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ABSTRACT 
Fantasy games, in which players compete to correctly predict real-
world outcomes in sports, entertainment, and politics, have grown 
in popularity and now represent a significant portion of online 
gaming. Pick’em pools, also known as office pools, are a fantasy 
game specifically focused on tournament-style competitions such 
as the “March Madness” NCAA basketball championship. 
Pick’em pool players often spend significant time trying to under-
stand the current state of competition and to anticipate future 
events that may significantly affect their performance within the 
pool. Unfortunately, the combinatorial nature of the outcome 
space makes these tasks extremely challenging, and intuition is 
often a highly inaccurate guide. In this paper we present iSee, a 
system that allows players to make these complex calculations 
and inferences. We describe a variety of interface options for the 
interactive presentation of tournament outcome visualizations. We 
also describe in detail the implementation of a set of algorithms 
for reliably projecting player performance and distilling the com-
plex outcome space to a number of key scenarios. Finally, we 
report on a pilot study soliciting user feedback on the system. 
Categories and Subject Descriptors. H.5.m [Information Inter-
faces and Presentation (e.g., HCI)]: miscellaneous; I.6.8 [Types of 
Simulation]: Monte Carlo; K.8 [Personal Computing]: Games. 

General Terms. Algorithms, Design, Human Factors. 

Keywords. Fantasy games, tournament, office pools, scenario 
exploration. 

1. INTRODUCTION 
Fantasy games, in which players try to correctly predict outcomes 
of real-world competitions, represent a large and growing genre 
within the online gaming industry. In 2007, the Fantasy Sports 
Trade Association (FSTA) reported 19.4 million fantasy sports 
players in the United States and Canada, with a sustained annual 
growth of 7-10% [7]. Similarly, comScore reports that one popu-
lar fantasy soccer website in the United Kingdom had 1.4 million 
unique users in August 2007 alone [4]. Additionally, FSTA esti-
mates that each fantasy player directly spends about US$500 an-

nually on magazines, online information, contests, and leagues 
[8], with much more revenue garnered from paid advertising. To 
tap into this large market, many major online portals (e.g. ESPN, 
FoxSports/MSN, Yahoo! Sports, CBS Sportsline, etc) have devel-
oped dedicated fantasy game offerings. Other sites have expanded 
the fantasy genre from its traditional sports base to predictions in 
domains such as Hollywood movies [10], celebrity news [1], and 
political races [6]. 
Pick’em pools, also known as tournament or office pools, are a 
large component of the fantasy industry. In pick’em pools, players 
predict outcomes in real world tournament-style competitions, 
such as the Football League Cup in the UK or the “March Mad-
ness” NCAA basketball championship in the US. Because of the 
simplicity of participating, pick’em pools appeal to a wide range 
of players. Even with little domain knowledge, casual players can 
make reasonable predictions using rankings, expert opinions, or 
even frivolous factors such as team mascot preference. On the 
other hand, expert players can spend large amounts of time re-
searching and applying complex inferences and ‘insider know-
ledge’ in order to make their picks. 
As soon as the real-world tournament begins, predictions are 
locked and players can no longer directly influence the outcome. 
The “fun” of a pick’em pool lies in anticipating outcomes, rooting 
for real world results that favor certain predictions, and engaging 
in social interactions with other participants regarding possible 
outcomes and relative pool performance. Therefore, the ease and 
accuracy with which players can make sense of future possibilities 
during the tournament is important and has direct impact on the 
fun of the game. This principle has been implicitly acknowledged 
in other entertainment domains. For example, poker broadcasts on 
TV have become quite popular since they have started providing 
views of players’ cards along with projections of how likely they 
are to win. These statistics further allow commentators to make 
more interesting comments about the desired cards for each player 
and about how the game might unfold.   
Unfortunately, as we will demonstrate in this paper, the mapping 
between real world outcomes and pick’em pool performance is 
quite complex. The answers to straightforward questions are often 
unintuitive because of the combinatorial space of possible tour-
nament outcomes and the interactions between various player 
picks. Even for the most dedicated players, the computations are 
tedious and difficult. The challenge then, is to design a system 
that can support this information need and make participation 
more compelling for players at every level. 
In our work, we have developed the Interactive Scenario Explorer 
for Entertainment, or iSee, a system that automatically highlights 
interesting scenarios within the tournament and allows pick’em 

 



pool players to project future standings within pools. Additionally, 
the system allows players to interactively explore scenarios they 
care about. By eliminating tedious calculations and improving 
players’ understanding of the game, the system enhances the en-
joyment of the competition and offers both casual and expert 
players a shared information context around which to anchor 
“trash talking” and other inter-player communication. 
It is important to note that iSee is not designed to help players 
make picks that increase their chances of winning. In fact, iSee 
treats the picks of all participating players as input to be specified 
in advance of performing any calculations, and does not affect the 
actual outcome of the tournament. This is because the system is 
designed to increase the enjoyment level of pool players, and 
removing the human from the game by automating the pick 
process has the potential to do the exact opposite [12].  
In the remaining sections, we present background and related 
work, demonstrate the difficulty of manual calculations, describe 
the functionality that iSee provides and the interface with which 
players interact, document implementation details, and present 
results from a pilot study we conducted. 

2. BACKGROUND 
2.1 Terminology 
A tournament refers to a number of competitors from a single 
sport (or other domain of competition) vying to be crowned the 
overall champion. Depending on the particular tournament, a 
competitor can be a single person (e.g. athlete), or a group of 
people (e.g. team). Throughout the illustrative examples in this 
paper, we use Japan, China, the United States, and South Korea 
as our canonical tournament competitors. Each tournament con-
sists of a sequence of head-to-head contests (sometimes referred 
to as matches, ties, fixtures, or heats) between competitors that 
lead to some result (i.e. one competitor winning and one losing). 
The basic goal of a tournament is to winnow multiple competitors 
down to a single champion. In a single elimination tournament 
(also known as a knockout or sudden-death tournament), competi-
tors who lose a match are immediately eliminated from the tour-
nament (or at least from winning the tournament), and only win-
ning competitors move on and vie to be the champion. For the 
purpose of simplifying discussion, the illustrative examples in this 
paper are all single elimination tournaments, though the principles 
apply equally well in other formats. A bracket is the common 
term for a tournament visualization in the form of a tree, in which 
leaf nodes represent the initial configuration of competitors and 
the root represents the eventual champion. The structure of the 
bracket defines which competitors will play each other as they 
progress through the tournament towards the championship.  
Within the fantasy games themselves, we use the term player to 
refer to a person who is taking part in the fantasy competition – in 
other words, a person who has completed a set of contest predic-
tions. This should not be confused with a single-person tourna-
ment competitor, who is often also called a player in colloquial 
language. Throughout the examples in this paper, we use Alex, 
Beth, and Chuck as our canonical players. The tournament contest 
predictions made by participating fantasy players are called picks. 
Most pick’em tournaments require that players pick all outcomes 
within the bracket, and for the purposes of simplicity, this is what 
we describe in this paper.  Again, the extension to other formats is 
trivial. Multiple players who are competing against each other in 
the pick’em game form a pool or league. Each pool applies a 

scoring system to reward correct picks, and at the end of the tour-
nament the players’ final placements (1st, 2nd, 3rd, etc.) are deter-
mined by their scores. Pools can comprise just two players, or 
thousands, and often there are prizes or other recognition for those 
players finishing in one or more of the top placements. The 
placement probability represents the probability that a given 
player will finish the pool in a given placement. For example, 
Alex might have a 75% chance of finishing in 3rd place. 

2.2 Related Work 
The roots of modern fantasy sports are often traced back to the 
“Baseball Seminar” in 1960. During this event, people formed 
rosters of Major League Baseball players and earned points based 
on various statistics such as RBI (runs batted in) and ERA (earned 
run average) [14]. In 1980, a small group of dedicated fantasy 
baseball players, who called themselves Rotisserie League Base-
ball, began getting mainstream press coverage, and throughout the 
1980’s fantasy sports continued to grow in popularity. These lea-
gues quickly spread to other sports, such as football, and in 1989 
Fantasy Sports Magazine debuted as the first regular publication 
covering more than one fantasy sport [5]. 
In the late 1990s, the Internet boom created a revolution in fantasy 
sports, as the tedious paper-based management and tracking of 
players and teams went online. There are now dozens of major 
services supporting the fantasy player market. For example, Ya-
hoo! Sports’ StatTracker allows players to track live scores in 
their fantasy football leagues. However, most existing fantasy 
services focus primarily on reducing the burden of manual track-
ing and we believe there is opportunity in allowing players to look 
beyond the current state of the game and to project what may 
happen in the future.  
The huge number of possible outcomes in a fantasy tournament 
represents an enormous challenge for sense-making tools. It is 
very difficult to analyze large data sets with dozens of attributes 
and discover meaningful information, such as patterns and trends. 
Data mining is the science of extracting useful information from 
large data sets or databases [9]. It has been applied to a broad 
range of fields from business intelligence and financial analysis to 
eScience, which often generates enormous data sets. Data mining 
is most useful in exploratory analysis scenarios in which there are 
no predetermined notions about what will constitute an “interest-
ing” outcome [18]. Since data mining is an iterative process to 
uncover interesting patterns, trends, and correlations between data 
items, visualization also plays an important role in these systems. 
For example, many interactive visualization systems help users 
visually explore complex relationships in large information data-
bases [18]. With iSee, we attempt to apply analogous techniques 
to the domain of fantasy tournaments. 
While many data mining systems require users to mathematically 
manipulate data and information, we had to make iSee accessible 
to non-technical users. Hence, we employ direct manipulation, 
which provides users with rapid and incremental feedback as they 
directly manipulate objects in the interface [15]. For example, 
Spotfire [16], the commercial version of starfield displays [3], is 
an interactive visualization system that updates color- and size-
coded points in a two-dimensional graphical display as users ad-
just control widgets, such as sliders, buttons, and check boxes. 
Similarly, to provide this continuous feedback in iSee and to al-
low users to efficiently explore the information space, we conti-
nuously run and display calculations after each user action. 



3. DIFFICULTY OF CALCULATIONS 
Consider the example of Alex, Beth, and Chuck competing in a 
pick’em pool based on a small soccer tournament. The tournament 
involves four teams: Japan, China, the United States, and South 
Korea. In a four-team single-elimination tournament, there are 
only three games: two semi-finals and a final. Players each fill out 
a bracket, predicting the winner of each of the three games. Their 
picks are shown in Figure 1. After each real-world match is 
played, players earn points according to a scoring function. In our 
example, players earn 10 points for each outcome correctly pre-
dicted. While an escalating scoring functions, such as 10 points 
for each of the semi-final games and 20 for the finals is more 
common, we use the same points for every game case for sim-
plicity. With this simple function, each player will have a score 
between 0 (none correct) and 30 (all three picks correct) at the end 
of the tournament. These scores determine their final placements. 
Placement probability is perhaps the most basic of inferences, but 
even this is difficult to intuit. Placement probabilities describe 
players’ relative chances of winning the pool, or placing in a cer-
tain position, at the end of the tournament. Currently, players use 
factors such as current scores or trends in scores to determine how 
well they are doing, but also as an indicator of how well they will 
do in the future. This approach is highly prone to error.  
For example, one might intuit that the odds of each player win-
ning the pool are roughly equivalent early in the tournament. This 
might seem especially true if we assume all teams are evenly 
matched (i.e. each team has an equal chance of winning each 
game) and no games have yet been played. However, many 
people are surprised to learn that this is not the case.  

The most straightforward way to calculate the true likelihood of 
each player winning is to generate all possible real-world tourna-
ment outcomes. The eight possible outcomes for our tournament 
can be seen in Figure 2. Since we have assumed that each game 
outcome is equally likely, each tournament outcome is also equal-
ly likely to occur. Hence, placement probabilities can be generat-
ed simply by applying the scoring function to player picks, and 
counting how many times each player places in a certain position.  
In this example, Alex comes in 1st in two out of the eight out-
comes, while Chuck comes in 1st in five of them (some of these 
are ties, but that is irrelevant for this example). Hence, Chuck is 
more than twice as likely as Alex to finish in 1st place, even before 
any games have been played. Intuitively, this can be explained by 
the specific overlap in player picks. This calculation becomes 
extremely hard (if not impossible) for people to do when there are 
more players in the pool, more games to be played, and when 
teams are not evenly matched, which is often the case in real-
world pools. To our knowledge, there is no closed form analytical 
solution that could make this calculation faster. Various versions 
of the problem have been shown to be at least #P-Hard [2]. 

4. FUNCTIONALITY AND INTERFACE 
We now describe the functionality and usage of the iSee system in 
alleviating the challenges presented. We ground our description 
within a specific interface we have built as a proof-of-concept to 
demonstrate the underlying approach of performing interesting 
calculations that provide common ground for social interaction. 
Where relevant, we also describe possible alternatives to the inter-
face. We show a simplified mock-up screenshot in Figure 3, with 
constituent components described in additional sections.   
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Figure 1. Our three example players have filled out their brackets for the office pool. 
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Figure 2. In a very small tournament, we can enumerate all the outcomes and count the winning placements. 



4.1 System Input 
iSee expects several inputs from the pool owner or from individu-
al players. First, the system needs the structure of the tournament 
and scoring scheme of the pool. Second, iSee requires all player 
picks, since the overlap in these are critical in making interesting 
inferences. Third, iSee expects that real-world outcomes will be 
added as they become available, since it is able to generate new 
projections with each new piece of information. Most portals al-
ready collect and store this information. In pilot feasibility tests, 
we successfully partnered with MSN/FoxSports to get the re-
quired inputs from data that was already stored. 
Finally, iSee requires a matrix of how likely each team is to beat 
each other team. We call this the prior probability matrix. By 
default, iSee derives this matrix by applying a linear function to 
the rankings within the tournament. For example, a top-ranked 
team is much more likely to beat a tenth ranked team than to beat 
a second-ranked team, and so on. But the system also allows users 
to customize this matrix, either by selecting a different algorithm 
or by manually changing individual values. This allows players to 
factor expert picks, betting odds, ‘insider knowledge,’ personal 
hunches, or any other such information into their projections. 
With these raw inputs, iSee performs its calculations and presents 
the results in different forms. 

4.2 Basic Bracket and Scores 
Central to any tournament game is a view of the bracket, which 
displays real-world outcomes as well as player picks and the cor-
rectness of those picks. The bracket is also used to display other 
information within the structure of the game. 
The classic tournament bracket contains a series of match-ups, 
with competitors who are playing each other connected by a ver-
tical line. The winner of each contest progresses to the next round 
and their name is filled in on the result line coming out of the 
matchup. This process continues until there is only one competitor 
left, the tournament champion.  

Unfortunately, this representation consumes large amounts of 
screen space, which becomes a problem in our interface. Hence 
we use an alternate representation of the bracket called Adaptivi-
Tree [17]. Rather than repeating textual labels for each win, Adap-
tiviTree deforms the bracket to present tournament outcomes in a 
non-textual way (see Figure 4). This is extremely space efficient 
and studies have shown this visualization to be more consumable. 
In AdaptiviTree, the correctness of player picks is shown by over-
laying simple graphs on top of the tournament brackets. Correct 
picks are represented by green line segments, and incorrect picks 
by red ones. A line segment corresponding to a still-viable pick in 
a future contest is dotted green.  
We also display a listing of players and contact information, status 
messages, current scores, projected scores, and score histories in a 
separate pane (Region A in Figure 3).   

4.3 Placement Probabilities  
Placement probabilities represent how likely it is for each player 
to place in each position when the tournament ends. Each player 
can end the pool in each rank, and thus the placement probability 
can be represented as a matrix. Rows represent players, columns 
represent ranks, and the values in each cell represents the place-
ment probability. To help players identify interesting patterns, we 
can also show the placement probability using bar graphs or a 
stacked bar. These three options are shown in Figure 5. 

4.4 Competitor Performance 
In addition to the placement probabilities, we can also visualize 
competitor performance. Competitor performance is a view of the 
likelihood that a given real-world tournament contender will make 
it to a certain round. In the simplest case, this is a straightforward 
mathematical derivation of the prior probability matrix and can be 
described by a matrix with a row for each competitor, a column 
for each round, and a number in each cell that represents the prob-
ability that the competitor will make it to that round of the tour-
nament. We have also explored a more visual representation, 
overlaying bars on each competitor in the bracket view. In this 
view, we use visual properties such as the opacity or saturation of 
the bars to represent the probabilities. 

Figure 3. Prototype iSee interface components. A: player list
and scoring summary. B: Bracket view (detail in Figure 4). C:
Player placement (detail in Figure 5) and competitor perfor-
mance matrices. D: Constraints. 

Figure 4. AdaptiviTree layout of a bracket. A player’s picks
are superimposed on the results with a colored overlay. Icons
are overlaid to indicate two possible scenarios of interest. 



4.5 Key Scenarios 
iSee provides automated detection of key scenarios, calculated 
independently for each player in the pool. Players can flip to any-
one else’s bracket to see their key scenarios. For example, as 
shown in Region B of Figure 3 as well as in Figure 4, iSee demar-
cates certain games on the bracket with icons indicating scenarios 
of potential importance. These scenarios include different catego-
ries of significance, distinguished by icon type. A tooltip on each 
icon explains how a certain scenario affects an individual player’s 
standings. Sometimes the scenario involves an upcoming game – 
for example, “If Japan beats China then Alex’s probability of 
winning jumps from 25% to 50%.” Sometimes the scenario high-
lights when results lead to guarantees in the placements – for ex-
ample, “If China wins the first round, Chuck is guaranteed to win 
the pool.” While there is prior work on calculation of importance 
metrics on individual games in a sporting tournament, that work 
was focused on aggregate measures of interest to the public rather 
than personalized metrics based on pool performance [13]. 

4.6 Scenario Exploration 
While the placement probabilities and key scenarios serve as good 
starting points, expert players often want to interactively explore 
particular scenarios. iSee supports this functionality by allowing 
players to set constraints within the inferences. With each new 
constraint, iSee recalculates and refreshes the probabilities.   
There are two basic classes of constraints, game constraints and 
player placement constraints. Game constraints allow players to 
explore what-if scenarios for games that have not yet occurred. 
For example, Beth may like to know how her placement proba-
bilities change if China wins in the first round of the tournament, 
or perhaps what happens if China wins the entire tournament. She 
can also set multiple unrelated constraints, so long as they do not 
conflict with each other (i.e. China and its first round opponent 
cannot both win).  
Player placement constraints allow a player to explore the scena-
rios in which they are most likely to place in a certain position. 
For example, Chuck may want to know the most likely scenarios 
in which he places first. By setting this constraint and looking at 
the competitor performance matrix, he can tell, for example, that 
he has the greatest chance of placing first if certain teams make it 
to certain round, or alternatively, that other teams must not make 
it beyond a certain point in the tournament. He can also see how 
other player placement probabilities change in the case that he 

places first. For example, Chuck might discover that when he 
comes in first place, Alice always finishes in last place. 
These constraints can be added and removed in a lightweight 
manner. In the simplest instantiation, we use a series of combo 
boxes for the player to add and remove constraints. In a more 
complex version of the system, we use direct manipulation to 
allow the player to interact directly with the bracket or the com-
petitor performance matrix to set constraints, as well as the 
placement probability component for player placement con-
straints. In either case, we keep a running list of current con-
straints, but also visually represent them on the relevant compo-
nents (Region D in Figure 3). This allows players to quickly dis-
tinguish real-world results from what-if explorations. 

5. IMPLEMENTATION 
The core iSee calculation engine is implemented in C# as a multi-
threaded .Net Framework component. Below we describe the 
derivation and calculation of the two most important outputs of 
the system, placement probabilities and key scenarios. 

5.1 Placement Probabilities 
The basic building block of the iSee calculation engine is the 
placement probability. We begin by describing how the core cal-
culation is performed, before discussing a sampling technique and 
the potential sources of error in the calculations. 

5.1.1 Calculation 
In a single-elimination tournament, each contest can be won by 
one of two competitors. Therefore, the number of possible tour-
nament outcomes is 2n, where n is the number of contests remain-
ing to be played. In our illustrative four-team tournament, there 
are eight unique tournament outcomes. If all possible tournament 
outcomes are all equally likely (e.g. teams in the tournament are 
evenly matched), then the placement probability is the placement 
count expressed as a fraction of the outcome space. For example, 
Alex has a 25% chance of coming in first place. 
However, tournament outcome probabilities are rarely uniform. 
Some tournament competitors are stronger and some are weaker. 
To account for this, we weight the counted outcomes by the a 
priori probabilities of those outcomes. Using the prior probability 
matrix, the table containing the probabilities of any team beating 
any other team, we multiply the probabilities of the individual 
game results to get the overall probability of a given full tourna-
ment outcome. In the case of evenly-matched teams in a three-
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Figure 5. Three alternative representations for the player placement probability matrix. 



game tournament, each possible tournament outcome would have 
a probability of 0.5 × 0.5 × 0.5 = 12.5%. But if a player’s winning 
outcome involved two long-shot competitors and one evenly-
matched competitor winning, the outcome probability might be 
more like 0.3 × 0.3 × 0.5 = 4.5%. It is the normalized sum of these 
weighted tournament outcome probabilities, and not the raw 
count, that represents the realistic placement probability for a 
given scenario. 
When tournaments are relatively small, this brute force method 
works very well. Unfortunately, the exponential nature of the 
outcome space makes this intractable in most real-world office 
pools. In a standard 64-team tournament there are 263 (more than 9 
million trillion) unique outcomes when the tournament begins, 
meaning that it would take millions of years of computing time to 
produce an exhaustive set of placement probabilities for even a 
single, small set of pool players. To solve this problem, we rely on 
sampling techniques that approximate these placement probabili-
ties to a very high degree of accuracy in a fraction of the exhaus-
tive compute time. 

5.1.2 Monte Carlo Sampling 
Monte Carlo techniques are computational algorithms that simu-
late analytical solutions by repeating a relatively small number of 
trials using inputs with appropriately randomized distributions. 
These simulations are popular in a wide variety of domains, and in 
fact have previously been applied specifically to the domain of 
pick’em pools for single-elimination sports tournaments [11]. 
iSee generates a series of random tournament outcomes according 
to the distributions of the individual contest probabilities. For each 
contest in the tournament outcome, we use a random number ge-
nerator weighted by the two competitors’ relative chances of beat-
ing each other to decide the winner. For each instance of a hypo-
thetical full tournament outcome, we score each player’s perfor-
mance and rank the finishes accordingly. Each player’s final 
placement is recorded, and accumulated across the repeated trials 
into a placement histogram. When we are done sampling, we have 
an N×N histogram of player placements (where N is the number 
of players and thus also the number of placements). After norma-
lizing all values by the total number of generated samples, the 
distribution of player placements across the histogram represents 
the full matrix of player placement probabilities.  
Constraints are handled by straightforward adjustment of bracket 
generation and accumulation. If the player places a game con-
straint for Japan to win Game 1, iSee runs the placement probabil-
ity calculations same as before but fixes the probability of Japan 
winning Game 1 at 100% during sample outcome generation, 
instead of using the prior contest probabilities. In other words, 
calculation proceeds exactly as if Japan had already won Game 1. 
For a player placement constraint, iSee simply discards from ac-
cumulation any generated bracket not meeting the constraint. 
The sampling operation is CPU-intensive; generating, scoring, 
ranking, and accumulating thousands of hypothetical outcomes in 
rapid succession to explore the outcome space. This computation 
is highly parallelizable, because each sample outcome can be 
generated, scored, and ranked independently. Therefore, iSee 
analyzes the number of processors on the target machine and runs 
multiple simultaneous threads for sampling. The only inter-thread 
coordination is in incrementing the histogram.  

5.1.3 Errors 
A traditional pseudo-random Monte Carlo simulation with nor-
mally distributed output will have a rate of convergence of 1/N1/2, 
where N is the number of samples, regardless of the dimensionali-
ty of the input. This means that even with computationally conve-
nient numbers of samples (e.g. 10,000) we can generate estimates 
with very tight bounds (standard deviation of 0.01 in placement 
probabilities). 
But the algorithmic error alone does not capture the full story. 
Because iSee outputs numbers for the purpose of user inspection, 
analysis, and understanding, the discussion of errors goes beyond 
the numerical accuracy to encompass the user experience. The 
numbers iSee offers to the user are probabilities, which can only 
be verified or refuted by conducting many repeated trials. Howev-
er, since an office pool is not a repeated experiment, if iSee says 
Beth has a 10% probability of coming in first place, there is no 
way in the course of a single tournament to “prove” that the cor-
rect number was in fact 6%, or 30%. Beth will either come in first, 
or she will not. The output placement probabilities are also highly 
sensitive to the team vs. team contest probabilities. If iSee is given 
as input the proposition that China is a low-likelihood (weak) 
competitor, this will contribute directly to a lower likelihood of 
winning the pool for players that predict tournament wins for 
China. The bottom line is that any inaccuracies due to algorithmic 
sampling are swamped by the variance embodied in the input 
probabilities. And yet, in the application of iSee to a single tour-
nament event, we assert that all these sources of “error” are irrele-
vant to the end user, who is really only looking for interesting 
snippets of information that form common ground for social inte-
raction. In fact, in some cases it is the very instability of the 
placement numbers – for example, going from a long shot for first 
place to a lock with a sequence of unlikely wins – that makes 
things fun. 
There is a crucial exception to this premise. If iSee returns a 0% 
placement probability, the system is guaranteeing that a particular 
placement is impossible. This is eminently falsifiable: if ever a 
player placement that iSee at some point labeled impossible ac-
tually does occur, the user will have no reason to trust any of the 
output numbers again. This is an inherent weakness of sampling, 
since there is no way to distinguish a true impossibility from an 
incidence probability arbitrarily close to zero. Unfortunately, the 
distinction matters a great deal to the user. Players want to know 
when to root for a particularly unlikely set of teams and outcomes 
that represent their last hope of a particular placement, or whether 
instead to truly give up on that placement and focus on another 
goal (such as finishing in the next highest placement, or besting a 
particular rival player). This same issue applies equally to place-
ments projected by iSee at 100%, in which iSee is guaranteeing a 
particular placement. 
Since we are aiming to increase fun and not necessarily to optim-
ize mathematical accuracy, we deal with this problem by only 
reporting approximations (for example, “<1%” and “>99%”) until 
the tournament is small enough that we can perform exhaustive 
enumeration. For example, when about 15 games remain, 
representing 32,768 unique outcomes, exhaustive calculations 
return in under 500 ms on a standard 2009 desktop PC, making it 
tractable to produce guaranteed results in interactive time. In addi-
tion, it is useful to note that the larger the outcome space, the few-
er the occurrences of true lock-ins and lock-outs, and the less the 
players are focused on specific end-placement scenarios. This 



minimizes the effect sampling uncertainty has on game play in the 
early stages of competition, precisely when sampling is required. 

5.2 Key Scenarios 
iSee also opportunistically explores various game constraints and 
helps players find key scenarios. The key scenarios are generated 
by extending the placement accumulator matrix described earlier 
to track sub-accumulations of various specific scenarios. For in-
stance, consider the following example, where we are interested in 
the effect an upcoming game might have on Beth’s pool perfor-
mance. If we are interested in the effect Game 1 (between China 
and Japan) might have on Beth’s chances of coming in first, we 
need to correlate the two different possible outcomes of Game 1 
with the outcomes in which Beth comes in 1st place. We do this 
by reserving space for four additional accumulators: 

• AC1, the number of outcomes where China wins Game 1; 
• AJ1, the number of outcomes where Japan wins Game 1; 
• AB1∩C1, the number of outcomes where China wins Game 1 

and Beth comes in 1st place; 
• AB1∩J1, the number of outcomes where Japan wins Game 1 

and Beth comes in 1st place 
 

On each generated sample, in addition to accumulating the result 
in the overall player placement matrix, we also accumulate the 
result in any additional accumulators that match the sampled out-
come. In the default accumulator, assume that among 10,000 
samples, Beth comes in first in 2,000 of them, leading to an over-
all 1st place placement projection of 20%. Further assume that 
among those same random samples, in Game 1 China wins 5,400 
times, and Japan wins the remaining 4,600 times, because accord-
ing to the team vs. team prior probabilities, China is slightly fa-
vored (54%). Finally, among the sampled outcomes, assume that 
when China wins, Beth comes in 1st 270 times, and when Japan 
wins Beth comes in 1st 1,730 times. Applying the rules of condi-
tional probability as shown in Figure 5, we can determine that 
Beth has only a 5% chance of coming in 1st when China wins 
Game 1, but has a 37.6% chance of coming in 1st when Japan 
wins. This is a significant swing, and indicates that the outcome of 
Game 1 is important to Beth. She would definitely want to watch 
the game, and should root strongly for Japan to beat China. 
The key scenario generation module maintains many such condi-
tional probability accumulators during each sampling run. At the 
end of the run, iSee scans these sub-accumulators, analyzing the 

relative significance of each swing. Swings of less than a few 
percent are considered insignificant and are not reported. Lock-ins 
and lock-outs (where the conditional probability jumps to 100% 
or drops to 0% with a given outcome) are considered extremely 
important and are reported with top priority. The remaining condi-
tional dependencies are ranked by the size of the swing.  
In theory, there is no limit to the complexities and quantities of 
sub-accumulators iSee could track in order to locate important 
scenarios. In practice, there are several strategies iSee uses to trim 
the space of possibilities. One overall premise is that players care 
most about the conditional probabilities related to their highest 
possible placement. In other words, any given player is more in-
terested in a swing in their 1st place chances than in their 3rd 
place chances. Another strategy iSee uses is to maintain accumu-
lators for the most imminent games in the tournament: this gives 
users simpler scenario statements, because there are only two 
possible winners for each game about to be played, and it helps 
users decide which games to prioritize watching and rooting for in 
a tournament with many simultaneous or near-simultaneous com-
petitions. Finally, iSee maintains a team-centric matrix of accu-
mulators to spot long, dependent chains of outcomes that collec-
tively have a simple team-centric summarization. For instance, 
early on in the tournament, iSee may generate the key scenario, 
“If Japan wins the championship, Chuck cannot win the pool.” 
This collapses a number of different game-based scenarios into a 
simple, powerful description of an important scenario for Chuck. 

6. PILOT STUDY 
We conducted a pilot study to solicit early feedback on the infor-
mation that the iSee system generates. We recruited players from 
five existing leagues during the 2009 “March Madness” NCAA 
basketball championship. These leagues were set up and hosted on 
a variety of online portals, namely FoxSports, Yahoo! Sports, and 
ESPN. The leagues had seven, eight, nine, ten, and eighteen play-
ers respectively, for a total of 52 players. These players reported 
varying levels of experience with fantasy games as well as en-
gagement with college basketball. For example, some players 
reported filling out a single bracket for the first time, while others 
filled out multiple (up to 19) this year and had done so for the last 
15 years. Self-report of a representative subset of our players 
showed that they had average age of about 28 years old, which is 
relatively consistent with the demographic we would expect for 
such games. 
Before the tournament began, players submitted screenshots of 
their picks, which were converted and entered into the iSee sys-
tem. Players received periodic e-mail updates at eight points dur-
ing the course of the tournament: after round 1, and then midway 
and at the end of each subsequent round, all the way through the 
championship game. Each of these updates was generated using 
the iSee system, and customized for the league. Each included a 
bar graph with placement probabilities of players, as well as a 
manually selected subset of textual factoids such as key games, 
key inter-player match-ups, as well as player trends and commen-
tary. At the end of the tournament, we distributed a short survey 
with semi-structured questions aimed at soliciting general feed-
back. 15 players completed the survey.  
We saw a number of very consistent comments during the course 
of the tournament as well as in the survey, both in terms of the 
most engaging parts of the updates, but also expressing possible 
places for improvement. In general, players enjoyed having the 
additional information during the tracking part of the tournament 

ܲሺ1 ݄ݐ݁ܤ௦௧ | ݄ܽ݊݅ܥ ܹ݅݊ሻ ൌ  
ܲሺ1 ݄ݐ݁ܤ௦௧ ת ݄ܽ݊݅ܥ ܹ݅݊ሻ

ܲሺ݄ܽ݊݅ܥ ܹ݅݊ሻ  

ܲሺ1 ݄ݐ݁ܤ௦௧ ת ሻܹ݊݅ ݄ܽ݊݅ܥ ൌ
஼ଵת஻ଵܣ
ܵே

 

ܲሺ݄ܽ݊݅ܥ ܹ݅݊ሻ ൌ  
஼ଵܣ
ܵே

 

ܲሺ1 ݄ݐ݁ܤ௦௧ | ݄ܽ݊݅ܥ ܹ݅݊ሻ ൌ  
270 10000⁄
5400 10000⁄ ൌ ૙. ૙૞૙ 

ܲሺ1 ݄ݐ݁ܤ௦௧ | ݊ܽ݌ܽܬ ܹ݅݊ሻ ൌ  
1730 10000⁄
4600 10000⁄ ൌ ૙. ૜ૠ૟ 

Figure 6. The calculation to determine the effect of Game 1 
on Beth’s chances of coming in first. SN is the total number 
of samples generated. 



and their comments supported our hypotheses. It seems to have 
allowed players to target which games they watched or monitored. 
One player mentioned that “the what-if scenarios allowed me to 
focus on games that were more important than other games that 
had less impact on the outcome.” It also seemed to fuel discussion 
and social interaction within the leagues. For example, one player 
commented that iSee “brought on comparisons between my picks 
and those who would lose out at my expense” and another that 
iSee caused them to “pay more attention and get in more argu-
ments/discussions with the other players.”  
One set of comments hints at the possible negative effects of hav-
ing more certainty about how one was doing or projected to do 
within the league. One player that was locked out of 1st early in 
the tournament expressed that “it would be nice if there was 
something to keep me interested even after I knew I wasn’t going 
to win.” Without the system, this player would likely not have 
inferred that they were locked out, and would have kept (false) 
hope. Similarly, another player “had a pretty good lead [current 
score] for a long time, but the updates kept saying that my 
chances of winning were low.” This player indeed ended up fi-
nishing in the bottom half of their league, and it was not clear to 
us how having this information upfront affected their experience. 
That said, the reverse also happened, and players who did not do 
well early on found it “interesting to see that even though people 
were low in the standings, their chances were still high.” iSee 
“gave everyone that was still mathematically in it hope.” We in-
tend to explore these effects more fully in future work.  
Another suggestion that was fairly widely expressed was a request 
for different kinds of information such as “pitting player against 
player.” We believe that this could be a trivial extension by using 
simple heuristics to infer which subset of players for which to 
rerun statistics. This would also be much less of an issue if players 
had direct interactive control of iSee rather than viewing it 
through an e-mail message. Other players requested knowing 
“which of my picks went against the rest of the pool and either 
worked out for me or screwed me over.” We believe that this is a 
statistic that could be calculated and will include this in the next 
version of iSee. 

7. CONCLUSION AND FUTURE WORK 
Modeling the outcome possibilities of a fantasy pick’em pool 
based on tournament play is a difficult and unintuitive task even 
in the simplest cases. In the common case, it is impossible to do 
manually and offers no analytical solution. Here we have pre-
sented iSee, an interface coupled with a calculation engine for 
both automatically and interactively exploring the outcome space. 
We believe iSee can increase player enjoyment by providing real-
time results projections and by offering players easily understand-
able scenarios that affect their standings. To adequately validate 
the benefits of our system, we are currently working toward a 
larger-scale deployment to understand its effects on pick’em pool 
play. We also plan to work on ways to extend the computational 
methods described in this paper to a wider set of fantasy games. 
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