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Figure 1: Left three: the user makes a selection by painting the object of interest with a brush (black-white circle) on a 24.5 megapixel image.
Instant feedback (selection boundary or image effect) can be provided to the user during mouse dragging. Rightmost: composition and effect
(sepia tone). Note that the blue scribbles are invisible to the user. They are drawn in the paper for illustration only.

Abstract. In this paper, we present Paint Selection, a progressive
painting-based tool for local selection in images. Paint Selection
facilitates users to progressively make a selection by roughly paint-
ing the object of interest using a brush. More importantly, Paint
Selection is efficient enough that instant feedback can be provided
to users as they drag the mouse. We demonstrate that high quality
selections can be quickly and effectively “painted” on a variety of
multi-megapixel images.
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1 Introduction

Selections or layers are one of the most powerful representations
in image editing. Many applications, from object cut-and-paste to
local color/tone adjustments, require a local selection. Recently,
graph-cut-based approaches [Boykov and Jolly 2001; Li et al. 2004;
Rother et al. 2004] have greatly simplified this tedious and time-
consuming job. Furthermore, efficient optimization [Boykov and
Kolmogorov 2001] also enables users to get instant feedback, which
is critical for interactive image editing.
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Gradually, however, these global optimization based approaches
become incapable of providing instant feedback on multi-
megapixel (10–25Mp) images produced by today’s digital cameras,
because the complexity of graph-cut optimization is at least pro-
portional to the number of pixels. Even worse, it is difficult to
parallelize the graph-cut optimization to take advantage of modern
multi-core machines. Without instant feedback, users have to work
in a dreary “act-and-wait” mode, and the total interaction time can
increase significantly.

The feedback delay also makes applying local image effects or ad-
justments (e.g., saturation, NPR) during the selection difficult, be-
cause users may not be sure what a good selection should be before
viewing the results with applied effects.

Our approach. In this work, we propose Paint Selection, a pro-
gressive painting-based tool for local selection in images which can
provide instant feedback during selection, on multi-megapixel im-
ages. Users select image regions by directly painting the object
of interest with a paint brush. Unlike conventional painting opera-
tions, users need not paint over the whole object. Instead, the se-
lection can be automatically expanded from users’ paint brush and
aligned with the object boundary, as shown in Figure 1.

Paint Selection is very efficient and can provide instant feedback
as users drag the mouse. The efficiency comes from a progressive
selection algorithm and two new optimization techniques: multi-
core graph-cut and adaptive band upsampling. Most importantly,
by integrating progressive selection and designed optimization, the
number of pixels that needs to be considered is significantly re-
duced, making the process much more efficient.

Paint Selection is based on a key observation: interactive local se-
lection is a progressive process in which users create the selection
step by step. Therefore, it may not be necessary to solve the global
optimization problem from scratch for each user interaction. In-
stead, Paint Selection progressively solves a series of local opti-
mization problems to match users’ directions, without sacrificing
usability and selection quality.



Paint Selection has several additional UI advantages: i) enabling
interchangeability, users can use different selection tools (includ-
ing ours) in any order to complete a job (section 2.2.3); ii) handling
scribble conflict, the annoying scribble conflict issue is intelligently
solved by a scribble competition method (section 2.2.4); iii) allow-
ing local refinement of the selection based on the viewport (section
3.3).

1.1 Related works

Scribble-based selection. The selection is computed based on
a number of foreground and background scribbles specified by
users. According to different formulations, these approaches in-
clude graph-cut based [Boykov and Jolly 2001; Li et al. 2004;
Rother et al. 2004], geodesic distance based [Bai and Sapiro 2007],
matting based [Wang and Cohen 2005; Levin et al. 2008], and ran-
dom walk based [Grady 2006].

Generally, for the task of binary selection, graph-cut-based meth-
ods are faster and produce higher quality results. For local im-
age adjustments, recent scribble-based edge-preserving interpola-
tion [Lischinski et al. 2006; Li et al. 2008; An and Pellacini 2008]
may be more appropriate.

Painting-based selection. In approaches like Intelligent
Paint [Reese 1999], Bilateral Grid [Chen et al. 2007], and Edge-
respecting Brushes [Olsen and Harris 2008], users directly paint
the object using a brush. The selection is locally created based on
the brush (position and extent) and image content. In contrast to a
scribble-based UI, the painting-based UI is unique in three aspects:
1) it updates and displays the selection during mouse dragging; 2)
no scribbles are displayed to users; 3) users draw mainly on the
foreground.

A great example of the painting-based UI is Adobe Photoshop
CS3&4’s Quick Selection [Adobe Photoshop ]. Our approach is
inspired by this tool. However, to the best of our knowledge, the
technique used by this tool has not been published.

Boundary-based selection. Snake [Kass et al. 1987] and Intelli-
gent Scissor [Mortensen and Barrett 1995] require users to trace
the whole boundary of the object. When the object has a compli-
cated boundary, or the object is in a highly-textured region, users
have to put great effort into iteratively correcting the selection.

2 Paint Selection
In this section, we present the UI and algorithm of Paint Selection.

2.1 User interface

To select an image region, users paint the object of interest with
a brush while holding the left mouse button. Unlike previous
scribble-based systems which compute results after the mouse but-
ton is released, we trigger a selection (optimization) process once
users drag the mouse into the background, as illustrated by Figure 2
(a). While users drag the mouse within the existing selection, noth-
ing happens. The scribbles are hidden to avoid distracting users. (In
this paper and the accompanying video, scribbles are drawn only for
illustration purpose.)

Once the selection process is triggered, we apply a progressive se-
lection algorithm, described below, to expand the selection. The
expanded selection is computed in a very short time interval (usu-
ally under 0.1 seconds) and instantly displayed to users.

By inspecting the new selection, users can continuously drag the
mouse to expand the selection, until they are satisfied. Users need
not paint over the entire area since the selection can be properly
expanded from the brush to the nearby object boundaries.
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Figure 2: Progressive selection. (a) progressive selection is trig-
gered when users’ brush B touches the background U . New selec-
tion F ′ is immediately computed and added into existing selection
F . (b) R is a dilated bounding box of the seed pixels S. ∂F is the
interior boundary of the existing selection F .

Using the right mouse button swaps the roles of the foreground and
background, so users can expand the background if necessary.

2.2 Progressive selection algorithm

Here, we introduce the progressive selection algorithm which sup-
ports the user interface above.

2.2.1 Progressive labeling

Given the existing selection F and current brush B, the progres-
sive selection computes a new selection F ′ in the background U ,
as shown in Figure 2(a). Once the new selection F ′ is obtained,
the existing selection is updated as F = F ∪ F ′ for the next user
interaction.

In each triggered optimization, we first estimate the foreground
color information. We denote the intersection between the brush
B and the background U as seed pixels S (S = B ∩ U ). To obtain
a stable estimation, we compute a box R by dilating the bounding
box of the region S by a certain width (typically 40 pixels). We
denote the intersection between the dilated box R and the existing
selection F as local foreground pixels L (L = R ∩ F ), as shown
in Figure 2(b). Using both seed pixels and local foreground pixels,
we build a local foreground color model pf (·) by fitting a Gaussian
Mixture Model (GMM) [Rother et al. 2004] with four components.
Using local foreground pixels makes the estimation more stable be-
cause the brush or seed pixel region may be very small.

Then, we update the background color model. At the very be-
ginning of the user interaction, a background color model pb(·) (a
GMM with eight components) is initialized by randomly sampling
a number (typically 1,200) of pixels from the background. In each
subsequent user interaction, we replace the samples that were la-
beled as foreground in the previous interaction with the same num-
ber of pixels randomly sampled from the background. The back-
ground GMM is re-estimated using the updated samples.

With the two color models, we apply a multilevel graph-cut-based
optimization, described in Section 3, to obtain an expanded new
selection. The data term Ed(xp) of Equation (5) in the Appendix
is:{

Ed(xp) = (1 − xp) · K ∀p ∈ S
Ed(xp) = xp · K ∀p ∈ SB

Ed(xp) = xp · Lf
p + (1 − xp) · Lb

p ∀p ∈ U \ (S ∪ SB)
(1)

where K is a sufficiently large constant, Lf
p = − ln pf (Ip) and

Lb
p = − ln pb(Ip), SB are “hard” background scribbles (scribbles

drawn when users expand the background), and Ip is the image
color at pixel p.



(a) without adding frontal pixels (b) with adding frontal pixels

Figure 3: Adding frontal foreground pixels makes selection expan-
sion faster in smooth regions.

Figure 4: Left: the selection of the rear-wheels is created by a lasso
tool since there is no edge information to be used. Middle: when the
user intends to expand the selection upwards, the fluctuation effect
appears (undesired expansion at the rear of the vehicle). Right:
with fluctuation removal, the existing selection far from the brush
can be preserved.

Progressive selection is more efficient for three reasons. First, only
background pixels participate in the optimization. Second, the data
term we constructed in Equation (1) is less ambiguous in most ar-
eas, since our foreground color model is compact. It is not related to
other foreground scribbles outside of the dilated box R, which usu-
ally makes the optimization problem easier. Finally and most im-
portantly, the boundary of the expanded new selection in each user
interaction is usually a small fraction of the whole object bound-
ary, so the multilevel optimization described in Section 3 runs very
quickly.

Next, we solve two complications with our progressive algorithm:
slow propagation in smooth regions (Figure 3(a)), and fluctuation
effects (Figure 4).

2.2.2 Adding frontal foreground pixels.

Propagation of the selection is slow in smooth regions due to the
“shrinking bias” [Boykov and Jolly 2001] – a bias towards shorter
boundaries because the contrast term in the graph-cut is the length
of the boundary modulated with the inverse of image contrast. In
smooth regions, the boundary of the new selection tends to snap to
the existing selection.

We mitigate the shrinking bias by adding a number of frontal fore-
ground pixels as hard constraints. Frontal foreground pixels ∂F are
interior boundary pixels of the existing selection, as shown in Fig-
ure 2(b). Accordingly, we change the first row in Equation (1) to:

Ed(xp) = (1 − xp) · K ∀p ∈ S ∪ ∂F . (2)

Using ∂F as hard constraints, the selection boundary can be more
effectively expanded and the resulting propagation is faster in
smooth regions, as shown in Figure 3(b).

2.2.3 Fluctuation removal

The fluctuation effect is: when users intend to change the selection
locally, some parts of the selection far from the region of interest
may also change. The effect is distracting and may conflict with

Figure 5: Left: part of foreground scribble (blue) is drawn on the
background. Middle: conflicting scribble prevents the background
selection and the deselection of the ball. Right: scribble competi-
tion segments the conflicting scribble based on the image content.

users’ intentions. This is mainly caused by unavoidable color am-
biguities.

We eliminate the fluctuation effect by assuming that users only want
to make a new selection adjacent to the brush. After the progres-
sive labeling, the new selection may consist of several disconnected
regions. We reject those regions that are not connected to the seed
pixels. In other words, we only allow the local change. Figure 4
shows a comparison with/without fluctuation removal.

Interchangeability. Since progressive labeling prohibits existing
foreground regions from being turned to background, and fluctua-
tion removal only keeps local, user-intended new foreground, using
them together enables a nice property of our tool – interchangeabil-
ity: users can combine our tool with any other selection tool (e.g.,
marquee, lasso) in any order to complete a selection task. In Figure
4, for example, the selection is jointly created by a lasso tool and
our tool.

Interchangeability gives users more flexibility to maximize their
productivity. Without interchangeability, users can only apply other
selection tools and Boolean operations after closing our tool.

2.2.4 Scribble competition

There are two situations in which users want to override previ-
ous scribbles: deselecting an unwanted object or a part of the ob-
ject, and mistakenly dragging the mouse into the background as the
scribbles are invisible. With previous tools, users have to paint over
all conflicting scribbles manually because they are hard constraints.
This process is tedious and even confuses a novice user, as shown
in Figure 5.

We address this issue with a scribble competition method. Suppose
C is a scribble which conflicts with a new scribble. We segment the
conflicting scribble using graph-cut-based segmentation:{

Ed(xp) = (1 − xp) · K ∀p ∈ S
Ed(xp) = xp · Lf

p + (1 − xp) · Lb
p ∀p ∈ C \ S

(3)

where the color model pb(Ip) is estimated using all pixels within
the scribble C. As shown in Figure 5, only a coherent part of
the scribble is removed, based on both color and edge information.
With scribble competition, users can effectively override conflicting
scribbles and freely select/deselect objects.

3 Optimization

Our optimization uses the multilevel banded graph-cut [Lombaert
et al. 2005], which first computes a coarse result on a low resolu-
tion image (grid graph), then generates a narrow band (usually ±2
pixels) and upsamples the narrow band, and finally computes the
result within the upsampled narrow band (band graph) in the high



resolution image. This banded optimization process is performed
in multiple levels.

In this section, we introduce two techniques to improve the mul-
tilevel banded optimization: 1) multi-core graph-cut for both grid
graphs and band graphs; 2) adaptive band upsampling for effec-
tively reducing the size of band graphs.

3.1 Multi-core graph-cut

In general, parallelization can improve performance. However,
Boykov’s sequential algorithm based on augmenting path with
“tree-reuse” [Boykov and Kolmogorov 2001] is still the fastest for
typical 2D graphs used in vision and graphics, even compared with
the leading parallel push-relabel algorithm [Delong and Boykov
2008] on a dual-core or quad-core machine. Unfortunately, it is
hard to parallelize Boykov’s path augmentation without introduc-
ing expensive synchronization. Recently, Vineet et al. [2008] intro-
duced a GPU-based push-relabel algorithm that runs on a subset of
NVIDIA graphics cards and outperforms most CPU-based graph-
cut algorithms; in contrast, our goal is to design a general algorithm
that exploits the power of modern multi-core processors.

We propose a parallel version of Boykov’s algorithm using an alter-
native graph partitioning method. Boykov’s algorithm performs a
breadth-first search over the graph to find paths from the source to
the sink using two dynamic trees. If an augmenting path is found,
the capacities of all edges along the path are decremented appropri-
ately. Note that it is not necessary to find an optimal path in every
search. Any path found can make progress on the optimization.

Based on this fact, taking a dual core case as an example, we first
partition the graph into two disjoint subgraphs and find augment-
ing paths in both subgraphs concurrently. Because no crossing path
between the two subgraphs can be found, the result may not be
optimal. Once we cannot find an augmenting path in one of the
subgraphs, we partition the whole graph into two different disjoint
subgraphs and continuously search for augmenting paths in paral-
lel. The new partition will give a chance to find paths that cannot
be found in the previous partition. The dynamic trees in the two
subgraphs can be reused after a simple “orphan adoption” [Boykov
and Kolmogorov 2001]. We alternatively partition the graph and
perform path finding. Until we cannot find any augmenting path in
two successive iterations (usually after 6–10 iterations), we perform
a sequential path finding on the whole graph to guarantee the opti-
mality. Since most flows have been sent from the source to the sink
in the parallel iterations, the final sequential path finding takes only
a very small fraction of the execution time (3–5%). The iteration
process is illustrated in Figure 6.

The graph partition impacts the parallelism performance. We found
that alternatively dividing the graph horizontally and vertically
works well on the grid and band graphs we used. To allocate bal-
anced workloads, we dynamically determine the dividing line by
equally bi-partitioning “active nodes” [Boykov and Kolmogorov
2001], which can be used as a rough workload estimation.

To apply the above algorithm on a quad-core or eight-core proces-
sor, we simply recursively use the dual-core algorithm. Our graph
partitioning method is extremely suitable for grid and band graphs.
On the band graph, the speedup ratio is nearly 2.0 on a dual-core
processor. On average, applying multi-core graph-cut in all levels
can reduce 35–45% total runtime on a dual-core processor and 55–
65% total runtime on a quad-core processor.

3.2 Adaptive band upsampling

As we introduced before, the banded graph-cut [Lombaert et al.
2005] computes the result in a fixed width narrow band in each

......

Figure 6: Alternative graph partition. The dividing line (grey) is
dynamically set in each iteration based on active nodes (black dots).

Figure 7: Adaptive band upsampling. From left to right: input
image, upsampled solution, adaptive band, fixed width band.

level. If the band width is too small, full details may not be dis-
covered; otherwise, the computational cost increases. We use Joint
Bilateral Upsampling (JBU) [Kopf et al. 2007] to create an adaptive
band in each level.

Given the binary result in one level, we first create a narrow band by
dilating (±2 pixels) the boundary. Then, we upsample the narrow
band to the upper level using JBU. For each pixel p in the upper
narrow band, its upsampled value xp is:

xp =
1

kp

∑
q↓∈Ω

xq↓f(||p↓ − q↓||)g(||Ip − Iq||) (4)

where f(·) and g(·) are spatial and range Gaussian kernels, p↓ and
q↓ are coarse level coordinates, {xq↓} is the coarse result, Ω is
a 5 × 5 spatial support centered at p↓, and kp is a normalization
factor.

In JBU, the upsampled solution is converted to a binary result by
thresholding. We found that the upsampled value itself is a good
approximation of the alpha matte, as shown in Figure 7. We exploit
this useful information to generate an adaptive narrow band: we
directly label a pixel as foreground or background if its upsampled
value xp is out of the range [0.25, 0.75]. The resulting band is
narrow around the sharp edges and wide in low contrast regions, as
compared in Figure 7. Adaptive band upsampling can effectively
reduce the size of graph without sacrificing image details.

It is important to note that combining progressive selection and
adaptive band upsampling can substantially reduce the number of
pixels we need to consider. The optimization is mainly performed
in a very narrow band of the new selection, whose length is usually
much shorter than the whole object boundary. To get a seamless
connection, we add those frontal foreground pixels neighbored to
the narrow band as foreground hard constraints.

In the multilevel optimization, we need to determine the size of the
coarsest image as well as the number of levels. For speed consid-
erations, in our default setting, the coarsest image is obtained by
downsampling (keeping the aspect ratio) the input image so that√

w × h = 400, where w and h are the width and height of the
coarsest image. Then, the number of levels is automatically set so
that the downsampling ratio between two successive levels is about
3.0. For example, the number of levels will be four for a 20Mp
image.

3.3 Viewport-based local selection

The multilevel banded optimization usually produces nearly the
same segmentation on the full resolution as the conventional graph-
cut [Lombaert et al. 2005]. However, if the downsampling ratio



Figure 8: Zoomed-in views of selections on a 24.5Mp image. Left:
global selection. Right: viewport-based local selection.

of the input image to the coarsest image is too large, the segmen-
tation accuracy in the coarsest image decreases, which may make
selection difficult for thin structures.

We observed that users often zoom in when they are working on a
small object or region. Based on this observation, we introduce a
viewport-based local selection in a dynamic local window around
the area that users are focusing on.

Dynamic local window. We calculate a dynamic local window
based on the current zoom ratio (displayed image size over the ac-
tual image size). In the image coordinates, we first construct a brush
window that is centered at users’ brush. The extent of the brush
window is equal to the viewport size. Then, we define the dynamic
local window as the minimal area window containing both brush
window and screen region.

We perform the multilevel optimization in the dynamic local win-
dow. The downsampling ratio of the coarsest image is decreased
because the local window size is usually smaller than the input im-
age. The resulting benefit is demonstrated in Figure 8.

In the local selection, we should prevent the selection from par-
tially aligning with the rectangular boundaries of the local window,
because it seems like an artifact from users’ point of view. We do
this by adding background pixels that are adjacent (outside) to the
local window as background hard constraints.

Because local selection is more useful when the zoom ratio is large,
we automatically switch to viewport-based local selection if the
zoom ratio is larger than 100%. For a typical 1K × 1K screen,
viewport-based local selection guarantees instant feedback inde-
pendent of the image size.

4 Results
Performance. We compared Paint Selection with our implemen-
tation of Lazy Snapping using a banded graph-cut. (We found
that the multilevel optimization is more efficient and accurate than
the watershed-based optimization used in Lazy Snapping [Li et al.
2004].) The two tools are the same, except our tool uses progressive
selection and the two proposed optimization techniques. Both tools
were used to select the same objects on a dual-core 2.8G machine
with 2G memory.

Figure 9 shows a detailed comparison for a 20Mp image. On aver-
age, Paint Selection is 15 times faster. The maximum response time
of Paint Selection is less than 0.13s, while Lazy Snapping fails to
provide instant feedback. Although the number of triggered opti-
mizations in Paint Selection is larger, the total optimization time of
Paint Selection is shorter (3.05s vs. 9.56s).

Figure 10 compares the average response time and maximum re-
sponse time among four systems. As can be seen, all techniques we
proposed play important roles: progressive selection significantly
reduces the average response time, and multi-core graph-cut and
adaptive band upsampling are especially helpful for reducing the
maximum response time.

In theory, we can expect a sub-linear growth of the response time
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Figure 12: Response time (in seconds) on a 110Mp panorama.
Left: selecting a small vehicle and building. Right: selecting a
large sky.

with respect to the number of pixels because the complexity of the
banded graph-cut is proportional to the length of the object bound-
ary. To verify this, we first made selections on a 20Mp image using
Paint Selection and resized the image and scribbles to multiple ver-
sions of varying sizes. Then, we replayed the scribbles and recorded
the average and maximum response time. As shown in Figure 11,
the increasing rate of the average response time is roughly

√
M ,

where M is the increasing rate of the number of pixels.

Figure 12 shows the performance of Paint Selection on a 110Mp
panorama. If we select a very large region, e.g., the sky, the average
response time is about 0.2s; if we select a small or textured object,
the average response time is less than 0.1s. Note that the memory
consumption of the multilevel optimization is small. In this exam-
ple, the peak memory usage in optimization is about 30MB. The
memory consumption is due mostly to keeping the input image in
the memory.



Figure 13: Selection results during mouse dragging on a 12.7Mp
image (top row) and a 24.5Mp image (bottom row). Left: input
image. Middle: Photoshop Quick Selection result. Right: our result
(viewport-based local selection turned off).
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Figure 14: User time comparison between Paint Selection and Lazy
Snapping (100%) across eight images and sixteen users.

In the performance comparisons above, we turn off the viewport-
based local selection. All images, scribbles, and selection results in
the above experiments are included in the supplementary material.

Comparison with Photoshop Quick Selection. Adobe Photoshop
CS4 Quick Selection is the commercial tool most similar to ours,
although its algorithm has not been made public. Compared with
Photoshop Quick Selection, Paint Selection has three advantages:
1) more accurate results during mouse dragging; 2) greater speed
for large images (e.g., larger than 100Mp); 3) no extra refinement
after mouse release.

As compared in Figure 13, Photoshop Quick Selection (in CS4) dis-
plays a coarse and jagged boundary during mouse dragging, while
Paint Selection produces a more accurate boundary. Photoshop
Quick Selection often takes additional time to refine the result af-
ter users release the mouse button. This “preview-refine” UI may
give rise to a UI issue: users have to frequently stop the selection to
inspect the refined result since they cannot predict it from a coarse
one, especially when making precise selections. Furthermore, com-
puting the coarse result only also prevents applying local image ef-
fects or adjustments during mouse dragging.

As demonstrated in the accompanying video, Photoshop Quick Se-
lection (in CS4) fails to instantly provide even coarse feedback on
a 110Mp panorama, and its refinement step may take up to several
seconds. In contrast, Paint Selection still provides quick responses
and accurate results.

Usability study. To compare a scribble-based UI (Lazy Snapping)
and painting-based UI (Paint Selection), we conducted a usability

Figure 15: Instant image editing on a 10Mp image. Left and mid-
dle: The user adjusts color balance at an intermediate selection.
Here we use simple feathering within a 4-pixel-width band. Right:
As the user continues the selection, the desired effect is instantly
applied to the newly selected region. The user is often satisfied with
the result even if the actual selection contains minor errors.

study. To isolate the speed issue, we downsampled all test images
to 800 × 600 so that Lazy Snapping can instantly output a result.

We invited sixteen volunteers and gave them short training on both
tools. The users were allowed to practice until they felt competent
with both tools. Eight images of various complexities were used in
the testing phase. In each image, a pre-defined object was asked to
be selected. We recorded the interaction time and collected subjec-
tive feedback from each user.

On average, Paint Selection required 30% less user time compared
with Lazy Snapping, as shown in Figure 14. We concluded several
reasons from our conversations with the users: Paint Selection is
more intuitive and simple. Some users said they were happy to be
spared from drawing scribbles on the background. Paint Selection
is also more direct. Users can quickly move the brush to the region
that needs hints since Paint Selection provides instant feedback dur-
ing mouse dragging. Finally, Paint Selection does not introduce any
annoying fluctuation effects.

Instant image effects. Paint Selection is fast enough for directly
applying image effects or adjustments during mouse dragging. For
instance, users can pause at any intermediate selection, choose an
effect, then continue to instantly “paint” that effect over the rest of
the object. The advantage over editing after complete selection is
that users do not have to pursue a perfect selection, as long as they
are satisfied with the adjusted result.

Using the obtained selection, users can either apply the effect on
the fly, as shown in Figure 15, or blend a pre-computed image con-
taining the desired effect with the original image (shown in the ac-
companying video). For a seamless composition, we can perform
simple feathering within a narrow band around the object, which in
many cases produces few noticeable artifacts since the binary se-
lection tightly snaps to the object boundary. We can also use the
upsampled solution in the finest level of the optimization as a soft
selection.

Limitations. Like other graph-cut-based selection tools, Paint Se-
lections suffers several drawbacks due to the nature of the graph-cut
optimization. One problem is that foreground expansion is impeded
in highly-textured regions. The optimization-guided contour tends
to snap to strong edges, demanding extensive user interaction, as
shown in Figure 16. Another problem is that around low contrast
edges, users may have to specify both foreground and background
scribbles to constrain the boundary. Finally, for objects with com-
plex topologies (e.g., tree branches with small holes), obtaining a
fine selection may involve too much background scribbling, which
can be regarded as a typical failure case for many scribble/painting-
based selection tools.

These drawbacks can be alleviated to a large extent by utilizing the



Figure 16: Foreground expansion is impeded by strong edges in the
highly-textured region.

interchangeability feature of our tool. For highly-textured objects,
users can first roughly encircle the whole object with a lasso and
then perform a background expansion, making the contour quickly
snap to the object boundary. For low contrast edges, users may use
a simple brush to override ambiguous pixels, or a lasso to directly
modify the selection contour. For objects with complex topologies,
users can choose a color-based tool such as AppProp[An and Pel-
lacini 2008] or Magic Wand[Adobe Photoshop ] to accomplish the
selection task.

5 Conclusions
We have presented a progressive painting-based user interface and
algorithm for local selection in images. Our system exploits the
progressive nature of interactive selection to provide instant feed-
back so that users are able to quickly and effectively make a high
quality selection on multi-megapixel images. In the future, we plan
to apply this methodology to other image, video, and 3D volume
editing tasks.

Paint Selection does not support simultaneously selecting two or
more connected regions, which may be required for local image
adjustment applications. Applying region competition could be a
possible solution. For high quality cut-and-paste applications, we
still need a matting operation [Wang et al. 2007] after the selec-
tion. Integrating progressive selection and matting may be useful
for realtime composition.
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Appendix – Graph-cut-based segmentation
The binary labels X = {xp} of the image are obtained by mini-
mizing an energy E(x) [Boykov and Jolly 2001]:

E(X) =
∑

p Ed(xp) + λ
∑

p,q Ec(xp, xq) (5)

where λ is the weight (set to 60 in all experiments), Ed(xp) is the
data term, encoding the cost when the label of pixel p is xp (1 -
foreground, 0 - background), and Ec(xp, xq) is the contrast term,
denoting the labeling cost of two adjacent pixels p and q. We use
the following contrast term: Ec(xp, xq) = |xp − xq| · (β · ||Ip −
Iq|| + ε)−1 where ε = 0.05 and β =

(
〈‖Ip − Iq‖2〉

)−1
[Blake

et al. 2004]. Here 〈·〉 is the expectation operator over the whole
image.
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