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Figure 1: Two representative models that users can interactively manipulate within our deformation system. (a) (column 1:) A desk lamp
connected by revolute joints, and its color-coded components. The lampshade is manipulated with the same handle trajectory for three
cases: (column 2:) joint-unaware deformation has difficulty facing the lampshade backward because of immovable joints, and links are bent
unnaturally(131 cells). (column 3:) joint-aware deformation with fully rigid links(6 cells). (column 4:) joint-aware deformation with two
deformable links in the middle(76 cells). (b) An Aibo-like robot dog with a soft tail, a soft body, and two soft ears interactively posed to walk
and stand up.

Abstract

Complex mesh models of man-made objects often consist of mul-
tiple components connected by various types of joints. We pro-
pose a joint-aware deformation framework that supports the direct
manipulation of an arbitrary mix of rigid and deformable compo-
nents. First we apply slippable motion analysis to automatically
detect multiple types of joint constraints that are implicit in model
geometry. For single-component geometry or models with discon-
nected components, we support user-defined virtual joints. Then
we integrate manipulation handle constraints, multiple components,
joint constraints, joint limits, and deformation energies into a sin-
gle volumetric-cell-based space deformation problem. An iterative,
parallelized Gauss-Newton solver is used to solve the resulting non-
linear optimization. Interactive deformable manipulation is demon-
strated on a variety of geometric models while automatically re-
specting their multi-component nature and the natural behavior of
their joints.
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1 Introduction

Traditional space deformation algorithms largely assume that an
embedded object should be treated as a single component [Gain and
Bechmann 2008]. However, many 3D models, particularly those of
man-made CAD objects, consist of multiple components. Recent
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years have seen considerable progress in making geometric defor-
mations more content aware, such as material-aware mesh deforma-
tion [Popa et al. 2006] and non-homogeneous resizing of complex
models [Kraevoy et al. 2008]. These methods acknowledge that
complex models usually have multiple parts with different proper-
ties and features, which should be treated differently during manip-
ulation. Where possible, deformation methods should attempt to
respect any constraints, semantic or otherwise, that might be im-
plicit in the geometry.

Inspired by the aforementioned work, and by models of the type
shown in Figure 1, we observe that constituent components of a
model are commonly connected by joints of either mechanical or
biological origin. These joints serve not only to segment the com-
plex model into components, but also to constrain the relative spa-
tial configurations of neighboring components. We propose a de-
formation system that models and respects these joint constraints.
The benefits of such an approach are two-fold. First, the defor-
mations of different components can be represented independently
of each other, which serves to eliminate the unnatural coupling that
otherwise exists when multiple objects inhabit a shared space-based
deformation. Second, joints define natural degrees of freedom af-
forded by the geometry, which allows for natural and physically-
plausible deformations and poses. As illustrated in the rightmost
column of Figure 1(a), inter-component articulations as well as
intra-component deformations can be achieved simultaneously.

Joint constraints have long been used in skeletal animation to help
in posing and skinning virtual characters [Magnenat-Thalmann
et al. 1988; Lewis et al. 2000]. However, this comes with two
caveats. First, a matching skeleton (i.e., joint hierarchy) has to be
defined and rigged. This is often a non-trivial task, although signif-
icant progress has recently been made towards automating this pro-
cess [Baran and Popović 2007; Au et al. 2008]. The joint detection
we employ can be seen as extending automatic skeleton creation
techniques to a significant new class of geometry. Second, skele-
tal animation systems require the skinning weights for each vertex
of the mesh to be carefully assigned. We shall rely on the surface
reconstruction of our volume-based space deformation to return a



smooth representation of the deformed model. A further distinc-
tion of the deformation approach is the direct manipulation of mesh
vertices as handles, as compared to skeleton links or end effectors.

Joint constraints have also been considered in the context of defor-
mation models. Some methods require support from an underlying
skeleton [Huang et al. 2006; Shi et al. 2007]. Others detect near-
rigid components from example poses [James and Twigg 2005]. In
this work, we focus on articulated mechanisms whose components
are connected by mechanical joints. We apply a shape analysis al-
gorithm, originally designed to segment kinematic surfaces of 3D
scanned shapes [Gelfand and Guibas 2004], to extract joint con-
straints. We further augment these joints with automatically de-
tected parameters that prescribe the available range of motion for
each joint. Virtual joints can also be inserted into disconnected
models or single-component models. The joint constraints are then
directly incorporated into the deformation objective to maintain
physically plausible spatial relationships between components.

Our space deformation algorithm follows the philosophy of reduced
deformable models and subspace techniques to decouple the defor-
mation complexity from the geometric complexity [Der et al. 2006;
Huang et al. 2006]. More specifically, we use an aggregation of
elastically-coupled as-rigid-as-possible cuboid cells to enclose the
model of interest. Each cell has its own associated affine trans-
formation to be optimized, which will then be interpolated using
Moving-Least-Squares (MLS) in order to reconstruct the deformed
model [Kaufmann et al. 2008]. Rigid or near-rigid volumetric cells
have been proven to be robust and to yield physically-inspired be-
havior [Botsch et al. 2007]. The component-based space deforma-
tion we propose allows different components to have independent
spatial discretizations. Rigid components are represented by only
one cell, and deformable components employ multiple cells. Ob-
jects can thus consist of an arbitrary mix of rigid and deformable
components.

We integrate manipulation handle constraints, multiple compo-
nents, joint constraints, joint limits, and deformation energies into
a single volumetric-cell-based space deformation framework. The
transformations associated with each cell form the optimization pa-
rameters. An iterative, parallelized Gauss-Newton solver is used to
solve the resulting non-linear optimization problem.

Contributions: We present a novel deformation framework that
naturally supports arbitrary mixes of rigid and deformable compo-
nents, connected by a variety of joint types. To the best of our
knowledge, we are the first to apply slippage analysis for the auto-
matic detection of joint constraints – we develop the assorted steps
that are necessary beyond the slippage analysis to make the joint
analysis work. Our implementation and results demonstrate the
combined promise of these ideas.

2 Related Work

Mesh Deformation: Surface-based mesh deformation methods
have been widely used in mesh editing and animation. Repre-
sentative works include multi-resolution editing [Zorin et al. 1997;
Kobbelt et al. 1998], Laplacian surface editing [Sorkine et al. 2004;
Yu et al. 2004; Lipman et al. 2005; Botsch and Sorkine 2008],
and coupled prisms [Botsch et al. 2006]. These methods target the
preservation of surface details on single-component models, i.e., a
single connected mesh. Although potentially applicable to multiple
components, these methods on their own do not provide the mech-
anisms to handle boundary conditions and spatial relationships be-
tween components imposed by joint constraints.

Volume-based space deformation methods deform a 3D model by
warping its ambient space [Sederberg and Parry 1986; Huang et al.

2006; Sumner et al. 2007; Botsch et al. 2007; Shi et al. 2007]. Re-
duced models and subspace techniques are commonly exploited to
decouple the deformation complexity from the underlying geomet-
ric complexity, thus enabling interactive manipulation of high res-
olution meshes. Our work follows the same principle to achieve
interactive performance. More specifically, we formulate space de-
formation as a nonlinear optimization problem, similar to the recent
work on embedded deformation and rigid cell deformations [Sum-
ner et al. 2007; Botsch et al. 2007]. The transformations associated
with each deformation unit, be it deformation graph nodes or vol-
umetric cells, form the optimization parameters. Unlike previous
work, we focus on complex models with multiple components. Vol-
umetric cells for different components are decoupled so that the de-
formation system can exploit the inter-component degrees of free-
dom provided by joints.

Material-aware mesh deformation incorporates non-uniform mate-
rials into the geometric deformation framework [Popa et al. 2006].
Material stiffness can be specified with a paint-like interface or can
be learned from a sequence of example deformations. A knee joint
can be emulated by specifying an anisotropic material that is flex-
ible in one direction and rigid in the other two. Mechanical joints
cannot be realized this way, however. Moreover, our work handles
multiple types of joints with joint limit constraints.

Non-homogeneous resizing is needed to preserve important struc-
ture and features, such as circular shapes, of complex models con-
sisting of multiple components [Kraevoy et al. 2008]. A protective
grid, or vulnerability map, is first constructed. A space deforma-
tion technique then scales different regions non-homogeneously to
respect this map. Our method addresses issues that are comple-
mentary to such resizing problems. Cylindrical and spherical joints
between components, such as hinges and ball-and-socket joints, are
automatically preserved by our joint-aware deformation, although
for different underlying reasons than those proposed by Kraevoy et
al.[2008].

Inverse Kinematics: Inverse Kinematics(IK) is a standard problem
in robotics and posing characters in computer animation [Murray
et al. 1994; Parent 2008]. Given an articulated kinematic chain of
rigid bodies, IK solves for joint angles that achieve a desired config-
uration of the end effector. IK usually deals with under-constrained
problems when there are more joint degrees of freedom (DOFs)
available than the DOFs of the end effector. IK methods commonly
use the inverse Jacobian or cast the problem as an optimization.
Mesh-based Inverse Kinematics (MESHIK) considers the problem
of finding meaningful mesh deformations that meet specified ver-
tex constrains [Sumner et al. 2005; Der et al. 2006]. This requires a
collection of sample poses, which is often not readily available for
complex models. Constraint-based mesh deformation techniques
can usually incorporate joint constraints to some extent, if a reason-
able skeleton is provided [Huang et al. 2006; Shi et al. 2007]. Our
work integrates articulation and deformation in a skeleton-free way,
handles more types of joints, and automatically detects joints that
are implicit in the geometry.

Shape Analysis: Shape analysis algorithms study a variety of geo-
metric, structural, or semantic features and metrics, including mesh
saliency, symmetry, up-right orientation, and feature vulnerability,
to name a few. A wide spectrum of applications, such as mesh
segmentation, viewpoint selection, reverse engineering, shape re-
trieval, and shape recognition, can benefit from such analysis [Katz
and Tal 2003; Attene et al. 2006; Mitra et al. 2007; Kraevoy et al.
2008; Fu et al. 2008]. Similar to our consideration of complex mod-
els, 3D exploded view diagrams often take complicated mechanical
assemblies with multiple parts as input of interest. To visualize the
spatial relationships between parts, blocking constraints along ex-
plosion directions have to be investigated when generating such di-
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Figure 2: Joint analysis: (a1) An input model with two compo-
nents. (a2) Parts segmented. (a3) Valid points on the intersection
surfaces passed to shape analysis. (a4) The joint frame associated
with the identified revolute joint. (b) A robot brush with components
shown in different colors and joints labelled.

agrams [Li et al. 2008]. Our application requires analysis of diverse
joints to constrain the relative configurations and motions between
components. Slippable motion analysis [Gelfand and Guibas 2004]
lies at the core of our joint analysis algorithm and will be discussed
in detail shortly (§3.1).

3 Joint Constraint Analysis

In mechanics and robotics, the words joint and constraint are often
used interchangeably to represent a relationship that is enforced be-
tween two bodies so that they can only have certain positions and
orientations relative to each other. Our deformation system models
motion constraints for articulation with typical types of joints used
in mechanics.

3.1 Slippable Motions

Common mechanical joints have characteristic shapes, such as the
revolute joint shown in Figure 2(a). The core of our joint analy-
sis is based on the notion of slippable shapes and slippable mo-
tions [Gelfand and Guibas 2004]. Slippable motions are defined
as rigid motions which, when applied to a shape, slide the trans-
formed version against the original copy without forming any gaps.
That is, the shape is invariant under its slippable motions. Slippable
shapes include rotationally and translationally symmetrical shapes
such as planes, spheres, and cylinders. Touching slippable shapes
can undergo their corresponding slippable motions without pene-
trating each other, and therefore are often found in joints for me-
chanical models. For instance, the slippable motions for a cylinder
include rotations around the cylinder’s axis and translations along
the axis.

Slippage analysis was originally designed to reverse engineer CAD
objects, and segment complex shapes into simple geometric parts.
Slippable motions can be computed as a least-squares problem
whose minimum is the solution of a linear system Cx = 0. The
slippable motions of a Pointset P are those that belong to the null
space of the covariance matrix C. Eigenvectors of C whose corre-
sponding eigenvalues are zero correspond to the slippable motions
of P. In practice, due to noise C is likely to be full rank, and we
choose those eigenvectors whose eigenvalues are sufficiently small
as slippable motions. We refer the reader to [Gelfand and Guibas
2004] for more details. Here we simply state that we can effectively
determine the valid relative motions between two components by
detecting their intersection surfaces and calculating their slippable
motions. Table 1 shows the slippable motions of different surfaces.

3.2 Joint Detection

Given a complex mesh model as input, we first analyze the connec-
tivity of triangles and separate them into connected components.
Smaller components or semantically coupled components can be
merged into larger components by users as they see fit. Intersecting
surfaces of adjacent components are then passed to the slippable
motion analyzer to identify potential degrees of freedom of the rel-
ative motions between the surfaces, such as translations and rota-
tions. We further model the detected DOFs of slippable motions as
different types of mechanical joints, such as revolute and prismatic
joints. From an input model to final joint constraints, there are four
major steps involved: intersection surface detection, slippable mo-
tion analysis, range of motion detection, and mapping of allowable
DOFs to joints. We now describe each step in detail.

Intersection surface detection: We begin by searching for the
shortest distance between each pair of components in the complex
model. If this minimal distance is less than a user specified thresh-
old, the two components are selected as candidates for further inter-
section surface detection. We first segment components into near-
convex semantic parts [Katz and Tal 2003]. Convex hulls are then
computed for each part and intersections between each pair of con-
vex hulls are located. The intersection surfaces are simply the sur-
faces in the intersecting regions. If two components are in contact
and do not intersect with each other, there will be no intersection
from their convex hulls. In this case, we look for vertices which are
within the distance threshold to each other from the two compo-
nents under inspection. The vertices of the intersection and contact
surfaces are then passed to slippable motion analysis as input.

Erroneous vertices may be detected in the above step. To filter
these, we project a vertex of one component along its normal until
it intersects with a triangle on the other component, and then com-
pute the normal of the intersected triangle. Only when the angle
between these two normals exceed a certain threshold (145 degrees
for all the examples shown in this paper), can the vertex be kept for
subsequent analysis.

Slippable motion analysis: By default, joints between two com-
ponents are fixed. When there are more than five valid vertices de-
tected between two components as described in the previous step,
we analyze the allowable slippable motions between these compo-
nents. The output of the slippable motion analysis are the number
of translational and rotational degrees of freedom, and their corre-
sponding axes.

Note that slippable motion analysis may not be completely accurate
for digital mesh models. There are two factors that most affect the
stability and accuracy of the analysis. Let λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤
λ5 ≤ λ6 be the eigenvalues of C. We call the eigenvalue λ j small
if the ratio λ6

λ j
is greater than a chosen threshold g. The condition

number g determines how many slippable motions are returned, and
is adjusted so that the maximum number of slippable motions is
three. By default, we choose g conservatively in the range of 100
to 200 in our implementation. Users can also adjust g interactively
from the graphical user interface (GUI) we provided.

Slippable motion analysis is more sensitive to the model resolution
than the value of the condition number g. For example, if a sphere
is discretized too coarsely, there may not be any numerically de-
tectable slippable motions. Segmentation errors in the intersection
surface detection step can also degrade the quality of slippage anal-
ysis. Nonetheless, given a complex model, slippable motion anal-
ysis can save a considerable amount of effort for users in arriving
at a reasonable initial joint classification and joint frame alignment.
Table 2 provides a quantitative summary.



Type of Num. small Slippable Type of
Surface Eigenvalues Motions Joint
sphere 3 3 rot. ball
plane 3 2 tran., 1 rot. plane

cylinder 2 1 tran., 1 rot. cylinder
linear extrusion 1 1 tran. prismatic

surface of revolution 1 1 rot. revolute
non-slippable 0 0 tran., 0 rot. fixed

Table 1: Slippable motions of various surfaces, and the corre-
sponding mapping to joints.

Range of motion detection: Slippable motion analysis only out-
puts the DOFs of valid motions between two components. Range
of motion information, such as angle limits of rotational joints, or
translational limits of prismatic joints, is not provided. We thus
need to additionally discover these joint parameters. Feasible range
of joint limits should keep two components in close proximity with-
out any visible penetration. To this end, we design a trial-and-error
bisection process. For instance, translational limits are probed by
sliding a component along its translational axis until penetration
occurs. Angle limits of rotational joints are detected in a similar
fashion. If the feasible range of a motion direction is less than a
chosen threshold, this DOF will be removed from the system.

Mapping to joints: We model detected slippable motion con-
straints as typical joint types used in mechanics, as shown in Ta-
ble 1. While prismatic, revolute and ball joints are standard joints
in mechanics, the plane, cylinder and fixed joints require additional
elaboration. Plane joints describe the case of two components have
planar contacts and can slide and rotate on the plane relative to each
other. Cylinder joints have an additional translational DOF com-
pared to revolute joints. Fixed joints maintain a fixed relative posi-
tion and orientation between two bodies. That means there are no
allowable motions between these two components. Fixed joints ex-
ist because all eigenvalues computed by slippable motion analysis
can be larger than a certain threshold, and semantically these com-
ponents should not move relatively to each other. The robot brush
as shown in Figure 2(b) illustrates most of the joint types we imple-
ment. We also allow users to overwrite the type of joints and adjust
their range of motion parameters, if they are not satisfied with the
results suggested by the system.

We represent joints with local coordinate frames for the conve-
nience of the constraint formulation to be introduced shortly. Local
coordinate frames are computed through PCA analysis on valid ver-
tices of the intersection surfaces, and then aligned with the detected
translation or rotation axes.

4 Space Deformation

Given a set of identified components and their joint constraints, a
deformation framework needs to be developed that supports this
rich class of constraints. Prior space deformation methods which
employ a single spatial grid for the whole model cannot easily in-
corporate and maintain spatial relationships among components.
Our deformation algorithm advocates building a local spatial grid
for each component, and assigns transformation parameters for
each local grid. Joints detected by slippage analysis as described
in the previous step are used to constrain the transformations of lo-
cal grids.

We formulate space deformation as a nonlinear optimization prob-
lem, which supports deformation edits and joint constraints in a uni-
fied manner. The objective function is comprised of energy terms
corresponding to shape deformation and error terms related to joint
constraints and manipulation goals. The transformations associated

with every component-based local grid represent the optimization
parameters. If the user wishes to edit the shape of a component,
she subdivides its local grid into multiple cells. The system then
allocates transformation variables for each cell. An iterative Gauss-
Newton solver converges to solutions at rates that support interac-
tive manipulation. From transformations of the coarse cuboid cells,
we reconstruct the mesh from moving-least-squares interpolation,
similar to [Kaufmann et al. 2008].

In the following, we first introduce necessary notations and then
detail the energy and constraint formulations used in the objective
function. We then describe the Gauss-Newton method and relevant
techniques for numerical acceleration.

4.1 Spatial Grid Generation

In order to decouple motions of different components, we create
an individual grid for each identified component. Specifically, we
calculate an oriented bounding box (OBB) Ck for each component
k. If the user wants to freely deform component k, Ck can further
be subdivided into cells using either octree or uniform subdivision.
Cm

k denotes the mth cell of component k, and Tm
k = {Rm

k ,pm
k } is its

associated transformation, where Rm
k is a 3× 3 matrix and pm

k is a
3×1 translation vector. The vertices of the cell Cm

k are denoted by
vm,i

k , i = 0 . . .7.

We define the influenced region of a joint as the OBB of the valid
vertices from the intersection surfaces that generate the joint. The
cells intersecting with or contained by these influenced regions are
called influenced cells. All influenced cells from the same compo-
nent share a common transformation. This is because one joint can
only relate two transformations. In Section 4.2.2, Tm

k1,T
n
k2 are the

two transformations influenced by a particular joint, one for the mth
cell from component k1, and the other for the nth cell from com-
ponent k2. All other influenced cells have transformations that are
identical to either Tm

k1 or Tn
k2, depending on which component they

belong.

4.2 Optimization Objectives

Freeform deformations and joint constraints are implemented by
separate terms in the optimization objective function. We seek cell
transformations that minimize a weighted sum of the deformation
energies and constraint errors.

4.2.1 Deformation Energies

We use cells that are as rigid as possible. Freeform deformation is
achieved by allowing different cells, which are “elastically glued”
together, to have different transformations. Deformation handles
are formulated as positional constraints that can be interactively de-
fined on the complex model and directly manipulated by users.

Rigidity: Rigidity measures how much a cell preserves its original
shape. For a rigid transformation Tm

k , Rm
k is a rotation in SO(3). We

measure the rigidity of a transformation by computing the deviation
of Rm

k from a pure rotation [Sumner et al. 2007]:

Rigid(Rm
k ) = (cm

k,1 · cm
k,2)

2 +(cm
k,1 · cm

k,3)
2 +(cm

k,2 · cm
k,3)

2

+(cm
k,1 · cm

k,1−1)2 +(cm
k,2 · cm

k,2−1)2

+(cm
k,3 · cm

k,3−1)2

where cm
k,i, i = 1,2,3 are the column vectors of matrix Rm

k . The
energy term Erigid is formed by accumulating the rigidity of every



cell:

Erigid = ∑
k,m

Rigid(Rm
k ) (1)

Elastic strain energy: This term measures the local variation
of transformations, i.e., differences of neighboring cells’ mo-
tions [Botsch et al. 2007]. It emulates the ability of elastic materials
to resist bending and stretching.

Estrain = ∑
k,m

∑
j∈N m

k

‖Tm
k vm,i

k −T j
kvm,i

k ‖2, i = 0 . . .7 (2)

where N m
k denotes the set of neighboring cells of Cm

k , and vm,i
k , i =

0 . . .7 denotes the eight vertices of cell Cm
k . Note that the above

formulation only works for uniform subdivisions. For octree-like
subdivisions, we use a weighting scheme similar to Botsch et al.
2007.

Position Constraints: Deformation handles allow for direct user
manipulations and are therefore commonly considered to be intu-
itive to use. We support deformation handles by constraining the
distance between the actual and desired handle positions:

Epos = ∑
i
‖Tm

k vi−qi‖2 (3)

where vi is the position of the selected vertex on the model at the
reference pose, and qi is its target location. Tm

k is the transformation
associated with cell Cm

k which contains vertex vi. There are usually
multiple handles, of which only one is actively controlled by the
user at a particular instant in time. We visualize the active handle
as a red cube, and inactive handles will be yellow.

4.2.2 Joint Constraint Errors

There are two common ways to represent joint constraints in kine-
matics [Murray et al. 1994]. One is to use the reduced coordinates,
commonly known as joint angles, to parameterize joints. This ap-
proach cannot be seamlessly integrated into our cell based defor-
mation framework. The other is to use the full coordinates supple-
mented with constraints that remove redundant DOFs. By posing
joint constraints on the cell transformations in a similar fashion,
we can develop a unified optimization framework that can main-
tain joint constraints and achieve freeform deformations at the same
time. Another benefit of the constraint formulation of joints is that it
is more modular and flexible than using reduced coordinates, which
in consequence greatly simplifies the task of slippable motion anal-
ysis and better supports interactive editing of joint types.

Let us denote a joint and its attached local frame by {J,c,F =
{X,Y,Z}}. J represents the type of the joint, which is an element
from the set {Revolute,Cylinder,Prismatic,Plane,Ball,Fixed}. F
represents the three mutually orthogonal axes of the local joint
frame, and c is its origin. Each type of joint defines a set of ge-
ometric invariants, such as distances between cell vertices and/or
joint axes. Preserving these invariants during deformation enforces
the joint constraints accordingly. We now derive a penalty formu-
lation for each type of joint in Table 1.

Revolute Joint: A revolute joint {Revolute,c,{X,Y,Z}} only has
one rotational degree of freedom, where c is its rotation center, and
X its rotation axis. The geometric invariants of a revolute joint are
the projected distance and the axial distance between a cell vertex
and the rotation axis as illustrated in Figure 3(a). The rotation axis
should also remain the same under any valid rotation of the revolute
joint. We formulate the three geometric invariants of a revolute joint
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Figure 3: Geometric invariants of revolute and prismatic joints

as follows:

ERJ1 = ∑
i
‖(Tm

k1vm,i
k1 −Tn

k2c)•Rn
k2X− (vm,i

k1 − c)•X‖2

ERJ2 = ∑
i
(‖Tm

k1vm,i
k1 −Tn

k2pm,i
k1 ‖2−‖vm,i

k1 −pm,i
k1 ‖2)2

ERJ3 = ‖Rm
k1X−Rn

k2X‖2

where • represents dot product. Tm
k1 and Tn

k2 are the transforma-
tions of two cells influenced by the revolute joint, and pm,i

k1 is the
projection point of vertex vm,i

k1 on the X axis. Minimizing ERJ1 and
ERJ2 maintains the invariance of the projected and axial distances,
and a zero ERJ3 enforces a static rotation axis under rotations. The
error term of a revolute joint is given by the sum of the above three
terms:

ERev = ERJ1 +ERJ2 +ERJ3 (4)

Detected joint limits (§3.2) need to be implemented in order to pre-
vent components connected by the revolute joint from penetrating
each other. We again express these as geometric constraints. For
each cell Cm

k1 influenced by a revolute joint, we compute a vector
dm,i

k1 = vm,i
k1 − pm,i

k1 for its ith vertex. dm,i
k1 is then rotated about the

rotation axis X . di
l and di

u denote the lower and upper bounds when
dm,i

k1 reaches the joint limits. We define a penalty term ERM to force
vector dm,i

k1 lie in between these two limit vectors di
l and di

u. When
the transformed vector dm,i

k1 is within the valid range of motion, the
penalty term returns zero. Otherwise it returns the distance to the
closest bounding vector di:

ERM = ∑
i
‖(Tm,i

k1 vm,i
k1 −Tn

k2pm,i
k1 )−Tn

k2di‖2 (5)

Cylinder Joint: A cylinder joint has one more translational degree
of freedom than a revolute joint. Hence we should allow a change-
able projected distance during manipulation of the components. We
simply remove the projected distance term ERJ1 from Equation 4,
resulting in the following error term for cylinder joints:

ECyn = ERJ2 +ERJ3 (6)

Prismatic Joint: Prismatic joints are widely used in mechanisms
to constrain one component to translate along a fixed axis without
any rotation. For a prismatic joint {Prismatic,c,{X,Y,Z}}, axis
X is the sliding axis along which the component can slide. The
geometric invariants of prismatic joints are the distance between a
cell vertex and the XY plane, and the projected distance of a cell
vertex on the Y axis, as illustrated in Figure 3(b). We can specify
the geometric invariants as follows:

EPJ1 = ∑
i
‖(Tm

k1vm,i
k1 −Tn

k2c)•Rn
k2Z− (vm,i

k1 − c)•Z‖2

EPJ2 = ∑
i
‖(Tm

k1vm,i
k1 −Tn

k2c)•Rn
k2Y− (vm,i

k1 − c)•Y‖2
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Figure 4: (a) The user can wipe a wall using the robot brush by
directly dragging the tip of the brush (b) The yellow W-shaped seg-
ment can extend and fold after the user changes the fixed joints
between the rods to revolute joints.

where Tm
k1 and Tn

k2 are cell transformations from components k1
and k2 respectively that are constrained by the prismatic joint. The
total error term for prismatic joints is thus a sum of the above two
terms:

EPrism = EPJ1 +EPJ2 (7)

In a similar fashion to revolute joints, we denote dm,i
k1 as the vector

from the cell vertex vm,i
k1 to its projection on the XY plane pm,i

k1 . The
limit vectors di

l ,d
i
u of dm,i

k1 can be calculated as before, and a penalty
term similar to Equation 5 can be formed.

Plane Joint: Plane joints are used to enforce planar contacts be-
tween two components. Their geometric invariant is the distance
between a cell vertex and the sliding plane. The error function is
simply:

EPlane = EPJ1 (8)

Ball Joint: Ball-and-socket joints have three rotational degrees of
freedom and are common in biological systems, such as the hip and
shoulder joints of modelled human characters. When two compo-
nents are connected by a ball-and-socket joint {Ball,c,{X,Y,Z}},
they both attach to the center c. Consequently, transformations of
each component should keep the anchor point c together. Therefore
the error term to impose ball-and-socket joints is:

EBall = ‖Tm
k1c−Tn

k2c‖2 (9)

To enforce joint limits for a ball joint, we first decompose the rota-
tion between Tm

k1,T
n
k2 into Euler angles. If they are out of bounds,

we project them back into the valid range and compute the cor-
responding limit vector di by this projected valid rotation. The
penalty term is then constructed similar to Equation 5.

Fixed Joint: A fixed joint holds two components fixed with re-
spect to each other. All cells influenced by the fixed joint from both
components should have identical transformations. This can be im-
plemented as a hard constraint in a pre-processing stage before the
optimization to ensure two components will not move relative to
each other around the fixed joint.

4.3 Non-linear Optimization

Our shape deformation solves the following unconstrained nonlin-
ear optimization problem:

min
x

f(x)T f(x) = EDF +w jEJNT +wpERM (10)

where: EDF = wrigidErigid +wstrainEstrain +wposEpos

EJNT = ERev +ECyn +EPrism +EPlane +EBall

(a) (b) (c)

Figure 5: (a) The original model of an office chair. (b) Seat swiv-
elled and armrests adjusted. (c) Back support tilted and bended.

Here, x is the aggregation of all cell transformations Tm
k , k =

1 . . . j,m = 1 . . . jk. Since each cell transformation has 12 DOFs, the
total dimension of the optimization parameter x is around twelve
times of the number of cells. EJNT enforces joint invariants, and
ERM penalizes violations of joint limits. Fixed joints do not ap-
pear in the objective function because we explicitly model them by
mapping all the transformations of influenced cells to one single
transformation variable. Currently we treat all joints equally in the
deformation, so that all joint constraints have the same weight. Al-
though there are several weights to be set, we found a large range
of values work well and a minimal amount of example-specific tun-
ing was required. For most of the demo examples, we use 1e5 for
w j and wp, since they represent “hard” joint constraints; 1e4 for
wrigid because we want near-rigid cells; 1e3 for wstrain to allow de-
formations; and 1e2 for wpos because we treat user manipulations
“softer”. To achieve special effects such as the highly stretchable
arms and trunk of the Asimo-like robot as shown in Figure 7(d), we
use a low wstrain = 10.

Numerical Solution: We implement an iterative Gauss-Newton
method for the above nonlinear least squares problem [Nocedal and
Wright 1999; Madsen et al. 2004; Sumner et al. 2007]. At each iter-
ation t, the algorithm solves a linearized subproblem, and computes
an updating vector dt to improve the current solution xt :

min
dt
‖Jtdt + f(xt)‖2

xt+1 = xt +dt
(11)

where Jt is the Jacobian of f(xt).

The analytic Jacobian Jt is sparse, and its non-zero structure re-
mains the same across iterations. We can thus reuse a pre-computed
symbolic factorization of JT

t Jt to accelerate the numerical fac-
torization at every iteration. Furthermore, updating of Jt can be
parallelized on multi-core platforms commonly available today to
achieve improved performance. For all our demonstrations, we use
the PARDISO (Parallel Direct Sparse Solver) solver from the Intel
Math Kernel Library 10.0.

Inverse Kinematics is fundamentally an under-determined prob-
lem with possible singular configurations for models with long IK
chains. We use the damped pseudo-inverse to achieve singularity
robust IK solutions [Parent 2008]. This effectively eliminates oscil-
latory motions resulting from high joint velocities near a singular
configuration, and generally smooths out motions when tracking
user-manipulated handles.

5 Results

We demonstrate the capability of the proposed deformation frame-
work on a variety of models in different application scenarios. In
addition to the pictorial illustrations shown in this section, readers
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Figure 6: A comparison of our method and [Botsch et al. 2007]. (a)(b) The input bee
model and its components shown in different colors. (c)(d) Our algorithm uses a total of
421 cells defined on component-based multiple grids, and dragging the bee’s stinger up
and down does not affect the wings or legs, which are attached to the thorax. (e)(f) [Botsch
et al. 2007] uses a single spatial grid of 1364 cells, and the deformation of the stinger
undesirably disturbs the wings and legs.

are encouraged to see the accompanying video for an interactive
and animated demonstration of the results. Table 2 shows perfor-
mance statistics of our experiments. The accuracy of joint analysis
gives the percentage of correctly detected and classified joints out
of the total number of joints used in the demos. Interactive perfor-
mances can be achieved for all models on a 2.99GHz Intel Quad
core machine with 4GB of RAM. The time of one Gauss-Newton
iteration (column Solve) is related to the number of cells and joints.
The number of iterations required depends on the model complex-
ity, the stopping criteria, and the magnitude of user manipulations.
In general we observe fast convergence. Qualitatively, three to five
iterations can move the handle close to the target. The MLS inter-
polation time is related to the number of cells and vertices.

Jointed multi-component models: The ideal input to our defor-
mation system are jointed multi-component models, such as CAD
models. Figure 4(a) shows the direct manipulation of the tip of
the robot brush to wipe a wall. The brush can deform naturally,
and the articulation of the mechanical arm operates cooperatively.
If the user is not happy with the joint types suggested by the sys-
tem, she can interactively change the type of joints and produce
totally different animations in just a few seconds. As shown in Fig-
ure 4(b), she can instantly make the W-shaped segment extend and
fold by changing the fixed joints between the yellow rods into rev-
olute joints.

Figure 5 demonstrates an adjustable office chair being manipulated
using our deformation system. The seat and armrests can swivel,
the armrests can rise and drop, and the back support can tilt and
bend. Figure 1(b) shows that an Aibo-like robot dog can be inter-
actively posed to walk and stand up. Its soft tail, body and ears can
also deform simultaneously.

Figure 6 compares our method to the approach of [Botsch et al.
2007], showing the strength of component-based discretization and
deformation. Without the concept of components, even an adap-
tive method with much higher cell numbers risks having artifacts.
For example, dragging the bee’s stinger, which is at the back of its
abdomen, affects the bee’s wings or legs, which are attached to its
thorax. Such undesired correlations between spatially nearby parts
which are geodesically and semantically distant, the bee’s abdomen
and wings in this case, can be eliminated with a smaller number of
cells using our method. To eliminate the effect of rotational joints
from our method for fair comparison, we use fixed joints to connect
all components so that deformation of one component can pass to
its neighboring components. Note that the information of compo-
nents can be used in the method of Botsch et al. as well.

Figure 7(d) demonstrates the advantage of our system over conven-

(a) (b)
Figure 8: (a) A cartoon snake with multiple
disconnected segments. Virtual ball joints are
added between adjacent segments to make the
snake dance. (b) The single-component Stan-
ford bunny. Virtual revolute joints are created
between the ears and the rigid head.

tional IK with an Asimo-like robot. Since we allow for deformable
limbs and accessories (e.g., arm tubes), stretching effects can be
easily achieved. Building deformations into an IK system enables
artistic exaggerations and supports the artistic license that can be
used with respect to rigid skeletons, as suggested by [Lasseter 1987;
Harrison et al. 2004]. Figure 7(c) demonstrates motion retargeting
of skeletal animations to the robot. Note that the arm tubes deform
properly as the motion changes. Chosen body parts can be rigid or
deformable to achieve different styles.

Non-jointed Models: We cannot apply the joint analysis algorithm
to disconnected multi-component models and single-component
models. However, such models can still benefit from our deforma-
tion framework with assistance from users to define desired joints.

Figure 8(a) illustrates the effect of joint-aware deformation on a
cartoon snake consisting of multiple disconnected segments. We
manually create ball joints between adjacent segments to allow the
snake to dance. To test our deformation framework for single-
component models, we use the Stanford bunny model. We manu-
ally create two virtual revolute joints between the ears and the body
as shown in Figure 8(b). The head is made fully rigid by designat-
ing a single shared transformation for all the cells belonging to the
head region. Because of the existence of the virtual joints, the elas-
tic strain energy is discontinuous around the base of the ears. Such
deformations are likely difficult to achieve with the user-painted
rigidity weights of previous methods.

6 Discussion

The success of joint analysis depends on the existence, resolution,
and clean instantiation of the conjunction that represents a joint.

Model #Vert. #Cells #Comp. #Joints Accu. Solve MLS
Brush 6885 176 15 15 100 14.90 1.35
Lamp 25862 76 6 5 100 3.42 10.40
Chair 23279 227 6 5 100 7.45 6.70
Asimo 38807 477 20 21 81 29.58 13.20
Office 53457 70 25 10 70 3.95 5.89
Aibo 14587 153 13 12 60 6.69 2.80
Bee 10607 421 13 13 NA 12.04 3.58

Snake 597 10 10 9 NA 0.54 0.06
Bunny 34835 1895 1 2 NA 103.09 35.74

Table 2: Test data and performance statistics. Timing is measured
in milliseconds on a 2.99GHz Intel Quad core machine with 4GB
of RAM. From left to right: Number of vertices, number of cells,
number of components, number of joints, accuracy of joint analysis
in percentage, time of one Gauss-Newton iteration, MLS interpola-
tion.



(a) (b) (c) (d)
Figure 7: (a) An Asimo-like robot with 20 components shown in different colors. There is one joint between each pair of adjacent components.
Our joint-aware deformations mostly use revolute joints except that the hips are ball-and-socket joints and the wrist and arm tube attaching
points are fixed joints. (b) The cell decomposition for deformable motion retargeting and inverse kinematics. (c) The robot driven by motion
capture data to shadow box. (d) IK with rigid(left) and deformable(right) body parts.

The major limitation of this system is that joint analysis is not fully
automatic for models that do not have reasonable geometric joints.
From our experience, CG modelers tend to only model joints that
are visually important when given no instructions on the intended
application. For example, the knees of Aibo were modelled prop-
erly but the hip and neck joints were skipped. As a consequence
we can only analyze 60% of its joints correctly. Figure 9 shows a
close-up view of the neck joint of Aibo. No valid vertices can be
detected within the intersection region, so the joint is erroneously
labelled as a fix joint. The proposed deformation framework mainly
targets models that have built-in joint connections in the mesh, such
as CAD models for example. However, we are hoping with the ex-
istence of a tool like ours, modelers can become more joint-aware
for CG models as well.

(a) (b)

Figure 9: (a) Color-coded components of Aibo. (b) A close-up
view of the neck where it intersects the body. Red vertices are lo-
cated within the intersecting region, but no body vertices are within
the given thresholds of both Euclidean and normal distances. As a
result, the joint is labelled fixed.

Although the joint analysis cannot achieve 100% accuracy, it signif-
icantly reduces the amount of manual input required. For models
that do not have joints, or only have joints that look right but are
mechanically wrong, we allow users to interactively create and edit
joints. This is a critical component complementary to the shape
analysis step. Automating the addition of virtual joints will con-
siderably enhance the usability for single-component models. Part-
aware shape analysis may offer useful suggestions to the users [Liu
et al. 2009]. If a set of example poses are available, we can also
detect near-rigid components and place joints accordingly [James
and Twigg 2005; Theobalt et al. 2007]. We are also interested in
examining the possibility of deformable articulation for dynamic
animations as in [Faloutsos et al. 1997; Galoppo et al. 2007].

To the best of our knowledge, there are currently no joint-aware de-
formation tools available in commercial software packages. Imitat-
ing soft links in a skeleton requires setting up many small bones and

careful tuning of the skinning weights. Plane and cylinder joints are
also not supported. We would like to better understand how anima-
tors will use a system like ours as they gain experience with it. One
potential problem is that animators may require some time to fa-
miliarize themselves with the new found freedom presented by a
system that integrates both articulation and deformation. For exam-
ple, achieving effects such as having Asimo stretch its legs while
still being bent at the knee requires some thoughtful setup, such as
setting a fixed handle at the knee or setting a desired pose, as by
default the leg will straighten before it stretches.

7 Conclusion

We have presented an interactive, joint-aware deformation system
for complex models. In contrast to previous work that has focused
on low-level feature preservation, we consider the constrained spa-
tial relationships represented by joints. Such higher-level semantic
between components is an important clue for achieving deforma-
tions that preserve the design intent of the modeler and the intent
of subsequent user manipulations. Articulation and deformation
are integrated seamlessly and flexibly with our method. Joints can
be automatically inferred by slippable motion analysis, or interac-
tively defined by users. Space deformation and joint constraints
are framed as one nonlinear optimization problem, which is then
solved by a fast parallelized Gauss-Newton method. The proposed
scheme is demonstrated on a range of models, including connected
multi-component models, disconnected multi-component models,
and single-component models.
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