
Bound Analysis using Backward Symbolic Execution

Sumit Gulwani
Microsoft Research
Redmond, WA, USA

sumitg@microsoft.com

Sudeep Juvekar
∗

UC-Berkeley
Berkeley, CA, USA

sjuvekar@eecs.berkeley.edu

ABSTRACT
A fundamental problem that arises frequently in quantita-
tive program analysis (e.g., resource usage analysis) is that
of computing an upper bound for a given arithmetic expres-
sion at a given program location in terms of the procedure
inputs. We refer to this problem as bound analysis. The
problem is theoretically as well as practically challenging
because of variable updates inside loops and presence of vir-
tual methods.

Our solution to the bound analysis problem involves an
inter-procedural (goal-directed) backward analysis built on
top of an SMT solver. The analysis has the advantage of
dealing with arbitrary operators that are understood by the
underlying SMT solver. The analysis uses novel proof-rule
based non-iterative technique to reason about updates inside
loops, which makes it quite scalable. It uses user-defined ab-
stract implementations to trace back across virtual methods
arising from use of interfaces or extensible types.

We have implemented the analysis inside the SPEED tool,
which computes symbolic computational complexity bounds
for procedures. Our analysis is used to translate bounds on
number of loop iterations and cost of method calls to respec-
tive bounds in terms of procedure inputs. We have evaluated
the precision and scalability of the analysis over 4 .NET as-
semblies that together contained thousands of methods and
resulted in 9152 queries to the analysis. The analysis was
able to answer 90% of the queries on an average of 0.23
seconds per query.

1. INTRODUCTION
The problem of bound analysis refers to the problem of

computing an upper bound on a given arithmetic expres-
sion at a given program location in terms of the inputs of
the enclosing procedure. Bound analysis has applications
in the upcoming area of quantitative program analysis (as
opposed to boolean program analysis), where the goal is to

∗The author performed this work during a summer intern-
ship at Microsoft Research.

Copyright is held by Microsoft Research. Published Oct 2009. Technical
Report Number MSR-TR-2009-156. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full citation
on the first page.

generate some quantitative information about the program
or the data manipulated by the program.

An important class of quantitative program analyses are
resource usage analyses [2], where the goal is to compute
bounds on different kinds of resources consumed by a pro-
gram such as time, memory, network bandwidth, and power.
Computing bounds on such resources is important because
of economic incentives or because the program might be run-
ning in a resource constrained environment (e.g., real-time
systems or embedded systems). Most resource usage analy-
ses (such as [1, 11, 10, 12]) compute some form of ranking
functions for loops to obtain bounds. Since computation of
ranking functions is usually a local analysis, the bounds ob-
tained are arithmetic expressions expressed in terms of vari-
ables live at the beginning of the loop. Translating these
arithmetic expressions in terms of the procedure inputs re-
quires solving the bound analysis problem that is not for-
mally addressed by these analyses. We consider this appli-
cation in our experiments to demonstrate the effectiveness
of our solution.

Another example of quantitative program analyses are
analyses for computing bounds on numerical properties of
data manipulated by the program, as in quantitative infor-
mation flow analysis [15] for bounding the amount of secret
data leaked by the program, or robustness analysis [5] for
bounding the amount of uncertainty/error propagated dur-
ing computation because of uncertainty/error in program
inputs. Bound analysis can also serve as a key subroutine
for these quantitative program analyses that can compute
bounds in terms of local variables using domain-specific tech-
niques (akin to ranking function computation for resource
usage analysis), but require solving the bound analysis prob-
lem to translate the bounds in terms of procedure inputs.

In this paper, we address the problem of bound analysis
by developing an inter-procedural backward symbolic exe-
cution engine. Our analyzer takes a program location and
an arithmetic expression involving local program variables
at that program location. It returns a set of expressions
only involving program inputs and any reachable heap ob-
ject from them, that upper bound the given expression at
the given program location. The use of backward analy-
sis is motivated by the problem domain, which requires a
goal-directed analysis. Our backward analysis is more scal-
able than a forward symbolic execution like [21, 9] because
it doesn’t explore unnecessary program paths (i.e., paths
not leading to location of interest) and unnecessary regions
of code (i.e., assignments that don’t determine the bound).
Scalability of our approach is demonstrated by our experi-

Ex1(uint z1,z2)
1 i := 0;
2 n := z2;
3 while (i++ < z1)
4 if (nondet())

5 n := n+ 2;
6 t := n;

Ex2(uint z1,z2)
1 i := 0;
2 n := z2; flag := 1;
3 while (i++ < z1)
4 if(flag ∧ nondet())

5 n := n+ 2; flag := 0;
6 t := n;

Ex3(uint z1,z2)
1 i := 0;
2 n := 0;
3 while (i++ < z1)
4 j := 0;
5 while (j++ < z2)
6 n := n+ 1;
7 t := n;

Ex4(uint z1,z2)
1 i := 0;
2 n := 0;
3 while (i++ < z1)
4 j := 0; n := 0;
5 while (j++ < z2)
6 n := n+ 1;
7 t := n;

Ex5(uint z1, z2)
1 i := 0;
2 n := 0;
3 while (i++ < z1)
4 j := 0; m := n+ 1;
5 while (j++ < z2)
6 m := m+ 1;
7 n := m;

8 t := n;

Iterations(5, 2) ≤
z1 − i

Iterations(5, 2) ≤ 1
Iterations(6, 2) ≤
(z1 − i)× z2

Iterations(6, 4) ≤
z2 − j

Iterations({4, 6}, 2) ≤
(z1 − i)× (1 + z2)

t ≤ z2 + 2z1 t ≤ z2 + 2 t ≤ z1 × z2 t ≤ z2 t ≤ z1 × (1 + z2)

Figure 1: Examples of skeletons from .Net code-base that update the variable to be traced backwards (variable
n in these examples) inside loops. nondet() refers to non-deterministic abstraction of a conditional. These
examples illustrate the precision of our proof rule for loops for computing an upper bound on a variable.

ments, which explore across hundreds of procedures having
∼ 250 execution paths.

A key technical challenge in bound analysis is to reason
about variables that get updated inside loops. A common
technique to reason about loops is to use iterative methods
as in data-flow analyses [14], abstract interpretation [6] or
model checking [8]. Data-flow analyses are relatively more
scalable, but less precise than abstract interpretation and
model checking. In contrast, we present a novel proof-rule
based technique that allows for performing precise as well as
scalable reasoning. Our proof-rule based technique captures
the common design pattern wherein numerical variables that
get updated inside loops either increase monotonically or
decrease monotonically. Such a design pattern can be auto-
matically identified by making an SMT (SAT modulo the-
ory) query. Under such a design pattern, the value of the
variable before and after the loop can be related using the
number of visits to the program locations where the variable
is updated inside loops. The number of such visits can be
computed using a variety of existing techniques (e.g., those
based on counter instrumentation [11], control-flow refine-
ment [10], or ranking function based approach [12]). The ef-
fectiveness of our proof-rule based approach is demonstrated
by our experiment results, wherein about 80% percentage of
loops could be reasoned using the proof rules. Among some
of the other technical challenges that we address in our back-
ward symbolic execution are incorporating information from
conditional guards and virtual call resolution.

A key practical challenge in bound analysis is to express or
compute bounds when they depend on arbitrary heap loca-
tions or on implementations of (unavailable) method calls as-
sociated with input objects with interface/extensible types.
In the latter case, we propose that the user provides some
abstract implementations of such method calls. We then ad-
dress these challenges using our notion of abstract bound ex-
pressions that provide some meaningful information in such
circumstances. Our language of abstract bound expressions
extends the program expression language by providing some
constructs for referring to abstract heap locations or lvalues
such as access of a given array at an unknown index, derefer-
ence of a given field in an unknown object, or reference to an
unknown object but one that is reachable from a given object
via a certain set of fields. The abstract bound expressions
also allow for expressing bounds conditional on validity of
user-provided abstract implementations of method calls as-
sociated with interface/extensible types. The effectiveness
of these abstract bounds is demonstrated by our experimen-

tal results, wherein 90% percentage of bounds that would
have otherwise been undefined, could use such abstract con-
structs that provided more meaningful information.

We have implemented our solution to the bound analysis
problem as part of the SPEED tool for computing symbolic
computational complexity bounds for procedures in user-
written code. Such a tool can help programmers understand
the performance characteristics of their code as well as that
of unfamiliar APIs. The SPEED tool already implements
algorithms to compute symbolic local bound on the num-
ber of iterations of a loop, but this bound is expressed in
terms of variables that are live immediately before the loop.
We translate this local bound to a bound in terms of the
procedure inputs by using the bound analysis presented in
this paper. Our bound analysis can successfully trace back
94% percent of a total of 9152 queries on an average of 0.23
seconds per query.

Contributions and Organization.
∙ We present a parametrized solution to the bound anal-

ysis problem (formally described in Section 3.1). Our
solution is parametrized by a reaching definition analy-
sis (Section 3.2) and an iteration count analysis (Sec. 3.3).
This allows use of off-the-shelf technology and easy
leverage of future improvements in these analyses.

∙ We introduce the notion of abstract bound expression
for expressing results of bound analysis (Section 4).
This helps alleviate the theoretical challenge of un-
decidability of bound analysis and addresses practical
challenges of dealing with arbitrary heap locations and
use of interfaces/inheritance in object-oriented languages.

∙ We describe the core backward symbolic execution for
bound analysis in Section 5 and show how to incorpo-
rate information from conditional guards in Section 7
and perform virtual call resolution in Section 8.

∙ We present a proof rule based technique to reason
about (bound of variables that get updated inside)
loops. This involves leveraging power of SMT solvers
and understanding of design patterns to allow the sym-
bolic execution engine to perform a precise reasoning of
loops in an efficient non-iterative manner (Section 6).

∙ We present experimental results illustrating the scal-
ability and effectiveness of various components of our
solution to the bound analysis problem (Section 9).

2. MOTIVATING EXAMPLES
In this section, we describe some examples from .Net code

base that illustrate the key technical and practical challenge
in bound analysis.

2.1 Technical Challenge: Updates inside loops
The key technical challenge in bound analysis arises when

the bound depends on variables that are updated inside
loops. Consider the procedures shown in Figure 1. Com-
puting an upper bound on t at the end of each of these
procedures requires computing an upper bound on variable
n, which is updated inside loops.

Computing an upper bound on n for each of these exam-
ples is challenging for various reasons. Existing techniques
for computing numerical invariants, which are based on in-
ductive loop invariant generation are specialized to address-
ing only a specific challenge and/or do not scale to large pro-
grams. The simplest example in Figure 1 is Procedure Ex4,
where the bound on n can obtained after establishing the
inductive loop invariant n ≤ j. Such invariants can be au-
tomatically established by using the abstract-interpretation
based analysis over octagon abstract domain [17], which con-
sists of inequality relationships between two variables with
unit coefficients. This analysis scales well to large programs;
however, it cannot be used to discover the required invari-
ants in any of the other procedures. The procedure Ex1 re-
quires establishing the inductive loop invariant n− z2 ≤ 2i,
which requires performing abstract interpretation over the
polyhedral domain [7], which can compute arbitrary linear
inequality relationships among multiple program variables.
The polyhedral domain is not a good choice because it does
not scale to large programs and is restricted to discovering
only linear relationships. Procedure Ex2 requires perform-
ing a path-sensitive analysis that combines boolean reason-
ing with numerical reasoning [13], (to establish the inductive
loop invariant flag ⇒ n = 0 and ¬flag ⇒ n = 2); how-
ever such an analysis is inherently expensive. Procedures
Ex3 and Ex5 both require non-linear invariant generation
techniques [20] that do not scale beyond small programs.

In contrast, our proof-rule based technique uniformly ad-
dresses the challenges of path-sensitivity, non-linearity, pres-
ence of multiple variables in a scalable manner. For exam-
ple, in Ex3, we first establish that along all paths through
the inner loop, the value of n increases by at most 1. Such
a check can be done by transforming the loop update into
an SMT query and using existing SMT solvers like Z3 [24].
The analysis then uses existing techniques [12, 10] to com-
pute bound on the total number of visits to location 6 (the
location where n is updated). This bound is denoted by
Iterations(6, 2) and is computed to be the value of (z1 −
i) × z2 at program location 2. Finally, our analysis com-
putes bound on n at location 7 as the sum of the bound on
n after the assignment n := 0 at location 3 and the value of
Iterations(6, 2)×1, which is computed to be z1×z2. Same
proof rule can be applied to all loops in Figure 1. We have
also developed similar proof rules for monotonic-decrease
and assignment to objects inside loops. Our observation is
that our proof rules were sufficient to reason about 80% of
the loops encountered on our benchmark programs.

2.2 Practical Challenge: Heap and Interfaces
The key practical challenge in bound analysis arises when

the bound depends on heap data or on interface methods

Ex6(uint z, Array<int> A,
List L1)

1 n := 0; i := 0;
2 L := L1;
3 while (i++ < z)
4 if (nondet())

5 n := n+ 1;
6 L := L.next;
7 t1 := A[n];
8 t2 := L.data

Ex7(ICollection<int> C,
Array<int> A)

1 n := C.Count; i := 0;
2 while (i++ < A.length)
3 n := n+ 1;
4 C.Add(A[i]);
5 t1 := C.Count;
6 t2 := n;

t1 ≤ A[⊥]
t2 ≤ R(L1, {next}).data

t1≤Cond(C.count+A.length)
t2≤C.count +A.length

Figure 2: Examples of skeletons from .Net code-
base that motivate the need for an abstract bound
expression.

whose code is not available. The former is challenging be-
cause we require a language to refer to arbitrary heap lo-
cation, especially when it cannot be determined statically.
The latter is challenging because we do not have the source
code available.

Consider the procedure Ex6 in Figure 2. Observe that
bound on t1 depends on the contents of array A and bound
on t2 depends on the data field of some element of list
L. We propose representing these bounds using abstract
bound expressions A[⊥] (denoting any index of the array)
and R(L, {next}).data (denoting the data field of any ob-
ject object reachable from L by following the next field) as
opposed to representing it by ⊥ (which denotes undefined).

Consider the procedure Ex7 in Figure 2 that uses the
ICollection interface for Collections, a commonly used data-
structure in several object-oriented languages. The proce-
dure copies contents of input array A to collection C. The
challenge in computing bounds in such procedures is the
absence of source code for methods such as Add. We pro-
pose using user-defined abstract implementations as a sub-
stitute for such methods. Under the abstraction that the Add
method increases the Count field of the receiver object by at
most 1, we can compute a bound of C.Count + A.length
for t1. Since the validity of this bound is conditional on
the concrete implementation of Add satisfying the abstract
semantics provided by the user, we denote this bound as
Cond(C.Count + A.length). However, note that the bound
on t2 does not rely on this assumption.

3. PRELIMINARIES

3.1 Problem Statement
Given an lvalue t and a program location �, the goal is to

compute a set of symbolic expressions in terms of procedure
inputs that upper bound any value that t can take at loca-
tion �. A procedure consists of assignment statements and
conditional guards of the following form:

Assignment Statement � : t := e

Guard e1 relop e2

where label � denotes a program location, relop denotes
some relational operator, and the expressions e and lvalues
t have the following syntax with the usual semantics.

e := c ∣ t ∣ e1 ± e2 ∣ op(e1, e2) ∣ x.m(t1, t2) ∣ new(�)

t := x ∣ x[e] ∣ x.f

Ex8(C x, C y
Array<int> A,
uint z)

1 x.f := A[0];
2 i := z;
3 if (nondet())

4 A[i] := z;
5 x := y;
6 else

7 i := z + 4;
8 t := x.m();
9 y.f := z;

10 t1 := A[i];
11 t2 := x.f ;
12

Ex9(uint z, uint[] A,
List L, ListL′)

1 n := 0; i := 0;
2 while (i++ < z)
3 if (nondet())

4 n := n+ 1;
5 if (nondet())

6 L := L.next;
7 t1 := n+ 1;
8 t2 := 100− n;
9 t3 := A[n];

10 t4 := L.data;
Bounds computed by our analysis:
t1 ≤ z + 1, t2 ≤ 100, t3 ≤ A[⊥],
t4 ≤ R(L, {next}).data

Figure 3: Two examples (obtained from combin-
ing code snippets from .Net code base). Ex8 il-
lustrates different types of Definitions for an lvalue
(Section 3.2). Ex9 illustrates the significance of dif-
ferent tracing modes (even if the final goal is to com-
pute an upper bound) and their corresponding proof
rules for loops.

Above, c denotes a constant, x denotes a variable, x[e]
denotes an array dereference, x.f denotes a field dereference,
op denotes an operator other than addition and subtraction,
x.m(t1, t2) denotes a method invocation1 to method m of
class that denotes the runtime type of object x, and new(�)
returns a fresh object of class � .

3.2 Reaching Definitions
We use the notation Definitions(ℓ, �) to denote the set

of immediate/reaching definitions that may determine the
value of ℓ at location �. A definition d is either a labeled
assignment statement �′ : ℓ′ := e along with an associated
type Simple, Index, Object and SideEffect, or simply has
the type Input, with the following semantics.

∙ If d is of the form Input, then ℓ at procedure entry is
same as ℓ at location �.

∙ If d is of the form Simple(�′ : ℓ′ := e), then ℓ′ at
location �′ is same as ℓ at location �.

∙ If d is of the form Index(�′ : ℓ′ := e), then ℓ at location
�′ is equal to some index expression in ℓ at location �.

∙ If d is of the form Object(�′ : ℓ′ := e), then ℓ at
location �′ is equal to some object dereference in ℓ at
location �.

∙ If d is of type SideEffect(�′ : ℓ′ := o.m(ℓ1, . . . , ℓn)),
then the call to method o.m may modify ℓ.

Note that if ℓ is a scalar variable, then all definitions in
Definitions(ℓ, �) are of type Input or Simple.

Example 1. Consider procedure Ex8 in Figure 3. We
have Definitions(t1, 12) = {Simple(4 : A[i] := z), Index(7 :
i := z + 4)}, and Definitions(t2, 12) = {Simple(1 : x.f :=
A[0]), Simple(5 : x := y), Object(9 : y.f := z), SideEffect(8 :
t := x.m())}. The definition Object(9 : y.f := z) is in-
cluded because y may-alias with x.
1We assume, without loss of generality, that a method takes
two arguments. Our theory can be trivially extended to any
method taking arbitrary number of arguments.

We classify any definition d for (ℓ, �) as either inductive or
non-inductive depending on whether or not it flows to ℓ along
a back-edge. Let DefsInd(ℓ, �) and DefsInit(ℓ, �) denote
the disjoint partition of Definitions(ℓ, �) into inductive and
non-inductive definitions respectively.

Example 2. For procedure Ex5 in Figure 1, we have:

Definitions(n, 4) = {Simple(1 : n := 0;),

Simple(7 : n := m;)}
DefsInit(n, 4) = {Simple(1 : n := 0;)}
DefsInd(n, 4) = {Simple(7 : n := m;)}

Computation of Definitions can be done by using any off-
the-shelf alias analysis.

3.3 Iteration Count
Let P1 be some set of program locations inside a loop, and

P2 be some set of program locations outside that loop. Let
Iterations(P1, P2) denote an upper bound on the number
of times any program location P1 is visited in between any
two visits to some location in P2, expressed as a function of
variables that are live at the header of outermost loop that
contains all locations in P1, but none in P2. We overload the
notation Iterations(�1, �2) to denote Iterations({�1}, {�2}).
Iterations(P1, P2) can be computed by using the pro-

cedure described in [12] for computing an upper bound on
the number of times a given program location � is visited
in terms of variables that are live at the entry to the out-
ermost loop containing �. Let’s refer to this procedure as
Visits(�). We can compute Iterations(P1, P2) using the
procedure Visits as follows. First, we transform the proce-
dure by deleting the outgoing edges E from program loca-
tions in set P2 and adding jumps from the procedure entry
point to the targets of edges E. (This has the effect of delet-
ing all paths that go between any two (possibly same) loca-
tions in set P1 after visiting any location in set P2.) Then,
we simply sum up Visits(�1) for all �1 ∈ P1.

Example 3. The second row in Figure 1 gives examples
of Iterations(�1, �2) for respective program locations �1

and �2 for procedures Ex1 to Ex5. Since �2 is located
outside the outermost loop containing �1 for the procedures
Ex1,Ex2, and Ex3, Iterations(�1, �2) is same as Visits(�1)
for each of these procedures. For the procedure Ex4, com-
putation of Iterations(6, 4) essentially involves computing
Visits(6) in Ex4 after removing the outer loop.

4. ABSTRACT BOUND
In this section, we describe our language for bound ex-

pressions. Since the bound can depend on an unbounded
number of memory locations that are reachable from the in-
puts of a procedure, we cannot simply use the expression
language e of the program to represent bounds.

We propose the following abstract language of expressions
� for representing bounds. The language � is similar to
that of the program expression language except that it uses
abstract lvalues ℓ and two new constructs ⊥ and Cond(�).
The abstract lvalue ℓ is similar to standard lvalues t except
that it uses one new construct R(ℓ, F).

� := c ∣ ℓ ∣ �1 ± �2 ∣ op(�1, �2) ∣ ⊥ ∣ Cond(�)

ℓ := x ∣ ℓ[�] ∣ ℓ.f ∣ R(ℓ, F)

⊥ denotes arbitrary content. It is used as a bound ex-
pression whenever the analysis fails to compute a bound.
However, more significantly, the recursive construction of
abstract lvalues using ⊥ allows for providing more meaning-
ful information. For example, A[⊥] denotes content at an
arbitrary location in array A, ⊥[0] denotes the element at
the first location of an arbitrary array, and ⊥.f denotes the
f field of an arbitrary object.
R(ℓ, F) denotes an arbitrary object that is reachable from

ℓ by applying zero or more field dereferences from set F of
fields. Note that R(ℓ, {f}) provides more meaningful infor-
mation that ⊥.f .

To enable bound computation when a procedure has an
input with a polymorphic type T , (e.g., an interface or a base
class that can be extended), we allow the user to optionally
define abstract implementations of methods associated with
the polymorphic type. These abstract implementations de-
fine how they update fields of various input objects as well
as the receiver. Cond(�) either denotes � or ⊥ conditional
on whether or not the user-provided abstract implementa-
tion of the methods associated with interfaces or extensible
base classes is consistent with the concrete implementations
of those methods.

Example 4. Consider the interface ICollection defined
by the .Net Framework and widely used in .Net programs.
The ICollection Interface declares methods Add, Remove,
and Find, and a read-only field (declared as a property)
Count. It is reasonable to define the following abstract im-
plementations regarding updates to the read-only field Count

by the various ICollection methods.

Clear() : {this.Count := 0; }
Add(ℓ) : {if (nondet()){this.Count := this.Count + 1; }}
Remove(ℓ) : {if (nondet()){this.Count := this.Count− 1; }}
Contains(ℓ) : {skip; }

Besides .Net Framework, other well-known examples of col-
lections frameworks are collections classes are Java Frame-
work, C++ Standard Template Library, and Smalltalk’s col-
lection hierarchy.

5. BACKWARD SYMBOLIC EXECUTION
In this section, we describe the core functionality of our

backward symbolic execution engine for tracing expressions
across definitions that are non-inductive and are different
from virtual method calls. We address the issue of tracing
across definitions that are inductive or those that are virtual
method calls in Section 6 and Section 8 respectively.

5.1 Tracing Modes
The symbolic execution engine traces an expression at a

program location backward in one of four possible modes.

∙ U : Upper Bound mode. The goal here is to compute
an upper bound on the expression being traced back-
wards.

∙ L: Lower Bound mode. The goal here is to compute a
lower bound on the expression being traced backwards.

∙ E: Equality mode. The goal here is to trace an ex-
pression backwards precisely.

∙ O: Object Equality Mode. A special case of equality
mode where the value being traced back is an object
(as opposed to a scalar value).

The difference in these modes show up primarily in our strat-
egy for tracing back across loops. We use the notations
Bpol(ℓ, �) and Bpol(e, �) to denote the result obtained by
tracing lvalue ℓ and expression e respectively, at location �
backwards in mode pol.

5.2 Tracing Of Expressions
The backward symbolic execution engine traces expres-

sions backward by tracing the constituent lvalues backward.
For tracing arithmetic expressions built using addition or

subtraction operators, or for tracing return values of method
calls, the symbolic execution engine passes down the appro-
priate contextual information concerning whether an upper
bound, lower bound, or equivalent expression is to be com-
puted. For tracing across a procedure, the symbolic execu-
tion engine first traces the returned value of the procedure
from its exit location to the procedure entry. The result-
ing expression, however, is in terms of formal parameters of
the called procedure. The symbolic execution engine then
performs a syntactic transformation to replace formal argu-
ments in the expression by actual procedure parameters.

Bpol(e1+e2, �) = {�1+�2 ∣ �1∈Bpol(e1, �), �2∈Bpol(e2, �)} (1)

BU (e1−e2, �) = {�1−�2 ∣ �1 ∈ BU (e1, �), �2 ∈ BL(e2, �)} (2)

BL(e1 − e2, �) = {�1 − �2 ∣ �1 ∈ BL(e1, �), �2 ∈ BU (e2, �)}
BE(e1 − e2, �) = {�1 − �2 ∣ �1 ∈ BE(e1, �), �2 ∈ BE(e2, �)}
Bpol(o.m(ℓ1, ℓ2), �) = {� ∣ � ∈ Bpol(�1, �),

�1 ∈ Bpol(r, �exit)[ℓ1/z1, ℓ2/z2]}

Above �exit denotes the exit location of method m, r de-
notes the return variable of method m, z1, z2 denote the
formal parameters of method m and [ℓ1/z1, ℓ2/z2] denotes
replacement of z1 by ℓ1 and z2 by ℓ2 respectively.

For expressions that use other operators, the symbolic ex-
ecution engine drops the contextual information and traces
using the criterion of exact equality.

Bpol(op(e1, e2), �) = {op(�1, �2) ∣ �1∈BE(e1, �), �2∈BE(e2, �)}
Bpol(c, �) = {c}

Simplification: As described above, we trace an expres-
sion by tracing each of its lvalues individually. This individ-
ual tracing helps reducing the path space for exploration
However, computation of Bpol(e, �) in equation 1 requires
one to combine the sets obtained by tracing individual lval-
ues and result in an explosion in set size. Our backward
symbolic execution uses a custom simplifier to simplify the
resulting set based on contextual information and mode un-
der which tracing is done. When pol = U , we return the
set of maximal expressions out of the total set of expressions
obtained from the analysis. This set of maximal expressions
can be found by issuing a simple SMT query. Similarly, when
pol = L, our analysis returns the set of minimal expressions
out of the total set of expressions. Our experiments have
shown that this simplification helps in significantly reducing
the sizes of resulting expressions.

5.3 Tracing Of Lvalues
Given a definition d ∈ Definitions(ℓ, �), we overload the

notation Bpol(ℓ, �, d) to denote Bpol(ℓ, �) under the assump-

tion that d is the update that sets value of ℓ. If all definitions
in Definitions(ℓ, �) are non-inductive, then the symbolic
engine traces each definition individually as follows.

Bpol(ℓ, �) = {� ∣ � ∈ Bpol(ℓ, �, d), d ∈ Definitions(ℓ, �)} (3)

The backward symbolic execution traces back across any
non-inductive non-SideEffect definition as follows.

Bpol(ℓ, �, Input) = {ℓ}
Bpol(ℓ, �, Simple(�′ : ℓ := e)) = Bpol(e, �

′)

Bpol(ℓ, �, Index(�′ : ℓ′ := e)) = {� ∣ � ∈ Bpol(ℓ[�1/ℓ
′], �′),

�1 ∈ BE(e, �′)} (4)

Bpol(ℓ, �, Object(�′ : ℓ′ := e)) = {� ∣ � ∈ Bpol(ℓ[�1/ℓ
′], �′),

�1 ∈ BO(e, �′)} (5)

BE and BO trace back array indices and objects respectively
in exactly the same manner as BU except for inductive def-
initions. Hence, otherwise indicated, the definitions for BE

and BO are supposed to be identical to that of BU .

Example 5. Consider the example shown in Figure 3.
Computing an upper bound on t1 requires computing an up-
per bound on n after the loop (Eq. 1). Computing an upper
bound on t2 requires computing a lower bound on n after
the loop (Eq. 2). Computing an upper bound on t3 and t4
requires identifying an expression(s) equivalent to n and L
after the loop (Eq. 4 and Eq. 5). As, we will see later, our
proof rules for loops can provide a more precise estimate
about L if we identify that L is an object variable (as opposed
to being a scalar variable), and hence use BO (as opposed to
BE) to trace back L.

The backward symbolic execution traces back across non-
virtual method calls as follows.

Bpol(ℓ, �, SideEffect(�′ : ℓ′ = o.m(ℓ1, ℓ2))) =

{� ∈ Bpol(�1, �
′) ∣ �1 ∈ Bpol(ℓ, �exit)[ℓ1/z1, ℓ2/z2]}

Above �exit denotes the exit location of method m, r de-
notes the return variable of method m, and z1, z2 denote
the formal parameters of method m.

6. TRACING ACROSS LOOPS
In this section, we describe a novel proof-rule based tech-

nique to reason about loops. The key idea is to use SMT
solvers to verify/identify commonly occurring design pat-
terns and then use the appropriate proof rule to conclude
the effect of the loop. This allows us to short-circuit the
backward symbolic execution across the loop to its start.

6.1 Proof Rule for Upper Bound Mode
Suppose an lvalue increases by a bounded quantity c in

each iteration of the loop. Then its value at the end of the
loop is bounded above by the sum of the value at the begin-
ning of the loop and the number of increments multiplied
by c. The following theorem captures a more general form
of this principle involving multiple lvalues.

Theorem 1. Let L be some set of lvalues and P be some
cut-set of a strongly connected region (i.e., P is a set of pro-
gram locations such that any cycle in the region goes through
some location in P). Suppose that there exists a constant c
such that on any path between two locations in P (with no

intervening visit to any location in P), any update to an
lvalue ℓ ∈ L is such that the updated value of ℓ is bounded
above by ℓ′+c for some ℓ′ ∈ L. Then, the value of any lvalue
ℓ ∈ L outside the strongly connected component is bounded
above by the sum of value of some ℓ′ ∈ L before the strongly
connected component and the number of times the locations
in set P are visited multiplied by c.

The proof of Theorem 1 follows easily by induction on the
number of visits to the locations in P .

Example 6. Consider procedure Ex5 in Figure 1. Con-
sider the cut-set P = {4, 6} for the strongly connected region
defined by the outer loop. Let L = {n,m}. Observe that the
choice of c = 1 satisfies the condition in Theorem 1 since:
On the (shortest) path from 4 to 6, m is assigned to n + 1.
On the path from 6 to 6, m is assigned to m+1. On the path
from 6 to 4, n and m both are assigned to m+1. On the path
from 4 to 4, m and n both are assigned to n+1. The location
4 is visited at most z1 times, while the location 6 is visited
at most z1× z2 times. Note that the initial value of n before
the loop is 0. Hence, the values of both n and m outside the
loop are bounded above by 0+(z1+z1×z2)×1 = z1+z1×z2.

We make use of Theorem 1 to define below the backward
symbolic execution engine BU (ℓ, �) when Definitions(ℓ, �)
contains an inductive definition. For this purpose, we first
define some helper functions. Let T ≡ Transitive(ℓ, �) be
the set of all (ℓ′, �′) pairs visited during backward tracing
of (ℓ, �) such that Definitions(ℓ′, �′) contains an inductive
definition.

BInitpol(ℓ, �) = {� ∣ � ∈ BT,a
pol (ℓ′, �′, d), (ℓ′, �′) ∈ T,

d ∈ DefsInit(ℓ′, �′)}
BIndpol(ℓ, �) = {� ∣ � ∈ BT,b

pol (ℓ′, �′, d), (ℓ′, �′) ∈ T,
d ∈ DefsInd(ℓ′, �′)}

PInitpol(ℓ, �) = {Label(d) ∣ (ℓ′, �′) ∈ T,
d ∈ DefsInit(ℓ′, �′), BT,a

pol (ℓ′, �′, d) ∕= ∅}
PIndpol(ℓ, �) = {Label(d) ∣ (ℓ′, �′) ∈ T, d ∈ DefsInd(ℓ′, �′)}

Above, BT,b
pol (ℓ1, �1) is the function that traces back ℓ1 at lo-

cation �1 across one iteration of the loop containing PIndpol.
It can be implemented in exactly the same manner asBpol(ℓ1, �1)
with the exception that backward tracing is stopped when
any (ℓ2, �2) ∈ T is encountered, and ℓd is returned. ℓd refers
to some fresh variable that does not occur in the program
and is meant to represent all lvalues in T . BT,a

pol (ℓ1, �1) is
the function that traces back ℓ1 at location �1 along the
paths take go outside of the loop. It can be implemented in
exactly the same manner as Bpol(ℓ1, �1) with the exception
that backward tracing is not performed along paths that
iterate inside the loop.

BT,a
pol (ℓ1, �1) = ∅ if (ℓ1, �1) ∈ T

BT,b
pol (ℓ1, �1) = {ℓd} if (ℓ1, �1) ∈ T

Using the above helper functions, the proof rule described
in Theorem 1, which captures an extremely common design
pattern, can now be translated into our backward symbolic
execution engine as follows.

BU (ℓ, �) = {� + giter×Max(0, c) ∣ � ∈ BInitU (ℓ, �)}
if ∀�′ ∈ BIndU (ℓ, �) : �′ ≤ ℓd + c (6)

= ⊥ otherwise

where c is some constant, giter = BU (iter, �′) and
iter = Iterations(PIndU (ℓ, �), PInitU (ℓ, �)) denotes an
upper bound on the number of combined visits to locations
in PIndpol(ℓ, �) in terms of the variables that are live at �′,
where �′ is some program location that is outside the loop
that contains program locations in PIndpol(ℓ, �).

Example 7. Computing an upper bound on t for each of
the procedures in Figure 1 requires computing an upper bound
on n which is updated inside loops. We now explain how the
proof rule in Eq. 6 facilitates computation of precise upper
bound on n for each of these examples.

Procedures Ex1, Ex2 lead to exactly identical tracing ex-
cept for computation of Iterations(PIndU (n, 5), PInitU (n, 5))
= Iterations(5, 2), which is computed to be z1− i and 1 for
Ex1 and Ex2 respectively. This leads to asymptotically dif-
ferent bounds of z1 + 2z2 and z1 + 2 for n and t at the end
of the loops in Ex1 and Ex2 respectively.

Procedures Ex3 and Ex4 also lead to exactly identical
tracing except for computation of BInitU (n, 6), which is com-
puted to be {2 : n := 0} and {4 : n := 0} respec-
tively. This leads to Iterations(PIndU (n, 6), PInitU (n, 6))
being computed as Iterations(6, 2) = (z1 − i) × z2 and
Iterations(6, 4) = z2 − j for Ex3 and Ex4 respectively.
This leads to asymptotically different bounds of z1 × z2 and
z2 for n and t after the loops in Ex3 and Ex4 respectively.

Procedure Ex5 demonstrates the need for tracing multi-
ple inductive lvalues. During tracing of (n, 8), the helper
functions get invoked with (n, 4) (since (n, 4) contain an in-
ductive definition) and return the following:

Transitive(n, 4) = {(n, 4), (m, 6)}, BIndU (n, 4) = {ℓd + 1}
BInitU (n, 4) = {0}, PIndU (n, 4) = {4, 6}, PInitU (n, 4) = {2}

Since Iterations(4, 2) = z1 − i and Iterations(6, 2) =
(z1−i)×z2, we obtain Iterations(PIndU (n, 4), PInitU (n, 6)) =
Iterations({4, 6}, 2) to be (z1 − i) × (1 + z2). BIndU (n, 4)
leads to a choice of 1 for c. Together, these lead to the de-
sired bound of z1 × (1 + z2) on n at the end of the loop.

6.2 Proof Rule for Lower Bound Mode
The proof rule for tracing in lower bound mode is similar

to that of in upper bound mode except that we need to
assert that inductive lvalues have bounded decrease instead
of bounded increase. This leads to the following backward
symbolic execution strategy.

BL(ℓ, �) = {� − giter×Max(0, c) ∣ � ∈ BInitL(ℓ, �),

if ∀�′ ∈ BIndL(ℓ, �) : �′ ≥ ℓd − c (7)

= ⊥ otherwise

where giter is as in Eq. 6.

6.3 Proof Rule for Equality Mode
It is not possible to trace back arbitrary expressions in

equality mode across loops. So, we simply return ⊥.

BE(ℓ, �) = ⊥ (8)

6.4 Proof Rules for Object Equality Mode
For the special case, when the object to be traced back

in equality mode is an object, we provide a proof rule for
the common design pattern of iterating along a certain set

Ex10()

1 n := nondet();

2 if (n > 100) return;

3 t := n;

Ex11(uint z1, z2)
1 n := z2;
2 while (z1 < n)
3 if (nondet())

4 n := (z1 + n)/2;
5 else break;

6 t := n;
t ≤ 100 t ≤ z2

Figure 4: Examples of skeletons from .Net code-
base that require making use of conditional guards
for computing bound on the variable to be traced
backwards (variable t in these examples).

of recursive fields.

BO(ℓ, �) = {R(�, Dereferences(ℓ, �)) ∣ � ∈ BInitO(ℓ, �),

if Dereferences(ℓ, �) ∕= ⊥ (9)

= ⊥ otherwise

where Dereferences(ℓ, �) is defined as follows.

Dereferences(ℓ, �) = {f ∣ ℓ.f ∈ BIndO(ℓ, �)}
if ∀� ∈ BIndO(ℓ, �) ∃f : � ≡ ℓ.f (10)

= ⊥, otherwise

Example 8. As explained in Example 5, tracing t1, t2,
and t3 backwards require in procedure Ex9 in Figure 3 re-
quires tracing n backwards in different modes. This, in turn,
requires making use of different proof rules.

∙ Tracing n in upper bound mode makes use of proof rule
in Eq. 6. Note that c is 1, and giter is computed as
z1, which provides an upper bound of z1 for n.

∙ Tracing n in lower bound mode makes use of proof rule
in Eq. 7. Note that c is −1 and hence max(0, c)×giter
yields 0, which provides a lower bound of 0 for n.

∙ Tracing n in equality mode makes use of proof rule in
Eq. 8, which abstracts the value of n to ⊥.

Tracing t4 backwards requires tracing L in object equality
mode, which makes use of the proof rule in Eq. 9 to provide
an upper bound of R(L, {next}).data. Note that if L was
traced back in equality mode, then it would have provided
an upper bound of ⊥.data, which is less precise than the
information provided by R(L, {next}).data since the former
implies that t4 is bounded above by the data field of any
object, while the latter implies that t4 is bounded above by
the data field of only those objects that are reachable from
input list L1 via the next pointers.

7. MAKING USE OF GUARDS
Until now, our discussion of backward symbolic execution

engine did not explicitly make use of conditional guards. Use
of guards was implicit in computation of Iterations(P1, P2)
used in our proof rules to perform backward symbolic exe-
cution across loops. In this section, we discuss how to incor-
porate information from conditional guards to improve our
bound computation process.

A primary purpose of reasoning about conditional guards
in programs is to establish infeasibility of certain paths.
However, we did not observe any instance in practice where

isolating infeasible paths helps compute an asymptotically
better bound. In contrast, our path insensitive analysis is
quite efficient and scales to large real programs.

For the bound analysis problem, a more relevant appli-
cation of conditional guards can be in establishing bounds
when we fail otherwise. This can be useful during two sit-
uations in our backward symbolic execution engine where
information from guards may be useful. One such situation
is when Bpol(ℓ, �, d) returns ⊥ in (Eq. 3). Whenever, this
happens, we can try the following alternative in its place.

Bpol(ℓ, �, d) = Bpol(e, �
′) if Guard(ℓ, �, d)⇒ (ℓ reloppol e) (11)

where relopU denotes the ≤ operator, relopL denotes the
≥ operator, and relopE , relopO both denote the equal-
ity comparison operator. Guard(ℓ, �, d) denotes the boolean
condition (in terms of variables that are live at the program
location corresponding to definition d) that must be true if
the value of ℓ at location � is determined by d. Guard(ℓ, �, d)
can be computed by using the gating functions as defined
in [22].

Example 9. Consider tracing back t in procedure Ex10
in Figure 4. If we do not use the rule in Eq. 11, we ob-
tain BU (n, 3, Simple(1 : n := nondet())) = ⊥. Note that
Guard(n, 3, Simple(1 : n := nondet())) = (n ≤ 100). Use of
the rule in Eq. 11 with a choice of 100 for e helps compute
a bound of 100 on n (at program location 3) and t.

Another situation when conditional guards can be use-
ful during bound computation is when B̃U (ℓ, �) contains a
symbolic expression � for which the check � ≤ ℓ+ c fails in
the proof rule in Eq. 6. This problem can be alleviated by
refining the check to be performed under the additional as-
sumption of Guard(ℓ, �, �), where Guard(ℓ, �, �) denote the
boolean condition (in terms of variables that are live at
PointsTInductive(ℓ, �)) that must be true if ℓ if � flows
into ℓ at location �. A similar refinement can also be per-
formed for the check � ≥ ℓ−c in Eq. 7 and the check � ≡ ℓ.f
in Eq. 10. Guard(ℓ, �, �) can be computed by conjuncting
together all gating functions Guard(ℓ, �, d) corresponding to
the definitions d used in computation of �.

Example 10. Consider the process of tracing back t in
procedure Ex11 in Figure 4. This requires computing an
upper bound on n, which is updated inside a loop. Computing
an upper bound on n requires using the proof rule in Eq. 6,
which requires computing DefsInd(n, 6) = {Simple(4 : n :=

(z1 + n)/2} and B̃U (n, 6) = {(z1 + n)/2}. Since there does
not exists a constant c such that � ≤ n + c, where � =
(z1 + n)/2, the proof rule fails to return a bound. Observe
that Guard(ℓ, �, �) = (z1 < n) and can be used to prove that
� ≤ n+ c, where c = 0. This allows the proof rule to return
an upper bound of z2 for n (at location 6).

8. TRACING ACROSS VIRTUAL METHODS
In section 5.2, while defining Bpol(o.m(ℓ1, ℓ2), �), we as-

sumed that method m is non-virtual and can be statically
resolved (i.e., can be resolved from the static type of receiver
object o). In this section, we describe how to resolve method
m if it cannot be resolved from the type of o.

If the user has provided abstract implementation for method
m (as discussed in Section 4), then we use those. Else,
we trace back receiver object o in equality mode to ob-
tain the set E = BE(o, �). If ⊥ ∈ E or � ∈ E such that

TypeOf(�) is extensible, then we define Bpol(o.m(ℓ1, ℓ2), �)
to be ⊥. Otherwise, we obtain the set S of possible meth-
ods m from E as follows: S = {TypeOf(�) ∣ � ∈ E}, where
TypeOf(new(�)) = � , and TypeOf(�), where � is some ex-
pression over inputs, can be obtained from types of inputs.
We then trace back across each of those methods as defined
in Section 5 and take the union of the results.

9. EVALUATION
In this section, we describe our experiments and results of

our algorithms applied to four .Net benchmark projects.

9.1 Implementation and Benchmarks
We have implemented our algorithms in .NET framework

and have integrated them with the SPEED [10, 11, 12] tool
that computes the symbolic complexity of a loop in a pro-
gram. SPEED computes this complexity in terms of live
variables at the loop header. Our tool took these “local”
loop bounds and converted these bounds into expressions in
terms of procedure inputs. Our tool uses Phoenix Compiler
Framework [18] to convert a source program into an inter-
mediate representation. Phoenix provided us with an over-
approximation of Definitions(ℓ, �) for every lvalue and lo-
cation in the program, by performing various sound data-
flow analyses on it. We also used SPEED tool [10, 11, 12]
to give us the amortized number of visits to any location
in the program, i.e. to compute the Iterations function
defined in section 3.3. Our proof rules were implemented
using Z3 [24] SMT solver.

Our experimental suite consists of four medium to large-
sized .NET projects — (1) .NET core (includes main .NET
libraries) (2) .NET libraries (include high level .NET li-
braries like Windows services) (3) Facebook .NET API client
and (4) Silverlight Media Player.

9.2 Experimental Results
Table 2 shows the overall success of our experiments. The

first row of the table gives the total number of queries is-
sued to our backward analysis engine for every benchmark.
Second row shows the total number of top-level queries that
could be successfully traced backed to the procedure inputs.
As we discussed earlier, failure in our analysis comes from
two sources-(1) Not being able to reason about loops, and
(2)not being able to resolve an abstract method. Our ob-
servation is that, for all benchmarks, on an average, 94%
queries could be successfully traced back to the procedure
inputs (as shown in the third row of the table). Next two
rows show that every benchmark contains tens of thousands
of methods and millions of lines of code. Finally, last row of
the table shows the amount of time taken on every bench-
mark. All our benchmarks could be analyzed within few
minutes, with an average time of 0.23 seconds per query.
Our experiments were performed on a Desktop PC with In-
tel(R) Xeon(TM) 3.20 GHz processor, 2.00 GB of memory,
running Windows XP.

9.3 Scalability of Our Analysis
We measured the total number of procedures visited and

the depth of the procedure stack for any single query in our
analysis. These numbers are shown in Table 1. The table
shows that about more than 90% queries visited just one
method during entire analysis. There were, however some
queries that visited more than 10 methods during the entire

Procedure Depth 1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 17
Frequency 16088 2447 1122 424 308 63 26 45 18 1 5 8 12 10 1 2

Procedures visited 1 2 3 4 5 6 7 8 9 10 11-20 21-30 31-40 41-50 51-100 100-200
Frequency 16094 1873 857 576 428 178 130 133 69 40 152 15 26 7 7 1

Expression Set size 1 2 3 4 5 6 7 8 9 10 11-20 21-30 31-40 41-50 51-100 >100
Frequency 15308 308 118 24 19 4 8 9 2 7 16 2 8 1 1 1

Table 1: Table showing the frequency of depth of procedure stack (First two rows), the frequency of number
of visited procedures (next two lines) and size of the set of resulting expression (last two lines) for any query.

Benchmark .NET .NET Facebook Silverlight
Core Libraries .NET API Media Player

Queries 4259 2963 625 1305
Successes 4050 2631 612 1243
Success (%) 95.09% 88.80% 97.92% 95.25%
Functions 85834 78671 18116 34683
Size (LOC) 3560621 3187007 678128 2168345
Time (sec) 799.28 777.26 124.93 269.92

Table 2: Overall Success of Backward Symbolic Ex-
ecution for Bound Analysis on 4 Benchmarks.

execution and one of the queries visited as many as 151
procedures. Similarly, more than 90% queries encountered
no nested procedures. However, many queries encountered
nested procedures, having procedure stack depth of more
than 10, with two queries going through procedure stack
of depth 17. The total number of execution paths in the
procedures corresponding to these queries is huge, but our
(goal-directed) analysis only visited a tiny fraction of these
paths.

Finally, to show the effectiveness of our expression simpli-
fication, we measured the size of set of expressions obtained
for each query. The statistics are shown in last two lines of
Table 1. This shows that in about 95% of cases, the analysis
returned a singleton set of expressions. The largest set size
observed during our analysis was 109. We then turned off
all simplifications and again ran our experiments on one of
the benchmarks. The analysis threw an OutOfMemoryEx-
ception since the internal data structures could not handle
sets of extremely large sizes.

9.4 Effectiveness of Proof Rules
During our analysis, 1243 queries encountered reasoning

about loops. For every loop encountered during our analysis,
we determined the fraction of loops that could be analyzed
using any of our proof rules defined in Equations 6,7, and 9.
The plots for percentage of loops that can be analyzed using
different proof rules for different benchmarks are shown in
figure 3(I). The plot shows that about 51% loops could be
analyzed using the proof rule for upper bound mode(Eq 6),
11% loops could be analyzed using the proof rule for lower
bound mode(Eq 7) and 18% loops could be analyzed using
the proof rule for object equality mode(Eq 9). Our experi-
ments show that about 80% loops satisfied one of the proof-
rules across all benchmarks.

9.5 Effectiveness of Virtual Call Resolution
In our experiments, about 90% of the method calls could

be uniquely resolved and did not require any virtual call res-
olution. To demonstrate the utility of our abstract method
resolution techniques, we collected all unresolved/virtual meth-
ods encountered during our backward analysis on the bench-
mark projects. These methods were unresolved for two reasons—
(1) The methods were native methods, implemented in a
different language and our analysis could not get a code

for them. This practical challenge was handled by defin-
ing our own abstract implementations for these methods as
described in section 4. We used abstract implementations
for about 30 methods in two classes— System.String and
System.Array. (2) The methods were virtual methods and
the type of the client objects for these methods could not
be statically resolved. In this case, we applied our virtual
call resolution technique (defined in Section 8) to uniquely
resolve the methods.

The results are shown in figure 3(II) The figure shows that
our virtual call resolution was effective in resolving method
calls in about 20% of abstract methods, while the abstract
implementations for two classes were successful in resolving
method calls in about 76% of cases.

9.6 Effectiveness of Abstract Bounds
In order to measure the effectiveness of our abstract bounds,

we first computed the number of bounds computed in terms
of abstract implementations and unbounded array expres-
sions (of the form A[⊥]), defined in section 4. We also com-
puted the number of bound expressions that were arbitrary,
i.e. ⊥. The resulting plots are shown in figure 3(III). Our
plots show that about 82% of the bound expressions were
computed using abstract bounds, about 8% of bounds were
computed using arbitrary array dereferences while remain-
ing bounds were arbitrary expressions (⊥).

10. RELATED WORK
Backward Analyses: Snugglebug [4] performs a path-

sensitive backward symbolic analysis on object-oriented pro-
grams to find bugs. Snugglebug reasons about loops by un-
folding them a fixed number of times. Such an approach is
useful for bug-finding, but would be unsound in our case.

PSE [16] presents a static analysis to diagnose software
failures. It tracks the flow of a single value from a program
location to the program entry. It performs a novel dataflow
analysis and pointer analysis to reason about heap. But like
SNUGGLEBUG, PSE does not use any sophisticated rea-
soning about loops. Nor do any of these techniques address
the issue of presence of virtual methods that arise from use
of interfaces and extensible classes.

Forward Analyses: Existing static analysis techniques
based on forward analysis [7, 17, 20, 13] for computing arith-
metic inequality relationships do not simultaneously address
the technical challenges of path-sensitivity, non-linear opera-
tors, and multiple variables, and additionally do not scale to
very large programs (See detailed discussion in Section 2.1).

Program testing based forward analysis techniques gener-
ally aim at high code coverage and are not goal directed.
KLEE [3] performs an interprocedural forward symbolic ex-
ecution for finding bugs. It performs dynamic path prun-
ing, expression simplification and uses a variety of heuris-
tics to increase the scalability their approach. Systems like
DART [9] and CUTE [21] combine symbolic analysis with

(I) % of loops that can be ana-
lyzed using different proof rules

(II) % of abstract methods re-
solved using different techniques

(III) % of expressions expressed
in terms of abstract bounds

Table 3: Statistics for Proof Rules, Virtual Call Resolution and Abstract Bounds on 4 .NET Benchmarks—(A)
.NET Core, (B) .NET Libraries, (C) Facebook .NET API, (D) Silverlight Media Player

concrete execution to improve the coverage of random test-
ing. These techniques, in worst case, need to explore huge
number of program paths (path explosion problem). In this
work, path explosion is partly overcome by goal directed
backward analysis and our custom simplification of expres-
sions.

Array Bound Analyses: There has been a large body
of work in the area of bounding array index expressions for
static detection of buffer overflow errors [19, 23]. These tech-
niques are typically based on linear relational analysis and
are usually precise enough to keep track of constant terms.
In contrast, the focus of our work is to identify (possibly
non-linear) bounds that are asymptotically precise.

11. CONCLUSION
We have presented a precise and scalable analysis for com-

puting upper bound on an expression at any program loca-
tion. There are two novel features of our approach—(1)
Proof rules for reasoning about loops; our experiments have
shown that large number of loops could be handled by using
relatively few proof rules. We, therefore, argue that with
a sufficient understanding of the problem domain, one can
better reason about the loops using few observable patterns.
(2) Abstract bounds and virtual call resolution; our experi-
ence shows that a large number of expressions provided more
meaningful information than undefined (i.e. ⊥) because of
these techniques.

12. REFERENCES
[1] E. Albert, P. Arenas, S. Genaim, and G. Puebla.

Automatic inference of upper bounds for recurrence
relations in cost analysis. In SAS, pages 221–237, 2008.

[2] E. Albert, P. Arenas, S. Genaim, G. Puebla, and
D. Zanardini. Resource usage analysis and its
application to resource certification. In FOSAD, 2009.

[3] C. Cadar, D. Dunbar, and D. R. Engler. Klee:
Unassisted and automatic generation of high-coverage
tests for complex systems programs. In OSDI, 2008.

[4] S. Chandra, S. J. Fink, and M. Sridharan.
Snugglebug: a powerful approach to weakest
preconditions. In PLDI, pages 363–374, 2009.

[5] S. Chaudhuri, S. Gulwani, and R. Lublinerman.
Continuity analysis of programs. In POPL, 2010.

[6] P. Cousot and R. Cousot. Abstract interpretation: A
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In POPL,
1977.

[7] P. Cousot and N. Halbwachs. Automatic discovery of
linear restraints among variables of a program. In
POPL, pages 84–96, 1978.

[8] J. Edmund M. Clarke, O. Grumberg, and D. A. Peled.
Model checking. MIT Press, 1999.

[9] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed
automated random testing. In PLDI, 2005.

[10] S. Gulwani, S. Jain, and E. Koskinen. Control-flow
refinement and progress invariants for bound analysis.
In PLDI, pages 375–385, 2009.

[11] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed:
precise and efficient static estimation of program
computational complexity. In POPL, 2009.

[12] S. Gulwani and F. Zuleger. The reachability-bound
problem. Technical Report MSR-TR-2009-146,
Microsoft Research, Oct 2009.

[13] A. Gurfinkel and S. Chaki. Combining predicate and
numeric abstraction for software model checking. In
FMCAD, pages 1–9, 2008.

[14] G. A. Kildall. A unified approach to global program
optimization. In POPL, pages 194–206, 1973.

[15] P. Malacaria. Assessing security threats of looping
constructs. In POPL, pages 225–235, 2007.

[16] R. Manevich, M. Sridharan, S. Adams, M. Das, and
Z. Yang. Pse: explaining program failures via
postmortem static analysis. SIGSOFT SEN, 29, 2004.

[17] A. Miné. The octagon abstract domain. In WCRE,
pages 310–319, 2001.

[18] Phoenix Compiler. research.microsoft.com/phoenix/.

[19] R. Rugina and M. C. Rinard. Symbolic bounds
analysis of pointers, array indices, and accessed
memory regions. ACM TOPLAS, 27(2):185–235, 2005.

[20] S. Sankaranarayanan, H. Sipma, and Z. Manna.
Non-linear loop invariant generation using gröbner
bases. In POPL, pages 318–329, 2004.

[21] K. Sen, D. Marinov, and G. Agha. Cute: a concolic
unit testing engine for c. In ESEC/FSE, 2005.

[22] P. Tu and D. Padua. Gated ssa-based demand-driven
symbolic analysis for parallelizing compilers. In
International Conf. on Supercomputing (ICS), pages
414–423, 1995.

[23] A. Venet and G. P. Brat. Precise and efficient static
array bound checking for large embedded c programs.
In PLDI, pages 231–242, 2004.

[24] Z3 SMT solver. research.microsoft.com/projects/Z3/.

