on the partitions of pages and ranks pairwise without
any data re-partitioning. A well-designed parallel database
would also be able to automatically select a plan that avoids
re-partitioning the datasets across iterations. However, be-
cause MapReduce does not natively support multi-input op-
erators such as Join, it is unable to perform a pipelined it-
erative computation such as PageRank that preserves data
locality, leading to much larger data transfer volumes for
this type of computation when executed on a system such
as Hadoop.

pages ranks

Iteration 1

Iteration 2

Iteration 3

Figure 7: Distributed execution plan for a multi-
iteration PageRank computation. Iterations are
pipelined together with the final aggregation at the
end of one iteration residing in the same process
as the Join, rank-distribution, and initial aggrega-
tion at the start of the next iteration. The sys-
tem automatically maintains the partitioning of the
rank-estimate dataset and schedules processes to
run close to their input data, so the page dataset
is never transferred across the network.

5. SYSTEM IMPLEMENTATION
We now turn our attention to the implementations of dis-

tributed reduction for the class of combiner-enabled compu-
tations. This section describes the execution plan and six
different reduction strategies we have implemented using the
DryadLINQ system. Section 6 evaluates these implementa-
tions on the applications presented in Section 4.

All our example programs use the execution plan in Fig-
ure 2 for their distributed GroupBy-Aggregate computa-
tions. This plan contains two aggregation steps: G1+IR

and G2+C. Their implementation has a direct impact on the
amount of data reduction at the first stage and also on the
degree of pipelining with the preceding and following compu-
tations. Our goal of course is to optimize the entire compu-
tation, not a single aggregation in isolation. In this section,
we examine the implementation choices and their tradeoffs.

We consider the following six implementations of the two
aggregation steps, listing them according to the implementa-
tion of the first GroupBy (G1). All the implementations are
multi-threaded to take advantage of our multi-core cluster
computers.

FullSort This implementation uses the iterator interface
described in Section 2.1. The first GroupBy (G1) accu-
mulates all the objects in memory and performs a par-
allel sort on them according to the grouping key. The
system then streams over the sorted objects calling
InitialReduce once for each unique key. The output
of the InitialReduce stage remains sorted by the group-
ing key so we use a parallel merge sort for the Merge
operations (MG) in the subsequent stages and thus the
later GroupBys (G2) are simple streaming operations



since the records arrive sorted into groups and ready
to pass to the Combiners. Since the first stage reads
all of the input records before doing any aggregation
it attains an optimal data reduction for each partition.
However the fact that it accumulates every record in
memory before sorting completes makes the strategy
unsuitable if the output of the upstream computation
is large. Since G2 is stateless it can be pipelined with
a downstream computation as long as FinalReduce

does not use a large amount of memory. Either the
accumulator- or iterator-based interface can be used
with this strategy, and we use the iterator-based in-
terface in our experiments. FullSort is the strategy
adopted by MapReduce [10] and Hadoop [3].

PartialSort We again use the iterator interface for Partial-
Sort. This scheme reads a bounded number of chunks
of input records into memory, with each chunk occupy-
ing bounded storage. Each chunk is processed indepen-
dently in parallel: the chunk is sorted; its sorted groups
are passed to InitialReduce; the output is emitted;
and the next chunk is read in. Since the output of
the first stage is not sorted we use non-deterministic
merge for MG, and we use FullSort for G2 since we must
aggregate all the records for a particular key before
calling FinalReduce. PartialSort uses bounded storage
in the first stage so it can be pipelined with upstream
computations. G2 can consume unbounded storage,
but we expect a large degree of data reduction from
pre-aggregation most of the time. We therefore en-
able the pipelining of downstream computations by
default when using PartialSort (and all the following
strategies), and allow the user to manually disable it.
Since InitialReduce is applied independently to each
chunk, PartialSort does not in general achieve as much
data reduction at the first stage as FullSort. The ag-
gregation tree stage in Figure 2 may therefore be a
useful optimization to perform additional data reduc-
tion inside a rack before the data are sent over the
cluster’s core switch.

Accumulator-FullHash This implementation uses the ac-
cumulator interface described in Section 3.2. It builds
a parallel hash table containing one accumulator object
for each unique key in the input dataset. When a new
unique key is encountered a new accumulator object is
created by calling Initialize, and placed in the hash
table. As each record is read from the input it is passed
to the Iterate method of its corresponding accumu-
lator object and then discarded. This method uses
a non-deterministic merge for MG and Accumulator-
FullHash for G2. Storage is proportional to the number
of unique keys rather than the number of records, so
this scheme is suitable for some problems for which
FullSort would exhaust memory. It is also more gen-
eral than either sorting method since it only requires
equality comparison for keys (as well as the ability to
compute an efficient hash of each key). Like FullSort,
this scheme achieves optimal data reduction after the
first stage of computation. While the iterator-based
interface could in principle be used with this strategy
it would frequently be inefficient since it necessitates
constructing a singleton iterator to “wrap” each input
record, creating a new partial aggregate object for that

record, then merging it with the partial aggregate ob-
ject stored in the hash table. We therefore use the ac-
cumulator interface in our experiments. Accumulator-
FullHash is listed as a GroupBy implementation by the
documentation of commercial databases such as IBM
DB2 and recent versions of Oracle.

Accumulator-PartialHash This implementation is simi-
lar to Accumulator-FullHash except that it evicts the
accumulator object from the hash table and emits its
partial aggregation whenever there is a hash collision.
Storage usage is therefore bounded by the size of the
hash table, however data reduction at the first stage
could be very poor for adversarial inputs. We use
Accumulator-FullHash for G2 since we must aggregate
all the records for a particular key before calling Fi-

nalReduce.

Iterator-FullHash This implementation is similar to Full-
Sort in that it accumulates all the records in memory
before performing any aggregation, but instead of ac-
cumulating the records into an array and then sorting
them, Iterator-FullHash accumulates the records into
a hash table according to their GroupBy keys. Once
all the records have been assembled, each group in the
hash table in turn is aggregated and emitted using a
single call to InitialReduce. G1 has similar memory
characteristics to FullSort, however G2 must also use
Iterator-FullHash because the outputs are not partially
sorted. Like Accumulator-FullHash, Iterator-FullHash
only requires equality comparison for the GroupBy
key.

Iterator-PartialHash This implementation is similar to
Iterator-FullHash but, like Accumulator-PartialHash,
it emits the group accumulated in the hash table when-
ever there is a hash collision. It uses bounded storage
in the first stage but falls back to Iterator-FullHash for
G2. Like Accumulator-PartialHash, Iterator-FullHash
may obtain poor data reduction in its first stage.

In all the implementations, the aggregation tree allows
data aggregation according to data locality at multiple levels
(computer, rack, and cluster) in the cluster network. Since
the aggregation tree is highly dependent on the dynamic
scheduling decisions of the vertex processes, it is automat-
ically inserted into the execution graph at run time. This
is implemented using the Dryad callback mechanism that
allows higher level layers such as DryadLINQ to implement
runtime optimization policies by dynamically mutating the
execution graph. For the aggregation tree, DryadLINQ sup-
plies the aggregation vertex and policies, and Dryad auto-
matically introduces an aggregation tree based on run time
information. Aggregation trees can be particularly useful
for PartialSort and PartialHash when the data reduction in
the first stage is poor. They are also very beneficial if the
input dataset is composed of a lot of small partitions.

Note that while the use of merge sort for MG allows Full-
Sort to perform a stateless GroupBy at G2, it has a subtle
drawback compared to a non-deterministic merge. Merge
sort must open all of its inputs at once and interleave reads
from them, while non-deterministic merge can read sequen-
tially from one input at a time. This can have a noticeable
impact on disk IO performance when there is a large number
of inputs.



Although FullSort is the strategy used by MapReduce and
Hadoop, the comparison is a little misleading. The Map
stage in these systems always operates on one single small
input partition at a time, read directly from a distributed file
system. It is never pipelined with an upstream computation
such as a Join with a large data magnification, or run on
a large data partition like the ones in our experiments in
the following section. In some ways therefore, MapReduce’s
FullSort is more like our PartialSort with only computer-
level aggregation since it arranges to only read its input in
fixed-size chunks. In the evaluation section, we simulated
MapReduce in DryadLINQ and compared its performance
with our implementations.

As far as we know, neither Iterator-PartialHash nor Accu-
mulator-PartialHash has previously been reported in the lit-
erature. However, it should be apparent that there are many
more variants on these implementations that could be ex-
plored. We have selected this set to represent both estab-
lished methods and those methods which we have found to
perform well in our experiments.

6. EXPERIMENTAL EVALUATION
This section evaluates our implementations of distributed

aggregation, focusing on the effectiveness of the various op-
timization strategies. As explained in Section 4 all of our
example programs can be executed using the plan shown in
Figure 2. In this plan the stage marked “aggregation tree” is
optional and we run experiments with and without this stage
enabled. When the aggregation tree is enabled the system
performs a partial aggregation within each rack. For larger
clusters this single level of aggregation might be replaced by
a tree. As noted below, our network is quite well provisioned
and so we do not see much benefit from the aggregation tree.
In fact it can harm performance, despite the additional data
reduction, due to the overhead of starting extra processes
and performing additional disk IO. However we also have
experience running similar applications on large production
clusters with smaller cross-cluster bandwidth, and we have
found that in some cases aggregation trees can be essential
to get good performance.

We report data reduction numbers for our experiments.
In each case a value is reported for each stage of the com-
putation and it is computed as the ratio between the un-
compressed size of the total data input to the stage and the
uncompressed size of its total output. We report these val-
ues to show how much opportunity for early aggregation is
missed by our bounded-size strategies compared to the opti-
mal FullSort and FullHash techniques. Our implementation
in fact compresses intermediate data, so the data transferred
between stages is approximately a factor of three smaller
than is suggested by these numbers, which further reduces
the benefit of using an aggregation tree.

6.1 Dryad and DryadLINQ
DryadLINQ [27] translates LINQ programs written using

.NET languages into distributed computations that can be
run on the Dryad cluster-computing system [17]. A Dryad
job is a directed acyclic graph where each vertex is a program
and edges represent data channels. At run time, vertices are
processes communicating with each other through the chan-
nels, and each channel is used to transport a finite sequence
of data records. Dryad’s main job is to efficiently sched-
ule vertex processes on cluster computers and to provide

fault-tolerance by re-executing failed or slow processes. The
vertex programs, data model, and channel data serializa-
tion code are all supplied by higher-level software layers, in
this case DryadLINQ. In all our examples vertex processes
write their output channel data to local disk storage, and
read input channel data from the files written by upstream
vertices.

At the heart of the DryadLINQ system is the parallel com-
piler that generates the distributed execution plan for Dryad
to run. DryadLINQ first turns a raw LINQ expression into
an execution plan graph (EPG), and goes through several
phases of semantics-preserving graph rewriting to optimize
the execution plan. The EPG is a “skeleton” of the Dryad
data-flow graph that will be executed, and each EPG node
is expanded at run time into a set of Dryad vertices running
the same computation on different partitions of a dataset.
The optimizer uses many traditional database optimization
techniques, both static and dynamic. More details of Dryad
and DryadLINQ can be found in [17, 18, 27].

6.2 Hardware Configuration
The experiments described in this paper were run on a

cluster of 236 computers. Each of these computers was run-
ning the Windows Server 2003 64-bit operating system. The
computers’ principal components were two dual-core AMD
Opteron 2218 HE CPUs with a clock speed of 2.6 GHz,
16 GBytes of DDR2 RAM, and four 750 GByte SATA hard
drives. The computers had two partitions on each disk. The
first, small, partition was occupied by the operating system
on one disk and left empty on the remaining disks. The
remaining partitions on each drive were striped together to
form a large data volume spanning all four disks. The com-
puters were each connected to a Linksys SRW2048 48-port
full-crossbar GBit Ethernet local switch via GBit Ethernet.
There were between 29 and 31 computers connected to each
local switch. Each local switch was in turn connected to
a central Linksys SRW2048 switch, via 6 ports aggregated
using 802.3ad link aggregation. This gave each local switch
up to 6 GBits per second of full duplex connectivity. Our re-
search cluster has fairly high cross-cluster bandwidth, how-
ever hierarchical networks of this type do not scale easily
since the central switch rapidly becomes a bottleneck. Many
clusters are therefore less well provisioned than ours for com-
munication between computers in different racks.

6.3 Word Statistics
In this experiment we evaluate the word statistics applica-

tion described in Section 4.1 using a collection of 140 million
web documents with a total size of 1 TB. The dataset was
randomly partitioned into 236 partitions each around 4.2 GB
in size, and each cluster computer stored one partition. Each
partition contains around 500 million words of which about
9 million are distinct. We ran this application using the six
optimization strategies described in Section 5.

Figure 8 shows the elapsed times in seconds of the six
different optimization strategies with and without the ag-
gregation tree. On repeated runs the times were consistent
to within 2% of their averages. For all the runs, the major-
ity (around 80%) of the total execution time is spent in the
map stage of the computation. The hash-based implemen-
tations significantly outperform the others, and the partial
reduction implementations are somewhat better than their
full reduction counterparts.
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Figure 8: Time in seconds to compute word statis-
tics with different optimization strategies.

Reduction strategy No Aggregation Aggregation
FullSort [11.7, 4.5] [11.7, 2.5, 1.8]

PartialSort [3.7, 13.7] [3.7, 7.3, 1.8]
Acc-FullHash [11.7, 4.5] [11.7, 2.5, 1.8]

Acc-PartialHash [4.6, 11.4] [4.6, 6.15, 1.85]
Iter-FullHash [11.7, 4.5] [11.7, 2.5, 1.8]

Iter-PartialHash [4.1, 12.8] [4.1, 6.6, 1.9]

Table 1: Data reduction ratios for the word statistics
application under different optimization strategies.

Table 1 shows the amount of data reduction at each stage
of the six strategies. The first column shows the experimen-
tal results when the aggregation tree is turned off. The two
numbers in each entry represent the data reductions of the
map and reduce stages. The second column shows the re-
sults obtained using an aggregation tree. The three numbers
in each entry represent the data reductions of the map, ag-
gregation tree, and reduce stages. The total data reduction
for a computation is the product of the numbers in its entry.
As expected, using PartialHash or PartialSort for the map
stage always results in less data reduction for that stage
than is attained by their FullHash and FullSort variants.
However, their reduced memory footprint (especially for the
hash-based approaches whose storage is proportional to the
number of records rather than the number of groups) leads
to faster processing time and compensates for the inferior
data reduction since our network is fast.

We compared the performance for this application with
a baseline experiment that uses the execution plan in Fig-
ure 1, i.e. with no partial aggregation. We compare against
FullSort, so we use FullSort as the GroupBy implementation
in the reduce stage. We used the same 236 partition dataset
for this experiment, but there is a data magnification in the
output of the map stage so we used 472 reducers to pre-
vent FullSort from running out of memory. The map stage
applies the map function and performs a hash partition.
The reduce stage sorts the data and performs the Groupby-
Aggregate computation. The total elapsed execution time is
15 minutes. This is a 346 second (60%) increase in execution
time compared to FullSort, which can be explained by the
overhead of additional disk and network IO, validating our
premise that performing local aggregation can significantly
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Figure 9: Time in seconds to compute word popu-
larity with different optimization strategies.

Reduction strategy No Aggregation Aggregation
FullSort NC NC

PartialSort [3.6, 17.3] [3.6, 7.3, 2.3]
Acc-FullHash [11.3, 5.5] [11.3, 2.5, 2.2]

Acc-PartialHash [4.4, 14] [4.4, 6, 2.3]
Iter-FullHash NC NC

Iter-PartialHash [3.8, 16.4] [3.8, 7.7, 2.12]

Table 2: Data reduction ratios for the word popular-
ity application under different optimization strate-
gies. NC indicates that a result was not computed
because the implementation ran out of memory.

improve the performance of large-scale distributed aggrega-
tion. We performed a similar experiment using the plan in
Figure 1 with FullHash in the reduce stage, and obtained
a similar performance degradation compared to using Full-
Hash with partial aggregation.

6.4 Word Popularity
In this experiment we evaluate the word popularity appli-

cation described in Section 4.2 using the same 1 TB dataset
of web documents as in the previous experiment. We again
compared six optimization strategies with and without the
aggregation tree.

Figure 9 and Table 2 show the total elapsed times and data
reductions for each strategy. FullSort and Iterator-FullHash
could not complete because they ran out of memory. While
the input corpus was the same as for the experiment in
Section 6.3, this application retains the URL of each doc-
ument along with its count and this substantially increases
the required storage. Accumulator-FullHash is able to com-
plete because it only stores the partially aggregated values of
the groups, not the groups themselves. Again, the aggrega-
tion tree achieved a considerable reduction in the data that
had to be transmitted between racks to execute the final
stage, but gained little in terms of overall performance. The
accumulator interfaces perform better, and Accumulator-
PartialHash is a little faster than Accumulator-FullHash.

6.5 PageRank
In this experiment we evaluate the PageRank computation

described in Section 4.3 using a moderate sized web graph.
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Figure 10: Time in seconds to compute PageRank
for one iteration with the six optimization strategies.

Reduction strategy No Aggregation Aggregation
FullSort NC NC

PartialSort [1.28, 4.1] [1.28, 2.85, 1.4]
Acc-FullHash [2.2, 2.4] [2.2, 1.8, 1.3]

Acc-PartialHash [1.7, 3.1] [1.7, 2.4, 1.3]
Iter-FullHash NC NC

Iter-PartialHash [1.75, 3] [1.75, 2.4, 1.25]

Table 3: Data reductions of pagerank with the six
optimization strategies.

The dataset consists of about 940 million web pages and
occupies around 700 GB of storage. For this experiment the
dataset was hash partitioned by URL into 472 partitions
of around 1.35 GB each, with each cluster computer storing
two partitions.

Figure 10 shows the elapsed times in seconds for run-
ning a single iteration of PageRank using our six optimiza-
tion strategies. On repeated runs the times were consistent
to within 5% of their averages. This application demon-
strates a scenario where a join and a distributed reduction
are pipelined together to avoid writing the output of the
Join to intermediate storage. The number of records output
by the Join is proportional to the number of edges in the
graph, and is too large to fit in memory so neither FullSort
nor Iterator-FullHash can complete. However the number
of groups is only proportional to the number of pages, so
Accumulator-FullHash succeeds. Table 3 shows the data re-
duction of the various stages of the computation which is
lower than that of the previous two examples since the av-
erage number of elements in each group is smaller.

Figure 11 shows the elapsed times in seconds for running
an application that performs three iterations of the PageR-
ank computation. We only report results with the aggrega-
tion tree disabled since it was shown not to be beneficial in
the one-iteration case. In all cases the total running time
is slightly less than three times that of the corresponding
single-iteration experiment.

6.6 Comparison with MapReduce
This section reports our performance comparison with

MapReduce. We simulated two possible implementations
of MapReduce (MapReduce-I and MapReduce-II) in Dryad-

0

500

1000

1500

2000

2500

3000

3500

FullSort PartialSort Accumulator 
FullHash

Accumulator 
PartialHash

Iterator 
FullHash

Iterator 
PartialHash

To
ta

l e
la

ps
ed

 ti
m

e 
in

 s
ec

on
ds

 

No Aggregation Tree

Figure 11: Time in seconds to compute PageRank
for three iterations with the six optimization strate-
gies.

LINQ. The implementations differ only in their map phase.
MapReduce-I applies the Map function, sorts the resulting
records, and writes them to local disk, while MapReduce-
II performs partial aggregation on the sorted records before
outputting them. Both implementations perform computer-
level aggregation after the map stage, and the reduce stage
simply performs a merge sort and applies the reduce func-
tion. We evaluated the two implementations on the word
statistics application from Section 6.3, where the input data-
set was randomly partitioned into 16000 partitions each ap-
proximately 64 MB in size. Each implementation executed
16000 mapper processes and 236 reducer processes.

The two MapReduce implementations have almost iden-
tical performance on our example, each taking just over
700 seconds. Comparing to Figure 8, it is clear that they
were outperformed by all six implementations described in
Section 5. The MapReduce implementations took about
three times longer than the best strategy (Accumulator-
PartialHash), and twice as long as PartialSort which is the
most similar to MapReduce as noted in Section 5. The bulk
of the performance difference is due to the overhead of run-
ning tens of thousands of short-lived processes.

6.7 Analysis
In all experiments the accumulator-based interfaces per-

form best, which may explain why this style of interface was
chosen by the database community. The implementations
that use bounded memory at the first stage, but achieve
lower data reduction, complete faster in our experiments
than those which use more memory, but output less data,
in the first stage. As discussed above, this and the fact
that the aggregation tree is not generally effective may be a
consequence of our well-provisioned network, and for some
clusters performing aggressive early aggregation might be
more effective.

Based on these experiments, if we had to choose a single
implementation strategy it would be Accumulator-FullHash,
since it is faster than the alternatives for PageRank, com-
petitive for the other experiments, and achieves a better
early data reduction than Accumulator-PartialHash. How-
ever since it does not use bounded storage there are work-



loads (and computer configurations) for which it cannot be
used, so a robust system must include other strategies to fall
back on.

The MapReduce strategy of using a very large number
of small input partitions performs substantially worse than
the other implementations we tried due to the overhead of
starting a short-lived process for each of the partitions.

7. RELATED WORK
There is a large body of work studying aggregation in

the parallel and distributed computing literature. Our work
builds on data reduction techniques employed in parallel
databases, cluster data-parallel computing, and functional
and declarative programming. To our knowledge, this pa-
per represents the first systematic evaluation of the pro-
gramming interfaces and implementations of large scale dis-
tributed aggregation.

7.1 Parallel and Distributed Databases
Aggregation is an important aspect of database query op-

timization [7, 15]. Parallel databases [12] such as DB2 [4],
Gamma [11], Volcano [14], and Oracle [9] all support pre-
aggregation techniques for SQL base types and built-in ag-
gregators. Some systems such as Oracle also support pre-
aggregation for user-defined functions. However, when the
aggregation involves more complex user-defined functions
and data types, the database programming interface can be-
come substantially more difficult to use than DryadLINQ.
Databases generally adopt accumulator-based interfaces. As
shown in our evaluation, these consistently outperform the
iterator interfaces used by systems like MapReduce.

7.2 Cluster Data-Parallel Computing
Distributed execution infrastructures for large scale data

processing have proliferated recently with systems such as
MapReduce [10], Dryad [17] and Hadoop [3]. All of these
systems implement user-defined distributed aggregation, how-
ever their interfaces for implementing pre-aggregation are
either less flexible or more low-level than that provided by
DryadLINQ. No previously published work has offered a de-
tailed description and evaluation of their interfaces and im-
plementations for this important optimization. The work
reported in [19] formalizes MapReduce in the context of the
Haskell functional programming language.

7.3 Functional and Declarative Parallel Pro-
gramming

Our work is also closely related to data aggregation tech-
niques used in functional and declarative parallel program-
ming languages [8, 22, 26, 5]. The formalism of algorithmic
skeletons underpins our treatment of decomposable func-
tions in Sections 2 and 3.

The growing importance of large scale data-intensive com-
putation has seen the introduction of a number of distributed
and declarative scripting languages, such as Sawzall [21],
SCOPE [6], Pig Latin [20] and HIVE [1]. Sawzall supports
user-defined aggregation using MapReduce’s combiner opti-
mization. SCOPE supports pre-aggregation for a number of
built-in aggregators. Pig Latin supports partial aggregation
for algebraic functions, however as explained in Section 3,
we believe that the programming interface offered by Dryad-
LINQ is cleaner and easier to use than Pig Latin.

8. DISCUSSION AND CONCLUSIONS
The programming models for MapReduce and parallel

databases have roughly equivalent expressiveness for a sin-
gle MapReduce step. When a user-defined function is eas-
ily expressed using a built-in database language the SQL
interface is slightly simpler, however more complex user-
defined functions are easier to implement using MapReduce
or Hadoop. When sophisticated relational queries are re-
quired native MapReduce becomes difficult to program. The
Pig Latin language simplifies the programming model for
complex queries, but the underlying Hadoop platform can-
not always execute those queries efficiently. In some ways,
DryadLINQ seems to offer the best of the two alternative
approaches: a wide range of optimizations; simplicity for
common data-processing operations; and generality when
computations do not fit into simple types or processing pat-
terns.

Our formulation of partial aggregation in terms of decom-
posable functions enables us to study complex reducers that
are expressed as a combination of simpler functions. How-
ever, as noted in Section 4.2, the current DryadLINQ system
is not sophisticated enough even to reason about simple op-
erator compositions such as OrderBy.Take. We plan to add
an analysis engine to the system that will be able to infer the
algebraic properties of common operator compositions. This
automatic inference should further improve the usability of
partial aggregation.

We show that an accumulator-based interface for user-
defined aggregation can perform substantially better than
an iterator-based alternative. Some programmers may, how-
ever, consider the iterator interface to be more elegant or
simpler, so may prefer it even though it makes their jobs
run slower. Many .NET library functions are also defined
in the iterator style. Now that we have implemented both
within DryadLINQ we are curious to discover which will be
more popular among users of the system.

Another clear finding is that a system should choose be-
tween a variety of optimization schemes when picking the
execution plan for a particular computation, since differ-
ent schemes are suited to different applications and clus-
ter configurations. Of the three systems we consider, cur-
rently only parallel databases are able to do this. Pig Latin
and DryadLINQ could both be extended to collect statistics
about previous runs of a job, or even to monitor the job as
it executes. These statistics could be used as profile-guided
costs that would allow the systems’ expression optimizers
to select between aggregation implementations, and our ex-
periments suggest this would bring substantial benefits for
some workloads.

Finally, we conclude that it is not sufficient to consider the
programming model or the execution engine of a distributed
platform in isolation: it is the system that combines the
two that determines how well ease of use can be traded off
against performance.
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