
The Reachability-Bound Problem

Sumit Gulwani
Microsoft Research

sumitg@microsoft.com

Florian Zuleger ∗

TU Darmstadt
zuleger@forstye.cs.tu-darmstadt.de

Abstract
We define the reachability-bound problem to be the problem of
finding a symbolic worst-case bound on the number of times a
given control location inside a procedure is visited in terms of
the inputs to that procedure. This has applications in bounding re-
sources consumed by a program such as time, memory, network-
traffic, power, as well as estimating quantitative properties (as op-
posed to boolean properties) of data in programs, such as amount
of information leakage or uncertainty propagation.

Our approach to solving the reachability-bound problem brings
together two very different techniques for reasoning about loops
in an effective manner. One of these techniques is an abstract-
interpretation based iterative technique for computing precise dis-
junctive invariants (to summarize nested loops). The other tech-
nique is a non-iterative proof-rules based technique (for loop bound
computation) that takes over the role of doing inductive reasoning,
while deriving its power from use of SMT solvers to reason about
abstract loop-free fragments.

Our solution to the reachability-bound problem allows us to
compute precise symbolic bounds for several loops in .Net base-
class libraries for which earlier techniques fail. We also illustrate
the precision of our algorithm for disjunctive invariant computation
(which has a more general applicability beyond the reachability-
bound problem) on a set of benchmark examples.

1. Introduction
Program execution makes use of physical resources, and it is of-
ten important to compute worst-case bounds on usage of those
resources as a function of the program inputs. For example, in
memory-constrained environments such as embedded systems, it
is important to bound the amount of memory required to run cer-
tain applications. In real-time systems, it is important to bound
the worst-case execution-time of the program. Similarly, the appli-
cations running on low-power devices or low-bandwidth environ-
ments must use up little power or bandwidth respectively. One of
the fundamental questions that need to be answered in these cases
is: How many times is a given control-location inside the program
that consumes these resources executed?

∗ The research of the second author was supported in part by Microsoft
Research through its PhD Scholarship Programme.

Copyright is held by Microsoft Research. Published Oct 2009. Technical Report
Number MSR-TR-2009-146. Permission to make digital or hard copies of all or part
of this work for personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page.

Program execution also affects certain quantitative properties
of data that it operates on. For example, the amount of secret
leaked by a program depends on the number of times a certain
operation that leaks the data, either by direct or indirect information
flow, is executed [18]. Or the amount of perturbation in the output
data values resulting from a small perturbation or uncertainty in
the input values depends on the number of times additive error
propagation operators are applied. This is the quantitative version
of the boolean problem of continuity studied in [6]. Estimating such
quantitative properties again requires addressing a similar question
as above: How many times is a given control-location inside the
program that performs certain operations executed?

We refer to the problem of bounding the number of times a given
control-location � is visited as the reachability-bound problem. We
present a two-step solution to this problem that brings together two
very different techniques for reasoning about loops: an iterative
technique for computing disjunctive invariants, and a non-iterative
proof-rule based technique for computing bounds.

The first step consists of generating a disjunctive transition-
system that describes relationships between values of program vari-
ables that are live at � and their values in the immediately next
visit to �. This requires summarizing inner loops that lie on a path
from � back to itself for which we present an abstract interpre-
tation based iterative algorithm that generates disjunctive loop in-
variants. The precision of our algorithm relies on the convexity-like
assumption, which appears satisfied by all instances that we came
across in practice, and leads to an interesting completeness theo-
rem (Theorem 1). We also experimentally evaluate the precision
of this algorithm on benchmark examples taken from recent work
on computing disjunctive invariants. Our algorithm can discover
the required invariants in all examples, suggesting its potential for
effective use in other applications requiring disjunctive invariants
besides our application of bound analysis.

The second step consists of generating bounds for the dis-
junctive transition-system thus generated. For this, we propose
non-iterative proof-rules based technique that requires discharging
queries using an off-the-shelf SMT solver. These proof rules de-
scribe conditions that are sufficient for combining the ranking func-
tions for individual transitions (to obtain bound for the transition-
system consisting of those transitions) using fundamentally differ-
ent mathematical operators, namely max, sum, and product. This
is unlike existing work on termination analysis where the goal is
to generate any ranking function for a transition-system with dis-
regard to the precision of the ranking function. This methodology
represents an interesting design choice for reasoning about loops,
wherein SMT solvers are used to perform precise reasoning about
transitions (loop-free code-fragments) thereby allowing a simple
pattern-matching and proof-rules based technique to take over the
role of performing inductive reasoning effectively. It will be inter-
esting to consider applying such a methodology to other problems.

Contributions and Organization

(a)
Ex1(int n, bool[] A)

1 i := 0;
2 while (i < n)
3 j := i+ 1;
4 while (j < n)
5 if (A[j])
6 ConsumeResource();
7 j--; n--;
8 j := j + 1;
9 i := i+ 1;

(b)

ConsumeResource();

yesπ6
j‐‐;n‐‐;

no A[j]

i := 0;

j := i+1;

i := i+1;

j := j+1;

yes

yes

no

no

end

i < n

j < n

begin (c)

ConsumeResource();

j‐‐;n‐‐;

yesno

π6a

A[j] π6b

i := 0;

j := i+1;

i := i+1;

j := j+1;

yes

yes

no

no

begin

end

i < n

j < n

(d)

j := i+1;

i := i+1;

ConsumeResource();

j := j+1;

j‐‐;n‐‐;

π6a

π6b

yes

yes

yes

no

no

i < n
j < n

A[j]

(e)

Transition-system T of inner loop in flowgraph (d) : (j ≥ n ∧ i < n− 1 ∧ i′ = i+ 1 ∧ j′ = i+ 2)s1
Transitive Closure(T): (i′ = i ∧ j′ = j)s′1

∨ (j ≥ n ∧ i < n− 1 ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2)s′2
Transition-system T ′ of outer loop in flowgraph (d): (j < n− 1 ∧ j′ = j + 1 ∧ i′ = i)s1 ∨ (i < n− 1 ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2)s2
Transitive Closure(T ′): (j′ ≥ j ∧ i′ = i)s′1

∨ (i < n− 1 ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2)s′2
Transition-system(�6): (n′ = n− 1 ∧ j < n− 1 ∧ j′ ≥ j ∧ i′ = i)s3 ∨ (n′ = n− 1 ∧ i < n− 1 ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2)s4

Figure 1. (a) A loop skeleton from .Net base-class library. (b) Flow-graph representation of the program in (a). (c) Flow-graph obtained
from (b) by splitting location �6 into �6a and �6b. (d) Part of the flow-graph(c) between �6a and �6b after re-drawing it. (e) Various steps
involved in computation of the transition-system for location �6 in flowgraph (b) from the flowgraph (d). Some transitions in (e) are named
by a subscript (e.g., s′1) for future reference in the paper.

∙ We define the reachability-bound problem and the notion of
a precise solution to that problem (Section 3). This can be an
interesting point in the space of defining an entire quantita-
tive logic (part of the quantitative agenda, as opposed to the
Boolean agenda, set forth recently [17]).
∙ We describe a transition-system generation algorithm based on

reducible flowgraph transformations for reducing the problem
of reachability-bound computation to the problem of computing
bound for a transition-system (Section 4).
∙ We describe an abstract-interpretation based iterative algo-

rithm for computing transitive closure of a transition-system,
or, equivalently, disjunctive invariants for a loop. (Section 5).
∙ We describe non-iterative proof rules (Section 7) that allow

computation of precise symbolic bounds for a transition-system
from the ranking functions of individual transitions, which can
be obtained using techniques described in Section 6.
∙ We present experimental results evaluating the effectiveness of

various aspects of our solution (Section 8).

2. Motivating Examples and Technical Overview
In this section, we discuss some examples that are representative of
some challenges that arise during computation of symbolic bounds
for the reachability-bound problem. We also provide a technical
overview of our solution.

2.1 Bounding number of visits to a given control location
Consider the loop template shown in Figure 1, and consider the
problem of computing symbolic bounds on the number of times
the procedure ConsumeResource() is called at Line 6. One ap-
proach would be to approximate it by computing a bound on the
number of iterations of the closest enclosing loop at Line 4 using
techniques for loop bound computation (as in [13, 15]). However,
this approach will yield quite conservative results since the number
of iterations of the loop at Line 4 is bounded above by n2, while
the number of executions of Line 6 is bounded above by n.

Our approach first computes the following symbolic relation-
ship between values of variables i, j, n at Line 6 with their values
i′, j′, n′ in the immediately next visit to Line 6. The relationship is

expressed as a disjunction of two transitions s3 and s4.
(n′ = n− 1 ∧ j < n− 1 ∧ j′ ≥ j ∧ i′ = i)s3

∨ (n′ = n− 1 ∧ i < n− 1 ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2)s4

This is done using the GenerateTransitionSystem algorithm
described in Figure 4 in Section 4. The algorithm enumerates all
paths in the control-flow graph (in Figure 1(d)) between locations
�6a and �6b obtained after splitting the location �6 in the origi-
nal control-flow graph (in Figure 1(b)) into �6a and �6b. (Note that
such a relationship is different from transition invariants [23] or
variance assertions [3] that relate values of variables at a control-
location with their values in any successive iteration, as opposed
to the immediately next iteration). The challenge in such an enu-
meration is that the number of paths in presence of loops between
control-locations �6a and �6b is not finite. For this purpose, the
loops are summarized by disjunctive relationships between the in-
puts/outputs of the loop. These disjunctive relationships are gen-
erated by computing the transition-system of the loop (recursively,
using the same algorithm applied to the control-location immedi-
ately after the loop-header) and then computing its transitive clo-
sure (using the algorithm TransitiveClosure described in Fig. 6
in Section 5). The transition-systems of the two loops in Figure 1(d)
and their respective transitive closures are shown in Figure 1(e).

Next, bounds are computed for the transition-system thus gen-
erated. This involves computing the individual ranking functions
of n − 1 − j and n − 1 − i for the two transitions s3 and s4
respectively. The ranking functions are computed using pattern
matching technique described in Section 6. These ranking func-
tions are then composed using one of the proof rules described in
Section 7 (in this case, the proof rule in Theorem 3) to obtain a
bound of Max(0, n− 1− j, n− 1− i) in terms of the inputs to the
transition-system (For details, see Example 6). Using the invariants
i ≥ 0 ∧ j ≥ 1 that hold during the first visit to �6) (which can
be obtained by generating invariants at control-location �6b in Fig-
ure 1(d)), we obtain a bound of n − 1 on the transition-system in
terms of procedure inputs. This implies a bound of n on the number
of visits to control-location �6.

2.2 Bounding iterations of a loop
Computing bounds on number of loop iterations is a special case of
the reachability-bound problem where the control location under
consideration is the location immediately after the loop header.

Ex2(uint n, uint m)
1 while (n > 0 ∧m > 0)
2 n--; m--;
3 while (nondet())
4 n--; m++;

Ex3(uint n, bool[] A)
1 while (n > 0)
2 t := A[n];
3 while (n > 0 ∧ t = A[n])
4 n--;

Ex4(uint n)
1 flag := true;
2 while (flag)
3 flag := false;
4 while (n > 0 ∧ nondet())
5 n--; flag := true;

Ex5(uint n)
1 i := 0;
2 while (i < n)
3 flag := false;
4 while (nondet())
5 if (nondet()){flag:=true;n--;}
6 if (¬flag) i++;

n′ ≤ n ∧ m′ ≥ m n′ ≤ n (n′ ≤ n− 1 ∧ flag′)
∨(Same({n, flag}))

(n′ ≤ n-1 ∧ flag′ ∧ i′ = i)
∨(Same({i, n, flag}))

n>0 ∧m>0 ∧ n′≤n-1
(n>0 ∧ n′≤n ∧ A[n] ∕=A[n′])
∨ (n>0 ∧ n′≤0)

(flag∧flag′ ∧ n>0∧ n′≤n-1)
∨(flag ∧ ¬flag′ ∧ n′ = n)

(i<n ∧ flag′ ∧ n′≤n−1 ∧ i′=i)
∨ (i<n ∧ ¬flag′ ∧ i′≥i+1 ∧ n′=n)

n n n+ 1 n

Figure 2. Loop templates from .Net class libraries where iterators of a loop are modified by inner loops. The second row shows the required
transitive closure of inner loops to enable precise symbolic bound computation of respective outer loops. The third row shows the resultant
transition-system generated for the outer loops after summarizing the respective inner loops by the transitive closure of their transition-system
(using the algorithm in Figure 4). The final (fourth) row shows the bound computed from the transition-system by the algorithm in Figure 7.
We use the predicate Same(V) inside a transition to denote that the variables in V do not change their value, i.e., Same(V) =

⋀
x∈V

(x′ = x).

Ex6(int n, int x, int z)
1 while (x < n)
2 if (z > x) x++;
3 else z++;

Ex7(uint n, uint m)
1 Assume(0 < n < m);
2 j := n+ 1;
3 while (j < n ∨ j > n)
4 if (j > m) j := 0;
5 else j++;

Figure 3. Loop templates Ex6 and Ex7 (from Microsoft product-
code) taken respectively from recent work on proving termina-
tion [7] and loop bound computation [13]. Our proof rules for
bound computation provide an alternative, but simpler, formalism
for computing bounds. (For details see Example 7 and Example 9.)

Under that case, our technique outperforms recent techniques for
loop bound computation and termination.

In particular, our technique is able to compute bounds for loops
whose iterations is affected by inner loops for which existing bound
techniques (such as [13, 15]) mostly fail (For details, see related
work in Section 9). Such loops are quite common in .Net base-
class library, and Figure 2 gives some examples. One of the key
challenge addressed by our technique in such examples is the sum-
marization of the inner loops by precise transitive-closure of the
transition-system represented by these loops (in effect, disjunctive
relationships between the inputs and outputs of the loop).

Also, even in case of loops with no nested loops, our technique
is able to compute bounds for loops using a much simpler uniform
algorithm compared to existing termination techniques or special-
ized bound computation techniques. Figure 3 shows two such ex-
amples that have been used as motivating examples by previous
techniques. The computation of the transition-system for these ex-
amples is almost trivial, and the bound computation of the resultant
transition-system is enabled by simple but precise proof rules (The-
orem 4 and Theorem 5) for bound computation from ranking func-
tions of individual transitions (For details, see Example 7 and 9).

3. Reachability-Bound Problem
There are two classical problems associated with reachability of a
control-location � inside a procedure P with inputs n⃗.

∙ Safety Problem: Is control-location � never reached/visited?
∙ Liveness Problem: Is control-location � visited at most a finite

number of times?

In this paper, we have motivated the following bound problem,
which is different from the safety and liveness problems (for the
simple reason that it is not a boolean problem).

∙ Bound Problem: Compute a worst-case symbolic bound ℬ(n⃗)
on number of visits to control-location � for any execution of
P .

The notion of a worst-case symbolic bound is defined below.

DEFINITION 1 (Worst-case symbolic bound). An integer-valued
function ℬ(n⃗) is a worst-case symbolic bound for a control-
location � inside a procedure P with inputs n⃗ if for any input
state n⃗0, the number of times � is visited is at most ℬ(n⃗0).

There may be multiple worst-case symbolic bounds for a given
problem. It is desirable to produce a bound that is precise in the
sense that there exists a family �(n⃗) of worst-case inputs that ex-
hibit the worst-case bound (up to some constant factor, as motivated
by the definition of asymptotic complexity) formally defined as
follows.

DEFINITION 2 (Precision of a worst-case symbolic bound). A worst-
case symbolic bound ℬ(n⃗) for a control-location � inside a pro-
cedure P with inputs n⃗ is said to be precise (up to multiplicative
constant factors) if there exist positive integers c1, c2, and a for-
mula �(n⃗) such that:

E1. For any assignment n⃗0 to variables n⃗ such that �(n⃗0) holds, the
number of times control-location � is visited (when procedure
P is executed in the input state n⃗0) is at least ℬ(n⃗0)

c1
− c2.

E2. For any integer k, there exists a satisfying assignment n⃗1 for
�(n⃗) such that ℬ(n⃗1) > k. In other words, the formula ∃n⃗ :
(ℬ(n⃗) ≥ k ∧ �(n⃗)) has a satisfying assignment.

We refer to the triple (�, c1, c2) as precision-witness for bound ℬ.

The following example explains and motivates the requirements
E1 and E2 in the above definition.

EXAMPLE 1. A precision-witness for bound of n on the number
of times Line 6 is visited in Example Ex1 in Figure 1 can be
� = ∀k(0 ≤ k < n ⇒ A[k]), c1 = 1 and c2 = 1 since it
can be shown that under the precondition �, Line 6 is visited at
least n− 1 times.

A precision-witness for bound of n2 on the number of times the
inner loop (Line 5) is executed can be � = ∀k(0 ≤ k < n ⇒
¬A[k]), c1 = 4 and c2 = 1 since it can be shown that under
the precondition �, Line 5 is visited at least n2/4 times. This is
because, for example, i takes all values between 0 to n/2 − 1 at
Line 2 (hence the number of visits to Line 2 is at least n/2), and
for each of those visits, j takes all values between n/2 to n− 1 at
Line 4 (i.e., the number of visits to Line 4 is at least n/2). Note that

if we did not relax the requirement E1 to allow for constants c1 and
c2, then computation of a precise bound would have required us to
compute the exact bound of (n−1)(n−2)

2
. It would be impractical to

find such exact closed-form solutions.
A bound of, say, 100, on the number of times Line 6 is visited

is not precise. It may appear that � = (∀k(0 ≤ k < 100 ⇒
A[k]) ∧ n ≤ 100), c1 = 1 and c2 = 1 is a precision-witness.
However, note that it violates requirement E2 since for k = 101 (in
fact, for any k greater than 100), there does not exist a satisfying
assignment for the formula � ∧ 100 ≥ 101.

In this paper, we describe an algorithm for computing a worst-
case symbolic bound. Manual investigation of the bounds returned
by our algorithm on our benchmark examples confirms that the
bounds are precise (up to small multiplicative constants).

Automatically establishing the precision of a bound ℬ returned
by our algorithm is an orthogonal problem that we are currently
working on. It requires identifying a precision-witness (�, c1, c2)
and establishing that ℬ

c1
−c2 is a lower bound for all inputs that sat-

isfy �. The duality between the problems of computing a symbolic
bound ℬ and the problem of finding a witness � to show that ℬ is
precise is similar to the duality between the problems of proving a
given safety property, or finding a concrete counterexample/witness
to the violation of a safety property. However, the challenge in our
case is that the witness � that establishes the precision of a given
symbolic bound is symbolic as opposed to being concrete.

We next describe our overall algorithm for bound computation.

3.1 Algorithm
Our algorithm for the reachability-bound problem is as follows.

ReachabilityBound(�)
1 T := GenerateTransitionSystem(�);
2 ℬ := 1 + ComputeBound(T);
3 return TranslateBound(ℬ, �);

Line 1 of the algorithm first computes a disjunctive transition-
system T for the control location � that describes how the variables
at � get updated in the immediately next visit to control-location �.
This is done using the algorithm described in Figure 4 (Section 4),
which in turn uses the algorithm for transitive closure computation
described in Figure 6 (Section 5) to summarize any inner loops.

Line 2 of the algorithm computes a bound ℬ for the transition-
system T using the algorithm described in Figure 7 (Section 7),
which in turn makes use of techniques described in Section 6 for
computing ranking functions of individual transitions. The bound
on number of visits to � is then given by 1 + ℬ.

The bound ℬ is expressed in terms of inputs to the transition-
system, which may not necessarily be the procedure inputs. The
function TranslateBound at Line 3 then translates the bound ℬ at
� in terms of the procedure inputs. This can be either done by using
invariants (computed from an invariant generation tool) that relate
the procedure inputs with the inputs to the transition-system T , or
by using a backward symbolic engine to express the transition-
system inputs in terms of the procedure inputs. We implemented
the latter approach, which be found to be extremely effective in
terms of both precision and efficiency. This technique is detailed
in ??.

4. Generation of Transition-System
We first define the notion of a transition-system and a transition.

DEFINITION 3 (Transition-System for a Control Location �). Let
x⃗ be the tuple of variables that are live at �. A transition-system
for � is a relation T (x⃗, x⃗′) between variables x⃗ and their primed
counterparts x⃗′ such that if x⃗ take values v⃗1 and v⃗2 during any
two immediately successive/consecutive visits to �, then T (v⃗1, v⃗2)

GenerateTransitionSystem(�)
1 (�a, �b) := Split(�);
2 foreach top-level loop L:
3 �L := location before header of L.
4 T := GenerateTransitionSystem(�L)
5 Tc := TransitiveClosure(T);
6 Insert Summary(Tc) before header; Remove back-edges.
7 Initialize F [�a] to the transition-system Id.
8 Propagate transitions F using Merge/Compose rules.
9 return F [�b]

Figure 4. Generation of transition-system for a control location �.

holds. Furthermore, a transition-system is always represented in
DNF form as a disjunction of transitions s, where each transition s
is a conjunctive relation over variables x⃗ and x⃗′.

We desire a disjunctive representation for our transition-system
since our bound computation algorithm in Section 7 works by
identifying precise ranking functions for a single transition/path,
and then using proof rules to obtain the ranking function/bound for
the entire transition-system.

The key idea for generating a transition-system for a control lo-
cation � is to split the control location � into two locations (�a, �b)
(using the Split transformation shown in Figure 5(a)) and enu-
merate all paths that start at �a and end at �b and take the disjunc-
tions of the transitions represented by each path. The challenge that
arises in such an enumeration is the presence of any nested loops.
We address this challenge by replacing the nested loop by the tran-
sitive closure of the transition-system of the nested loop (using the
Summarize transformation shown in Figure 5(b)). Since path enu-
meration leads to an exponential blowup, we generate transition-
system on the flowgraph that has been sliced with respect to the
statements on which � is control-dependent [20] (since these are
the statements that determine the number of times � is executed).
This usually leads to transition-systems with a very small number
of transitions, as is exemplified by the statistics in Figure 8 in Sec-
tion 8.1.

Figure 4 describes the algorithm for generation of transition-
system for a control location �. The algorithm is described at flow-
graph level. We make the assumption about the flowgraphs being
reducible, but not necessarily structured. Our algorithm can be ex-
tended to irreducible flowgraphs too; but we avoid that for ease of
presentation, and the fact that most flowgraphs in practice are in
fact reducible [20]. However, it is important to consider the case
of unstructured flowgraphs because even if the original flowgraph
was structured, after the splitting transformation, the new flow-
graph would no longer be structured. The splitting transformation,
however, is reducibility-preserving. 1

Line 1 transforms the flowgraph by splitting the input control-
location � into two locations �a and �b using the Split transfor-
mation described in Figure 5(a). The loop in Line 2 iterates over
each top-level loop L in the transformed flowgraph. (Recall that
any graph can be decomposed into a DAG of maximal strongly-
connected components.) Line 3 makes use of the fact that every
loop in a reducible flow-graph has a unique header node. Line 4
recursively generates the transition-system for the loop L in the
transformed flow-graph, while Line 5 generates its transitive clo-
sure (using the algorithm described in Figure 6 in Section 5). Line 6
replaces the loop L by its summary obtained by generating tran-
sitive closure of the transition-system represented by it (using the
Summarize transformation shown in Figure 5(b)). The effect of the

1 It is interesting to observe that the nesting structure of the loops inside
which � was originally nested, is completely reversed after the splitting
transformation, but the flowgraph stays reducible.

(a) Split

π

…

…

πb

πa

…

…

(b) Summarize

…

…
header…

…

incoming
edges

back
edges Summary(Tc)

… (c) Compose

…
πout

stmt

πin

…

F[πout] = F[πin] ◦ Translate(stmt)

(d) Merge

…
π3

π1

…

F[π3] = F[π1] Ç F[π2]

π2

…

Figure 5. This figure describes the flowgraph transformations Split and Summarize, and the transfer functions Compose and Merge
required in the algorithm GenerateTransitionSystem for computing the transition-system for any control location.

foreach-loop in Line 2 is to replace all loops on the paths between
�a and �b by (disjunctive) loop-free abstract code-fragments. The
transition-system can now simply be generated by enumerating all
paths (which are now finite in number) between �a and �b.

Lines 7-9 generate the transition-system for an acyclic flow-
graph by a simple forward dataflow analysis that associates a (dis-
junctive) transition-system F [�] with each edge/control-location �
in the transformed flowgraph. For this purpose, we associate the
entry location �a with the transition-system consisting of a single
transition Id, which is the identity mapping between the variables
and their primed versions. The transfer functions for performing
this dataflow analysis are described in Figure 5. Without loss of any
generality, lets assume that all conditional guards have been trans-
lated into Assume statements. The Merge transfer function simply
returns the disjunctions of the transitions in the two input transition-
systems. The Compose transfer function makes use of the compose
operator ∘ that returns the composition of two transitions.

DEFINITION 4 (Composition of Transition-Systems). The binary
composition of two transition-systems T (x⃗, x⃗′) =

⋁
i

si and

T ′(x⃗, x⃗′) =
⋁
j

s′j , denoted by T ∘ T ′, is
⋁
i,j

si ∘ s′j , where si ∘ s′j
denotes the following transition.

si(x⃗, x⃗′) ∘ s′j(x⃗, x⃗′)
def
= ∃x⃗′′

(
si[x⃗′′/x⃗′] ∧ s′j [x⃗′′/x⃗]

)
where si[x⃗′′/x⃗′] denotes the substitution of x⃗′ by x⃗′′ in si.

The Translate function converts a statement into a transition-
system as follows. Without loss of any generality, we assume that
the only assignment statement is of the form x := e since memory
can be modeled using Select and Update expressions. The other
kinds of statements can be either an Assume statement (obtained
from the conditional guards) or Summary statement (obtained from
summarization of nested loops).

Translate(x := e) = (x′ = e) ∧ (
⋀
y ∕=x

y′ = y)

Translate(Assume(guard)) = Id ∧ guard

Translate(Summary(T)) = T

EXAMPLE 2. The transition-system for control-location �6 in Fig-
ure 1(b) is shown in Figure 1(e) along with the various steps re-
quired to obtain it from the flowgraph in Figure 1(d). These include
computing the transition-system for the inner loop and then replac-
ing the inner loop by its transitive closure. Next, the process is re-
peated for the outer loop.

5. Computation of Transitive Closure
In this section, we describe an algorithm for computing a transitive
closure (defined below) of a transition-system. This operation is re-
quired by the GenerateTransitionSystem algorithm described
in Figure 6 in the previous section.

DEFINITION 5 (Transitive Closure). We say that T ′(x⃗, x⃗′) is a
transitive closure of a transition-system T (x⃗, x⃗′) if

Id ⇒ T ′ and T ′ ∘ T ⇒ T ′

EXAMPLE 3. Figure 2(e) provides an example of a transition-
system T and its transitive closure. Note that i′ ≥ i is another
choice for the transitive closure for T . However, it is not as precise
as one shown in Figure 2(e), and would lead to generation of a
transition-system for location �6 for which no bound exists.

Generating transitive closure of a transition-system is like com-
puting invariants for a loop representing the transition-system. Ex-
ample 3 suggests the importance of these invariants to be precise,
and hence disjunctive. There has been some work on discovering
disjunctive invariants in general. We present below a technique that
takes advantage of its particular application to bound analysis. (We
also remark that our technique can be used in general for proving
safety properties of programs. In Section 8.2, we present prelimi-
nary results that demonstrate the effectiveness of our technique on a
set of benchmark examples taken from a variety of recent literature
on generating disjunctive invariants.)

Our algorithm for computation of precise transitive closures
is inspired by a convexity-like assumption that we found to hold
true for all examples that we have come across in practice. (This
includes the desired transitive closure of the transitions-systems of
nested loops to compute precise bounds, as well as the benchmarks
considered by previous work on computing disjunctive invariants.)

Recall that a theory is said to be convex iff for every quantifier-
free formula � in that theory, if � implies a disjunction of equalities,
then it implies one of those equalities, i.e.,(

�⇒

(⋁
i

(xi = yi)

))
=⇒

(⋁
i

(�⇒ (xi = yi))

)
(4)

Now, if
m⋁
j=1

s′j is a transitive closure of
n⋁
i=1

si, then from the def-

inition of the transitive closure, it follows that for all i ∈ {1, . . , n}
and j ∈ {1, . . ,m}, the following holds:

Id ⇒
m⋁
k=1

s′k and s′j ∘ si ⇒
m⋁
k=1

s′k

After distributing implication over disjunctions in the above equa-
tions (in a manner similar similar to in Equation 4), we obtain the
convexity-like assumption, which is defined formally below.

DEFINITION 6 (Convexity-like Assumption). Let T ′ =
m⋁
j=1

s′j(x⃗, x⃗′)

be a transitive closure for a transition-system T =
n⋁
i=1

si(x⃗, x⃗′),

where each si and s′j is a conjunctive relation. We say that the
transitive closure

⋁
j

s′j satisfies the convexity-like assumption if

there exists an integer � ∈ {1, . . ,m} a map � : {1, . . ,m} ×
{1, . . , n} 7→ {1, . . ,m}, such that for all i ∈ {1, . . , n} and

TransitiveClosure(
n⋁
i=1

si)

1 for j ∈ {1, . . ,m} − {�}: s′j := false;
2 s′� := Id;
3 do {
4 for i ∈ {1, . . , n} and j ∈ {1, . . ,m}:
5 s′�(j,i) := Join(s′�(j,i), s

′
j ∘ si)

6 } while any change in
m⋁
j=1

s′j

7 return
m⋁
j=1

s′j;

Figure 6. Transitive closure computation of a transition-system.

j ∈ {1, . . ,m}, the following holds:

Id ⇒ s′� and (s′j ∘ si) ⇒ s′�(j,i)

The tuple (�, �) is referred to as the convexity-witness of
m⋁
j=1

s′j .

The convexity-like assumption essentially implies that no case-split
reasoning is needed to prove inductiveness of transitive closure.

EXAMPLE 5. All the transitive closures of the respective transition-
systems described in Figure 1(e) and Figure 2 satisfy the convexity-
like assumption. For example, the convexity-witness for the tran-
sitive closure of the transition-system T shown in Figure 1(e) is
� = 1 and � = {(1, 1) 7→ 2, (2, 1) 7→ 2}. The convexity-witness
for the transitive closure of the transition-system T ′ shown in Fig-
ure 1(e) is � = 1 and � = {(1, 1) 7→ 1, (2, 1) 7→ 2, (1, 2) 7→
2, (2, 2) 7→ 2}.

Given the convexity-witness (�, �) of any transitive-closure T ′

(that satisfies the convexity-like assumption) of a transition-system
T , the algorithm in Figure 6 describes a way to compute a transitive
closure that is at least as precise as T ′. This property (stated for-
mally in the following theorem) is quite significant in light of the
fact that discovering disjunctive invariants has been quite a chal-
lenging task in literature and several merging heuristics based on
semantics of the constituent dataflow facts have been suggested.
The following theorem states the remarkable result that a semantic
merging criterion cannot be better than a static syntactic criterion
for merging data-flow facts.

THEOREM 1 (Precision of TransitiveClosure Algorithm). Let
m⋁
j=1

s′′j be any transitive closure of a given transition-system
n⋁
i=1

si

that satisfies the convexity-like assumption. Given the number of
disjunctsm and the convexity-witness (�, �), algorithm in Figure 6

outputs a transitive closure that is at least as precise as
m⋁
j=1

s′′j .

PROOF: We can prove that s′j ⇒ s′′j by induction on the number of
loop iterations; the base case as well as the inductive case both
follows easily from the definition of convexity-like assumption.

□

The algorithm in Figure 6 performs abstract interpretation over
the power-set extension of an underlying abstract domain (such
as Polyhedra [8], Octagons [19], Conjunctions of a given set of
predicates), where elements are restricted to at most m disjuncts.
It uses the map � to determine how to merge the n ×m different
disjuncts (intom disjuncts) that are obtained after propagation ofm
disjuncts across n transitions. The key distinguishing feature of the
algorithm from earlier work on computing disjunctive invariants is
that our algorithm uses a syntactic criterion based on � to merge

disjuncts as opposed to using semantic criterion based on notion
of differences between disjuncts. This is justified by Theorem 1,
which, in effect, says that no semantic merging criterion can be
more powerful than a static syntactic criterion. There are two issues
with the algorithm presented in Figure 6 that we discuss below.

Abstract Domains with Infinite Height The algorithm may not
terminate when computing Join over domains with infinite height.
The standard solution would be to replace apply Widen operator
in place of Join operator, say after every 3 iterations of the loop.
Since funny things are known to happen with widening, it is no
longer possible to formally prove precision results as in Theorem 1.
However, we show experimentally (in Section 8.2) that our algo-
rithm is able to compute precise enough invariants with use of stan-
dard widening techniques when applied on benchmarks taken from
recent work on computing disjunctive invariants.

Choice of m and the convexity-witness (�, �) Since we do not
know the desired transitive closure and its convexity-witness (�, �)
upfront, we have two options.

∙ We can enumerate all possible (�, �) for a specifically chosen
m. There are mmn such possible maps since without loss of
any generality, we can assume that � is 1. If m and n are small
constants, say 2 (which is quite often an important special case),
then there are 16 possibilities. Each choice for � and � results in
some transitive closure computation by the algorithm. One can
then select the strongest transitive closure among the various
transitive closures thus obtained (or heuristically select between
incomparable transitive closures). However, if m or n is large,
then this approach quickly becomes prohibitive.
∙ We can use some heuristics to construct m, �, �. The follow-

ing heuristic turns out to be the most effective for our applica-
tion of bound computation. We choose m to be n + 1, and �
to be m for all and select the map � from the DAG of depen-
dencies between transitions of T generated from bound com-
putation of T (as described in Section 7). In particular, for any
i, j ∈ {1, . . , n}, we define �(n + 1, i) := i, �(i, i) := i, and
�(i, j) := i except when ¬NI(sj , si, r) (where r ∈ RankC(si)
was the ranking function that contributed to the bound compu-
tation of T) in which case we define �(i, j) := j. It can be
proved that such a choice of the map � and � would generate
a transitive closure that would allow for computing the bound
of (T ∘ TransitiveClosure(T)) using our bound computa-
tion algorithm, provided it was able to generate a bound for
the transition-system T . Such a transitive closure preserves im-
portant relationships (between program variables) for the appli-
cation of compute bounds on the transition-system that is to be
obtained after replacing the corresponding loop by the transitive
closure. In particular, note that this heuristic for construction of
convexity-witness, when used in conjunction with algorithm in
Figure 6 discovers the required transitive-closures of the respec-
tive transition systems mentioned in Figure 1(e) and Figure 2.

6. Ranking Function for a Transition
In this section, show how to compute a ranking function for a
transition. These ranking functions are made use of by the bound
computation algorithm described in Section 7.

DEFINITION 7 (Ranking Function for a Transition). We say that a
real-valued function r(x⃗) is a ranking function for a transition
s(x⃗, x⃗′) if it is bounded below by 0 and if it decreases by at least 1
in each execution of the transition, i.e.,

∙ s⇒ (r > 0)

∙ s⇒ (r[x⃗′/x⃗] ≤ r − 1)

We denote this by Rank(s, r).

We say that a ranking function r1(x⃗) is more precise than a
ranking function r2(x⃗) if r1 ≤ r2 (because in that case, r1 provides
a more precise bound for the transition than r2).

We discuss below the design of a functionality RankC that takes
as input a transition s(x⃗, x⃗′) and outputs a set of ranking functions
r(x⃗) for that transition. We use a pattern-matching based technique
that relies on making some queries that can be discharged using
an SMT solver. We found this technique to be effective (fast and
precise) for most of the transitions that we encountered during the
process of bound computation on .Net base-class libraries. How-
ever, other techniques, such as constraint-based techniques [22] or
counter instrumentation enabled iterative fixed-point computation
based techniques [12, 15] can also be used for generating ranking
functions. Clearly, there are examples where the constraint-based
or iterative techniques that perform precise arithmetic reasoning
would be more precise, but nothing beats the versatility of sim-
ple pattern matching that can handle non-arithmetic patterns with
equal ease.

We list below some patterns that we found to be most effective.

6.1 Arithmetic Iteration Patterns
One standard way to iterate over loops is to use an arithmetic
counter. Ranking functions for such an iteration pattern can be
computed using the following pattern.

If s⇒ (e > 0 ∧ e[x⃗′/x⃗] < e), then e ∈ RankC(s)

The candidates for expression e while applying the above pat-
tern are restricted to those expressions that only involve variables
from x⃗ and those that occur syntactically as an operator of con-
ditionals when normalized to the form (e > 0), after rewriting a
conditional of the form (e1 > e2) to (e1 − e2 > 0). Following
are some example transitions whose ranking functions can be com-
puted using an application of this pattern.

∙ RankC(i′=i+1∧ i<n∧ i<m∧ n′=n∧m′≤m)={n−i,m−i}
∙ RankC(n > 0 ∧ n′ ≤ n ∧ A[n] ∕= A[n′]) = {n}

The second example transition above (obtained from the transition-
system generated for the loop in Example Ex3 in Figure 2) is a
good illustration of how simple pattern matching is used to guess
a ranking function, and an SMT solver (that can reason about
combination of theory of linear arithmetic and theory of arrays)
can be used to perform the relatively complicated reasoning of
verifying the ranking function over loop-free code fragment.

Another common arithmetic pattern is the use of a multiplica-
tive counter whose value doubles or halves in each iteration (as in
case of binary search). A more precise ranking function for such a
transition can be computed by using the pattern below.

If s⇒ (e ≥ 1 ∧ e[x⃗′/x⃗] ≤ e/2), then log e ∈ RankC(s)

The candidates for expression e while applying the above pat-
tern are restricted to those expressions that only involve variables
from x⃗ and those that occur syntactically as an operator of con-
ditionals when normalized to the form (e > 1), after rewriting a
conditional of the form (e1 > e2) that occurs in s to (e1

e2
> 1),

provided e2 is known to be positive. Following are some example
transitions whose ranking functions can be computed using an ap-
plication of this pattern.

∙ RankC(i′ ≤ i/2 ∧ i > 1) = {log i}
∙ RankC(i′ = 2×i ∧ i > 0 ∧ n > i ∧ n′ = n) = {log (n/i)}

The above two patterns are good enough to compute ranking func-
tions for most loops that iterate using arithmetic counters. How-
ever, for purpose of completeness, we describe below two examples

(taken from some recent work on proving termination) that can-
not be matched using the above two patterns, and hence illustrate
the limitations of pattern-matching. However, we can find ranking
functions or bounds for these examples using the counter instru-
mentation and invariant generation techniques described in [12].

∙ Consider the terminating transition-system (x′ = x+ y ∧ y′ =
y + 1 ∧ x < n ∧ n′ = n) from [5], which uses the principle of
polyranking lexicographic functions for proving its termination.
Note that the reason why the transition-system terminates is
because even though y is not known to be always positive, it
will eventually become positive by virtue of the assignment
y′ = y + 1.
∙ Consider the terminating transition-system (x′ = y ∧ y′ =
x−1∧x > 0). This transition-system can be proven terminating
by monotonicity constraints as introduced in [2]). Note, that the
reason why the transition-system terminates is because in every
two iterations the value of x decreases by 1.

6.2 Boolean Iteration Patterns
Often loops contain a path/transition that is meant to execute just
once. The purpose of such a transition is to switch between different
phases of a loop, or to perform the cleanup action immediately
before loop termination. Such an iteration pattern can be captured
by the following rule/lemma, where the operator Bool2Int(e)
maps boolean values true and false to 1 and 0 respectively.

If s⇒ (e ∧ ¬(e[x⃗′/x⃗])), then Bool2Int(e) ∈ RankC(s)

The candidates for boolean expression e while applying the
above pattern are restricted to those expressions that only involve
variables from x⃗ and those that occur syntactically in the transition
s. Following are some example transitions whose ranking functions
can be computed using an application of this pattern.

∙ RankC(flag′ = false ∧ flag) = {Bool2Int(flag)}
∙ RankC(x′ = 100 ∧ x < 100) = {Bool2Int(x < 100)}

6.3 Bit-vector Iteration Patterns
One standard way to iterate over a bit-vector is to change the
position of lsb, i.e., least significant one bit (or msb, i.e., most
significant one bit). Such an iteration pattern can be captured by
the following rule/lemma, where the function LSB(x) denotes the
position of the least significant 1-bit, counting from 1, and starting
from most significant bit-position. LSB(x) is defined to be 0 if there
is no 1-bit in x. Note that LSB(x) is bounded above by the total
number of bits in bit-vector x.

If s⇒ (LSB(x′) < LSB(x) ∧ x ∕= 0), then LSB(x) ∈ RankC(s)

The candidates for variable x while applying the above pattern
are all bit-vector variables that occur in the transition s. The query
in the above pattern can be discharged using an SMT solver that
provides support for bit-vector reasoning, and, in particular, the LSB
operator. (If the SMT solver does not provide first-class support
for the LSB operator, then one can encode the LSB operator using
bit-level manipulation as described in [25].) Following are two
common example transitions whose bound can be computed using
the above rule.

∙ RankC(x′ = x << 1 ∧ x ∕= 0) = {LSB(x)}
∙ RankC(x′ = x&(x− 1) ∧ x ∕= 0) = {LSB(x)}

6.4 Data-structure Iteration Patterns
Iteration over data-structures or collections is quite common, and
one standard way to iterate over a data-structure is to follow field
dereferences until some designated object is reached. Such an iter-

ation pattern can be captured by the following rule/lemma, where
the function Dist(x, z, f) denotes the number of field dereferences
along field f required to reach z from x.

If s⇒ (x ∕= z ∧ (Dist(x′, z, f) < Dist(x, z, f))),

then Dist(x, z, f) ∈ RankC(s).

The candidates for variables x, z and field f , while applying
the above pattern are all variables x⃗ and field names that occur
in s. The query in the above pattern can be discharged using an
SMT solver that implements a decision procedure for the theory
of reachability and can reason about its cardinalities (e.g., [14]).
Note that Dist(x, z, f) denotes the cardinality of the set of all
nodes that are reachable from x before reaching z along field f .
Following are some example transitions whose ranking functions
can be computed using an application of this pattern.

∙ RankC(x ∕= Null∧x′ = x.next) = {Dist(x, Null, next)}

∙ RankC(Mem′=Update(Mem, x.next, x.next.next) ∧
x ∕= Null ∧ x.next ∕= Null) = {Dist(x, Null, next)}

7. Bound Computation of Transition-System
In this section, we show how to compute a bound for a transition-
system T .

If a transition-system consists of a single transition s, then a
bound for the transition-system can be obtained simply from any
ranking function r of the transition s using the following theorem.

THEOREM 2. Let Rank(s, r). Then,

Bound(s) = Max(0, r)

where the Max operator returns the maximum of its arguments.

PROOF: If the transition s is ever taken, then r denotes an upper
bound on number of iterations of s (since, by our definition of
a ranking function, transition s implies that r is bounded below
by 0 and decreases by at least 1 in each iteration). The other
case is when s is never executed (i.e., the number of iterations
of s is 0). Combining these two cases, we obtain the result.

□

The significance of sanitizing the bound by applying the Max oper-
ator in Theorem 2 is illustrated in Example 7.

Obtaining bound for a transition-system consisting of multiple
transitions is not as straight-forward. We cannot simply, for exam-
ple, add the ranking functions of all individual transitions to ob-
tain the bound for the transition-system, since interleaving of those
transitions with each other can invalidate the decreasing measure of
the ranking function. An alternative can be to define the notion of
lexicographic ranking functions [5] or disjunctively well-founded
ranking functions [23] for transition-systems consisting of multi-
ple transitions. Such an approach may sometimes work for proving
termination, but would usually not be precise for yielding bounds.

For purpose of precise bound computation, we distinguish be-
tween the different ways in which two transitions of a transition-
system can interact with one another. These cases (described in
Section 7.1, Section 7.2, and Section 7.3) result in composition of
the ranking functions using three fundamentally different mathe-
matical operators, namely max, sum, and product.

7.1 Max Composition of Ranking Functions
The bound for a transition-system consisting of two transitions
s1 ∨ s2 can be obtained by applying the Max operator to ranking
functions for the individual transitions under cases when the transi-
tions are either disjoint, or they decrease each other’s ranking func-

tions. In fact, the criterion is a bit more general, and is formalized
in Theorem 3, which makes use of the following definition.

DEFINITION 8 (Cooperative-interference). We say there is coop-
erative interference between transitions s1 and s2 through their
ranking functions r1 and r2 if any of the following conditions hold:

∙ (Non-enabling condition) s1 ∘ s2 = false.
∙ (Rank-decrease condition) s1 ⇒ r2[x⃗′/x⃗] ≤ Max(r1, r2)− 1.

We denote such a cooperative-interference by CI(s1, r1, s2, r2).

THEOREM 3 (Proof Rule for Max-Composition). Let r1 ∈ RankC(s1)
and r2 ∈ RankC(s2). If CI(s1, r1, s2, r2)∧CI(s2, r2, s1, r1), then

Bound(s1 ∨ s2) = Max(0, r1, r2)

PROOF: We consider four cases below. (1) If both transitions s1
and s2 satisfy the non-enabling condition, then either only tran-
sition s1 can execute or only transition s2 can execute. Hence,
the result. (2) If both transitions satisfy the rank-decrease con-
dition, then it can be shown that Max(r1, r2) is a ranking func-
tion for both the transitions s1 and s2. Hence, the result. (3)
Now suppose transition s1 satisfies the non-enabling condition,
while transition s2 satisfies the rank-decrease condition. The
only possibility is that a sequence of transitions s2 is followed
by a sequence of transitions s1. The result now follows from
the fact that Max(r1, r2) is a ranking function for s2, while r1
is a ranking function for s1. (4) The last case is similar to (3).

□

EXAMPLE 6. Consider the transition-system s1 ∨ s2 (for the
control-location at Line 6 in Example Ex1 in Figure 1) with the
following two transitions:

s1
def
= (n′ = n− 1 ∧ j < n− 1 ∧ j′ ≥ j ∧ i′ = i)

s2
def
= (n′ = n− 1 ∧ i < n− 1 ∧ i′ ≥ i+ 1 ∧ j′ ≥ i+ 2)

We can compute RankC(s1) = {n − j − 1} and RankC(s2) =
{n − i − 1}. We can prove CI(s1, n − j − 1, s2, n − i − 1) and
CI(s2, n−i−1, s1, n−j−1). An application of max-composition
theorem yields a bound of Max(0, n − i − 1, n − j − 1) for the
transition-system s1 ∨ s2.

7.2 Additive Composition of Ranking Functions
The bound for a transition-system consisting of two transitions
s1 ∨ s2 can be obtained by adding together the ranking functions
for the two transitions under cases when the transitions do not
interfere with each other’s ranking functions. To state this formally
(Theorem 4), we first define the notion of non-interference of a
transition with respect to the ranking function of another transition.

DEFINITION 9 (Non-interference). We say that a transition s1
does not interfere with the ranking function r2 of another tran-
sition s2 if any of the following conditions hold:

∙ (Non-enabling condition) s1 ∘ s2 = false

∙ (Rank-preserving condition) s1 ⇒ (r2[x⃗′/x⃗] ≤ r2)
We denote such a non-interference by NI(s1, s2, r2).

The following theorem holds. We use the notation Iter(s)
denote the total number of iterations of transition s inside its
transition-system.

THEOREM 4 (Proof Rule for Additive-Composition). Let r1 ∈
RankC(s1), r2∈RankC(s2). If NI(s1, s2, r2) ∧ NI(s2, s1, r1), then

Bound(s1 ∨ s2) = Iter(s1) + Iter(s2), where
Iter(s1) = Max(0, r1)

Iter(s2) = Max(0, r2)

PROOF: The non-interference conditions NI(s2, s1, r1) ensure
that the value of the ranking function r1 for transition s1 is not
increased by any interleaving of transition s2. Hence, the total
number of iterations of the transition s1 is given by Max(0, r1)
(based on an argument similar to that in proof of Theorem 2).
Similarly, the total number of iterations of the transition s2 is
given by Max(0, r2). Hence, the result.

□

EXAMPLE 7. Consider the transition-system s1 ∨ s2 (obtained
from the loop in Example Ex6 in Fig. 3 with following 2 transitions:

s1
def
= z > x ∧ x < n ∧ x′ = x+ 1 ∧ Same({z, n})

s2
def
= z ≤ x ∧ x < n ∧ z′ = z + 1 ∧ Same({x, n})

We can compute RankC(s1) = {n−x} and RankC(s2) = {n−z}.
We can prove NI(s1, s2, n− z) and NI(s2, s1, n− x). An applica-
tion of additive-composition theorem yields a bound of Max(0, n−
x) + Max(0, n− z) for the transition-system s1 ∨ s2.

We now explain the importance of using the Max operators in the
statement of Theorem 2 and Theorem 4. If we defined Iter(s) to
simply r instead of Max(0, r), then we would incorrectly conclude
the bound on the transition-system s1∨s2 to be 2n−x−z. This is
incorrect because, for example, suppose that the transition-system
was executed in the initial state n = 100, x = 0, z = 200, then
the expression n−x−z evaluates to 0, while the transition-system
s1 ∨ s2 executes for 100 iterations.

This example is also a good illustration of how our technique
differs significantly from (and, in fact, provides a simpler alterna-
tive to) recently proposed techniques for proving termination [7]
and loop bound analysis [13]. The control-flow refinement tech-
nique used in [13] unravels the exact interleaving pattern between
the two transitions to conclude that s1 and s2 interleave in lock-
steps, only after which it is able to derive the bound. In contrast, our
proof rule stated in Theorem 4 only requires to establish the non-
interference property between the two transitions. The principle of
disjunctively well-founded ranking functions used in [7] requires
computing the transitive closure of the transition-system only to
conclude a quadratic bound. In contrast, our proof rule stated in
Theorem 4 does not require computing any transitive-closure, and
is even able to obtain a precise linear bound. (Transitive-closure
is required in our technique to only summarize any inner nested
loops, which are not present in the loop in Example Ex6).

Observe that the Additive-Composition and Max-Composition
Theorems provide quite orthogonal proof-rules. The bound for
the transition-system in Example 6 can be computed using Max-
Composition Theorem, but not using Additive-Composition The-
orem. Similarly, the bound for the transition-system in Example 7
can be computed using Additive-Composition Theorem, but not us-
ing Max-Composition Theorem.

7.3 Multiplicative Composition of Ranking Functions
If we cannot establish mutual cooperative-interference or mutual
non-interference properties of two transitions, then it is still possi-
ble to compute bounds provided one of the transition satisfies the
non-interference property. The bound in such a case is obtained by
multiplying together the ranking functions for the two transitions,
as made precise in the following theorem. This is a common case
for bounding iterations of an inner loop when its iterators are re-
initialized inside the outer loop leading to a multiplicative bound.

THEOREM 5 (Proof Rule for Multiplicative-Composition). Let r1 ∈
RankC(s1), and r2 ∈ RankC(s2). If NI(s2, s1, r1), then

Bound(s1 ∨ s2) = Iter(s1) + Iter(s2), where
Iter(s1) = Max(0, r1)

Iter(s2) = Max(0, r2) + Max(0, u2)× factor

where factor = Max(0, r1)

where u2(x⃗) denotes an upper bound on expression r2(x⃗′) in terms
of x⃗ as implied by TC(s1). For the special case when (r1 > 0)∧ s2
is unsatisfiable, we can choose factor to be 1.

PROOF: From the non-interference condition NI(s2, s1, r1), we
can conclude that Iter(s1) ≤ Max(0, r1) (same argument as
in proof of Theorem 4). However, the same thing cannot be s2.
Instead we observe that the maximum number of iterations of
s2 in between any two interleavings of s1 is bounded above by
Max(0, u2) (since the starting value of the ranking function r2
is reset to u2 by any execution of s1). However, the number of
iterations of s2 before any interleaving of s1 is still bounded
by Max(0, r2). Hence, the total number of iterations of s2 is
bounded by Max(0, r2)+Max(0, u2)×Max(0, r1). The special
case follows from the observation that even though s1 interferes
with the ranking function r2 of s2, it can interfere at most once
since s2 is enabled only after completion of all iterations (as
opposed to somewhere in the middle) of s1. In other words, the
worst-case possibility is a sequence of transitions s2, followed
by a sequence of transitions s1, followed by a sequence of
transitions s2.

□

EXAMPLE 8. Consider the transition-system with the following
two transitions s1 and s2.

s1
def
= i′=i−1 ∧ i>0 ∧ j′=j−1 ∧ j>0 ∧ Same({k′,m′})

s2
def
= j′ = m ∧ k′=k−1 ∧ k > 0 ∧ Same({i′,m′})

We can compute RankC(s1) = {i, j} and RankC(s2) = {k}.
We can prove NI(s1, s2, k) and NI(s2, s1, i). An application
of additive-composition theorem yields a bound of Max(0, i) +
Max(0, k) for the transition-system s1 ∨ s2. An application of
multiplicative-composition theorem yields an incomparable bound
of Max(0, j) + Max(0,m)× Max(0, k).

7.4 Combining the Composition Rules
In this section, we discuss how to compute bounds for a transition-
system with multiple (including more than 2 transitions) by putting
together the proof rules mentioned in Theorem 3, 4, and 5.

First observe that an optimal way of applying the proof rules in
Additive-Composition Theorem and Multiplicative-Composition
Theorems (Theorem 4 and Theorem 5) is to compute the total
number of iterations for each transition individually, and then sum
them up together. The algorithm described in Figure 7 implements
such a strategy based on a simple extension of Theorem 4 and The-
orem 5 to the case when a transition-system contains more than 2
transitions. The algorithm iteratively computes an array Iter such
that Iter[si] denotes a bound on the total number of iterations
taken by the transition si during any execution of the transition-
system s1 ∨ . . ∨ sn. The array J at Line 4 contains the indices of
all transitions that interfere with the ranking function r of transi-
tion si. If a bound on the total iterations of all those transitions is
known (test on Line 5), then the iterations of si is obtained using a
generalization of Theorem 4 and Theorem 5 (Line 9). A bound on
the entire transition-system is obtained by simply summing up the
bound on the total number of iterations of the individual transitions
(Line 11). For simplicity, we have presented the algorithm to output

ComputeBound(
n⋁
i=1

si)

1 for i ∈ {1, . . , n}: Iter[si] := ⊥;
2 do {
3 for i ∈ {1, . . , n} and r ∈ RankC(si):
4 J := {j ∣ ¬NI(sj , si, r)};
5 if (Iter[si] = ⊥) ∧ (∀j ∈ J : Iter[sj] ∕= ⊥)
6 factor := 0;
7 foreach j ∈ J: factor:=factor+Iter[sj];

8 Let u(x⃗) be an upper bound on r[x⃗′/x⃗]
as implied by TC(

⋁
j ∕=i

sj).

9 Iter[si] := Max(0, r) + Max(0, u)× factor′;
10 } while any change in Iter array;
11 if (∀j ∈ {1, . . , n} : Iter[sj] ∕= ⊥), return

∑
j

Iter[sj];

12 else return ‘‘Potentially Unbounded’’

Figure 7. Bound Computation for a Transition-System
n⋁
i=1

si from

ranking functions RankC(si) of individual transitions.

only one bound, but the algorithm can be easily extended to output
multiple bounds by relaxing the condition Iter[si] = ⊥ in Line 5
and by associating a set of bounds (as opposed to a single bound)
with Iter[si].

EXAMPLE 9. Consider the transition-system s1∨s2∨s3 (obtained
from the loop in Ex7 in Figure 3) with the following 3 transitions:

s1 = j < n ∧ j < m ∧ j′=j+1 ∧ 0 < n < m ∧ Same({n,m})
s2 = j > n ∧ j < m ∧ j′=j+1 ∧ 0 < n < m ∧ Same({n,m})
s3 = j ≥ m ∧ j′ = 0 ∧ 0 < n < m ∧ Same({n,m})

We can compute RankC(s1) = {n−j,m−j}, RankC(s2) = {m−
j}, RankC(s3) = {Bool2Int(j ≥ m)}. Since NI(s1, s2,m − j)
and NI(s3, s2,m − j), the algorithm in Figure 7 first computes
Iter[s2] = Max(0,m− j). Using NI(s1, s3, Bool2Int(j ≥ m)),
the algorithm now computes Iter[s3] = Bool2Int(j ≥ m) ×
(1 + 1) ≤ 2. From NI(s2, s1, n− j), the algorithm now computes
Iter[s1] = Max(0, n − j) + Max(0, n) × 2. The algorithm now
returns a total bound of Max(0,m − j) + 2 + Max(0, n − j) +
Max(0, n)×2. This bound can be translated to in terms of the inputs
in Example Ex7 by substituting n + 1 for j (as obtained from the
initial state before the loop) to yield m + 1 + n, which is a factor
of 2 away from the real bound of m+ 1 (since n < m).

This example also illustrates how our technique differs signifi-
cantly from (and, in fact, provides a simpler alternative to) recently
proposed techniques for termination and loop bound analysis. The
control-flow refinement technique used in [13] uses a sophisticated
machinery to unravel the exact interleaving pattern between the
three transitions (in particular, s2 follows s3 which in turn follows
s1) and is able to obtain the exact bound of m+1. In contrast, our
proof rules yield a bound ofm+1+n, but using a much simpler for-
malism. We do not know of any other technique (including [7, 15])
that can even prove termination of this example.

We now discuss an extension to the above-described algorithm
that also takes advantage of the proof rule in Max-Composition
Theorem (Theorem 3). For this purpose, before running the al-
gorithm, we simply extend RankC(s) for any transition s with
Max(r, r′), where r ∈ RankC(s) and r′ ∈ RankC(s′) for some
other transition s′, provided Rank(s, Max(r, r′)) holds.

Transitions 1 2 3 4 5 6 7 8 9 ≥10
Loops 1561 224 107 44 25 11 9 5 8 191

Figure 8. Number of loops for respective number of transitions.

8. Experiments
We have implemented our proposed solution to the reachability-
bound problem in C# using Phoenix Compiler Infrastructure [21]
and the SMT solver Z3 [1]. Our implementation runs on .Net bi-
naries. We present below two different sets of experimental results
that measure the effectiveness of various aspects of our solution.

8.1 Loop Bound Computation
We considered the problem of computing symbolic bounds on the
number of loop iterations, which is an instance of the reachability-
bound problem where the control-location under consideration is
the loop header. We chose mscorlib.dll (a .Net base-class library),
which had 2185 loops, as our benchmark. Our tool analyzes these
2185 loops in less than 5 minutes and is able to compute bounds
for 1677 loops. The problem of loop bound computation is espe-
cially challenging under the following two cases for which earlier
techniques for bound computation do not perform as well.

Case 1: Iterations of outer loops depend on inner loops (examples
of the kind described in Figure 2). There were 113 such loops out
of the total 2185 loops. The key idea of our paper to address such
challenges is to replace the inner loops by their transitive-closure
that preserves required relationships between the inputs and outputs
of the loop. The effectiveness of our transitive closure computation
algorithm is illustrated by the fact that our success ratio for such
cases (80 out of 113, i.e., 70%) is similar to our overall success
ratio (1677 out of 2185, i.e., 76%).

Case 2: Loop bound computation for nested loops. The challenge
here is to compute precise amortized bounds on the total number of
iterations of those loops, as opposed to the number of iterations
per iteration of the immediately outer loop (the latter is an easier
problem than the former). This is the same issue as exemplified by
the example in Figure 1. There were 250 such loops out of the to-
tal 2185 loops. Unfortunately, we cannot evaluate the precision of
our bounds automatically. As described in Section 3, the problem
of computing a precision-witness for a given symbolic bound is
an orthogonal problem that we are currently working on. Instead,
we manually investigated the generated bounds for most of these
loops and found all these bounds to be precise (according to Defini-
tion 2). This points out the effectiveness of our bound-computation
algorithm based on the three proof rules presented in Section 7.

Another interesting statistic is the distribution of the number
of transitions generated for each loop, as shown in Figure 8. The
small number of transitions validates the design choice behind our
transition-system generation algorithm that enumerates all paths
between two program points (in order not to lose any precision)
after slicing has been performed.

Out of the 508 loops for which we failed to compute a bound,
the failure for 503 loops is attributed to not being able to com-
pute ranking functions for some transition in the transition-system
corresponding to the loop. There were two main causes: (i) our
implementation is intra-procedural, meaning that our transition-
system generation algorithm fails when the value of loop itera-
tors gets modified because of procedure calls. This problem can
be addressed by simply inlining the procedure, provided there are
no recursive calls. (ii) We only implemented the arithmetic and
boolean iteration patterns, while several transitions were iterating
using field dereferences or bit-vector manipulation. A sound han-
dling of field dereferences would require use of an alias analysis.
A more optimistic way to read this statistic is to observe the ef-
fectiveness of the pattern-matching technique for finding ranking

Original Example Various Details
Gopan and Reps 06.
P. 3, F. 1
x:=0, y:=0;
while (*)

if (x ≤ 50) y++;
else y--;
if (y<0) break;
x++;

assert(x=102)

(x ≤ 50∧y+1 ≥ 0∧y′ = y+1∧x′ = x+1)s1
∨(x > 50 ∧ y − 1 ≥ 0 ∧ y′ = y − 1 ∧ x′ =

x+ 1)s2

Init ≡ x = 0 ∧ y = 0

(0 ≤ x′ ≤ 51 ∧ x′ = y′)s′1
∨(52 ≤ x′ ≤ 102 ∧ x′ + y′ = 102)s′2

� = 1, � = {(1, 1) 7→ 1, (1, 2) 7→ 2, (2, 2) 7→
2, (2, 1) 7→ 1}

Beyer et al. 07.
P. 306, F. 4.
x:=0; y:=50;
while (x<100)

if (x<50) x++;
else x++; y++;

assert(y=100);

(x ≤ 50 ∧ x′ = x+ 1 ∧ y′ = y)s1
∨(51 ≤ x ≤ 100∧x′ = x+1∧y′ = y+1)s2

Init ≡ x = 0 ∧ y = 50

(0 ≤ x′ ≤ 50 ∧ y′ = 50)s′1
∨(51 ≤ x′ ≤ 100 ∧ x′ = y′)s′2

� = 1, � = {(1, 1) 7→ 1, (1, 2) 7→ 2, (2, 2) 7→
2, (2, 1) 7→ 1}

Gulavani et al. 06.
P. 5, F. 3. Henzinger
et al. 02. P. 2, F. 1.
lock:=0;assume(x ∕= y)
while (x ∕= y)

lock := 1; x := y;
if (*)

lock := 0; y++;
assert(lock = 1);

(x ∕= y ∧ lock′ = 1 ∧ x′ = y ∧ y′ = y)s1
∨(x ∕= y∧lock′ = 0∧x′ = y∧y′ = y+1)s2

Init ≡ x ∕= y ∧ lock = 0

(x′ = y′ ∧ lock′ = 1)s′1
∨(x′ + 1 = y′ ∧ lock′ = 0)s′2

� = 1, � = {(1, 1) 7→ 1, (2, 1) 7→ 1, (1, 2) 7→
2, (2, 2) 7→ 2}

Popeea and Chin 06. P. 2
x := 0; upd := 0;
while (x < N)

if (*)
l := x; upd := 1;

x++;
assert(upd = 1

⇒ 0 ≤ l < N);

(x < N∧x′ = x+1∧l′ = l∧upd′ = upd)s1
∨(x < N∧x′ = x+1∧l′ = x∧upd′ = 1)s2

Init ≡ x = 0 ∧ upd = 0

(x′ ≥ 0 ∧ l′ = l ∧ upd′ = 0 ∧N ′ = N)s′1
∨(x′ ≥ 1∧upd′=1∧N ′=N∧0 ≤ l′ < N)s′2

� = 1, � = {(1, 1) 7→ 1, (1, 2) 7→ 2, (2, 2) 7→
2, (2, 1) 7→ 2}

Figure 9. Prominent disjunctive invariant challenges from recent
literature. Entries in 2nd column show following details in that
order: transition-system representation of the loop, initial condition
Init, transitive closure of the transition-system required to prove
the assertion, and the convexity-witness (�, �).

functions: a handful of patterns are sufficient to compute ranking
functions for the various transitions for 76% of the examples.

There were only 5 cases (out of 1682 cases) for which we were
able to compute a ranking functions for each transition, but were
not able to compute a bound for the transition-system. This points
out the effectiveness of our proof rules for bound computation from
composition of ranking functions of individual transitions.

8.2 Disjunctive Invariant Computation
We also evaluated the effectiveness of our transitive closure algo-
rithm on a variety of benchmark examples chosen by recent state-
of-the-art papers on computing disjunctive invariants. Figure 9 de-
scribes these four examples that have been used as flagship exam-
ples to motivate new techniques for proving non-trivial safety as-
sertions. Proving validity of the assertions in all these examples re-
quires disjunctive loop invariants. It turns out that the required dis-
junctive invariant for each of these examples satisfies the convexity-
like assumption, and hence can be discovered by our transitive clo-
sure algorithm in Figure 6. We adapt our algorithm slightly to take
advantage of the initial condition (as is done by all the other ap-
proaches) by initializing s′1 to Init ∧ Id at Line 2, instead of only
Id since Init is known at the beginning of each loop. This allows
our algorithm to establish the desired assertion using a disjunctive
invariant with fewer disjuncts. (For a more detailed discussion on
this adaptation, see the end of this section).

Given that the number of disjuncts in the desired transitive
closure is 2 for all examples, and the number of transitions in
the transition-system represented by the loop is either 2 or 3, the
total number of possibilities for the map � is 16 or 64 respectively.
Hence, by trying out all possible maps, the algorithm in Figure 6
can discover the desired disjunctive invariants.

Instead we experimented with a heuristic for dynamic construc-
tion of map � that we found to be effective for all examples. We
choose m = 1 and initialize s′1 to Init ∧ Id. We maintain a par-
tial map � that is completely undefined to start with, and use the
following heuristic to construct � on the fly. For each choice of
(i, j) on Line 4 in the algorithm, if �(j, i) is undefined, we com-
pute s = s′j ∘ si in the abstract domain. If s is not equal to false,
then we use a semantic-merging criterion to find any k such that
s is close to an existing disjunct s′k and define �(j, i) to be k. If
no such k exists, we increase m by 1 and define �(j, i) to the new
value of m. The semantic-merging criterion that we used for our
experiments was one that checks agreements on variable equalities
(as opposed to the more general inequality relationships expressible
in the octagon domain [19] used by our prototype implementation).
This heuristic is an excellent example of combining the strengths
of semantic-merging criterions in light of the importance of having
a static syntactic merging criterion as suggested by Theorem 1 (if
we do not want to iterate over all maps �). We implemented this
heuristic and our prototype implementation is able to validate the
assertion in each of the examples in less than 0.2sec.

We now return to the discussion on what would happen if we do
not adapt our algorithm to make use of the initial condition Init
while computing a loop summary. We can still prove the desired
assertion, but the required transitive closure would consist of more
disjuncts, and would involve elements from a numerical domain
richer than the Octagon abstract domain. For example, for the first
example, we would require the following disjunctive invariant:

(Id)s′1
∨ (x ≤ 50 ∧ x′ ≤ 51 ∧ x′ − x = y′ − y)s′2

∨ (x ≥ 51 ∧ x′ ≥ 52 ∧ x′ − x = y′ − y)s′3
∨ (x ≤ 50 ∧ x′ ≥ 52 ∧ 102− x′ − x = y − y′)s′4

Observe that the above invariant again satisfies the convexity-like
assumption, where the convexity-witness � is as follows: � =
{(1, 1) 7→ 2, (2, 1) 7→ 2, (3, 1) 7→ 3, (4, 1) 7→ 4, (1, 2) 7→
3, (2, 2) 7→ 4, (3, 2) 7→ 3, (4, 2) 7→ 4}. Hence, our approach
can be used to discover this invariant. In contrast, none of the
techniques presented for the respective examples can analyze the
loops in such a modular setting where the initial condition is not
initially known. Further discussion on use of our technique for
modular analysis is beyond the scope of this paper.

9. Comparison with Related Work
Disjunctive Invariant Generation Variety of techniques exist to
lift classical abstract domains (like intervals, octagons [19], and
polyhedra [8], which infer conjunctive invariants) to the powerset
extension or some approximation of it for discovering disjunctive
invariants [10, 11, 16, 24]. These techniques address the hardness
inherent in this problem by proposing various semantic-merging
heuristics. In contrast, we present a result that calls for working
with a static syntactic merge criterion under the convexity-like as-
sumption (which appears to be satisfied by benchmark examples).

Some syntactic techniques based on program restriction [4] or
control-flow refinement [13] have also been suggested for discov-
ering disjunctive invariants. These can be viewed as instantiations
of our more general framework based on the convexity-witness �.

Symbolic Bound Generation There has been some recent work
on generating symbolic bounds on the number of loop itera-
tions [12, 13, 15], but none of these techniques directly address the

more general problem of reachability-bound that we introduce in
our paper. Our solution reduces the reachability-bound problem to
the problem of computing bounds of an outer loop, but one whose
iterations are influenced by inner loops. None of the techniques
presented in [12, 13, 15] directly address the challenge of comput-
ing bounds for such loops, and hence would fail to compute bounds
for most of the examples presented in the paper. In particular, [15]
would fail to compute bounds for the examples Ex1, Ex3, Ex4, Ex5,
Ex7 because the invariants required for establishing bounds on the
counters are disjunctive. (It can only compute bounds for Ex2 and
Ex6.) The multiplicative counter instrumentation strategies that are
meant to alleviate the problem of computing disjunctive invariants
do not help in this case because there is only one back-edge for
the outer loop and only one counter can be instrumented. Simi-
larly, [13] would fail to compute bounds for Ex1, Ex3, Ex4, Ex5 for
the same reason of requiring disjunctive invariants for performing
desired reasoning of inner loops. (It can only compute bounds for
Ex2, Ex6 and Ex7.) The control-flow refinement strategy is meant
to alleviate the problem of computing disjunctive invariants, but
it does not help in any of these cases since the control-flow is al-
ready refined, and it cannot be refined any further. In contrast, our
technique can compute bounds for all the motivating examples pre-
sented in [12, 13, 15]. The approach described in [12] requires user
annotations to identify interesting non-linear and disjunctive ex-
pressions to compute bounds for transition-systems with multiple
transitions. Our technique addresses these challenges by means of
novel proof rules. However, the technique described in [12] can be
used in a synergistic manner with our technique, in particular, as
an extension to the pattern-matching based technique to compute
bounds/ranking-functions for single transitions.

We report the first implementation of symbolic bound genera-
tion for .Net binaries, while [12, 13, 15] all work for C++ programs.
Our implementation scales to large programs, while [12, 15] have
been applied to only small benchmarks.

[9] computes symbolic bounds by curve-fitting timing data ob-
tained from profiling. Their technique has the advantage of measur-
ing real time in seconds for a representative workload, but does not
provide worst-case bounds. There is a large body of work on es-
timating worst case execution time (WCET) in the embedded and
real-time systems community [26]. The WCET research is largely
orthogonal, focused on distinguishing between the complexity of
different code-paths and low-level modeling of architectural fea-
tures such as caches, branch prediction, instruction pipelines. For
establishing loop bounds, WCET techniques either require user an-
notation, or use simple techniques based on pattern matching or
simple numerical analysis. These WCET techniques cannot com-
pute bounds for the most of the examples considered in this paper.

Termination Analysis There has been a large body of work on
proving termination of programs and the standard approach used
has been that of finding ranking functions. We also use ranking
functions to compute bounds, but our focus is on finding precise
ranking functions, using composition by Max or + operators if
possible, that can yield precise symbolic bounds. Bounds can also
be obtained from the standard lexicographic ranking functions or
disjunctively well-founded ranking relations [7], but only using
multiplicative-composition, which is imprecise compared to the
bounds that can be obtained from max- or additive-composition.

In fact, our proof rules can also be regarded as an alternative
new technique for proving termination. For example, the recently
proposed approach based on variance assertions or disjunctively
well-founded ranking relations cannot be used to prove termination
of the loop in Example Ex7, while our technique can.

There is superficial similarity between termination techniques
based on computing variance assertions [3], transition invari-
ants [23] and disjunctively well-founded ranking relations [7] in

that they also summarize relationships between two different visits
to a control-location, and often require disjunctive invariants. How-
ever, there are two key technical differences: (a) Our technique re-
quires computing relationships between two immediate visits to a
control-location, while the approach based on transition invariants
or variance assertions requires computing relationships between
any two visits to a control-location. (b) Our technique requires use
of disjunctive invariants only to summarize nested loops. In partic-
ular, for examples Ex6 and Ex7 with no nested loops, our technique
would not require computing disjunctive invariants unlike the tech-
nique based on disjunctively well-founded ranking relations.

10. Future Work and Conclusion
This paper defined and motivated the reachability-bound problem.
The paper also presented a solution to the reachability-bound prob-
lem in the context of non-recursive and sequential programs. The
next technical challenge is to address the reachability-bound prob-
lem in context of recursive procedures and concurrent execution.

On the applications side, we are working on integrating the
proposed solution to the reachability-bound problem with other
specific techniques to provide an integrated solution for resource
bound analysis in some contexts such as memory bound analysis,
and active-task graph size analysis in asynchronous programs.

References
[1] Z3 Theorem Prover. research.microsoft.com/projects/Z3/.

[2] A. M. Ben-Amram. Size-change termination, monotonicity con-
straints and ranking functions. In CAV, pages 109–123, 2009.

[3] J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. O’Hearn.
Variance analyses from invariance analyses. In POPL, 2007.

[4] D. Beyer, T. A. Henzinger, R. Majumdar, and A. Rybalchenko. Path
invariants. In PLDI, pages 300–309, 2007.

[5] A. Bradley, Z. Manna, and H. Sipma. Termination of polynomial
programs. In VMCAI, 2005.

[6] S. Chaudhuri, S. Gulwani, and R. Lublinerman. Continuity analysis
of programs. In POPL, 2010.

[7] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for
systems code. In PLDI, pages 415–426, 2006.

[8] P. Cousot and N. Halbwachs. Automatic Discovery of Linear Re-
straints among Variables of a Program. In POPL, 1978.

[9] S. Goldsmith, A. Aiken, and D. S. Wilkerson. Measuring empirical
computational complexity. In ESEC/SIGSOFT FSE, 2007.

[10] D. Gopan and T. W. Reps. Lookahead widening. In CAV, 2006.

[11] D. Gopan and T. W. Reps. Guided static analysis. In SAS, 2007.

[12] B. S. Gulavani and S. Gulwani. A numerical abstract domain based
on expression abstraction and max operator with application in timing
analysis. In CAV, pages 370–384, 2008.

[13] S. Gulwani, S. Jain, and E. Koskinen. Control-flow refinement and
progress invariants for bound analysis. In PLDI, 2009.

[14] S. Gulwani, T. Lev-Ami, and M. Sagiv. A combination framework for
tracking partition sizes. In POPL, 2009.

[15] S. Gulwani, K. K. Mehra, and T. M. Chilimbi. Speed: precise and
efficient static estimation of program computational complexity. In
POPL, pages 127–139, 2009.

[16] M. Handjieva and S. Tzolovski. Refining static analyses by trace-
based partitioning using control flow. In SAS, pages 200–214, 1998.

[17] T. Henzinger. From boolean to quantitative system specifications,
keynote. In Ist Workshop on Quantitative Analysis of Software.
http://research.microsoft.com/users/sumitg/qa09/keynote.pdf.

[18] P. Malacaria. Assessing security threats of looping constructs. In
POPL, pages 225–235, 2007.

[19] A. Miné. The octagon abstract domain. In WCRE, 2001.

[20] S. S. Muchnick. Advanced Compiler Design and Implementation.
Morgan Kaufmann, 1997.

[21] Microsoft Phoenix Compiler, research.microsoft.com/phoenix/.
[22] A. Podelski and A. Rybalchenko. A complete method for the synthesis

of linear ranking functions. In VMCAI’04.
[23] A. Podelski and A. Rybalchenko. Transition invariants. In LICS ’04.
[24] C. Popeea and W.-N. Chin. Inferring disjunctive postconditions. In

ASIAN, pages 331–345, 2006.
[25] H. S. Warren. Hacker’s Delight. Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 2002.
[26] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-

ley, G. Bernat, C. Ferdinand, R. Heckmann, F. Mueller, I. Puaut,
P. Puschner, J. Staschulat, and P. Stenström. The Determination of
Worst-Case Execution Times—Overview of the Methods and Survey
of Tools. In ACM Transactions on Embedded Computing Systems
(TECS), 2007.

