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ABSTRACT
The Dryad and DryadLINQ systems offer a new program-
ming model for large scale data-parallel computing. They
generalize previous execution environments such as SQL and
MapReduce in three ways: by providing a general-purpose
distributed execution engine for data-parallel applications;
by adopting an expressive data model of strongly typed
.NET objects; and by supporting general-purpose impera-
tive and declarative operations on datasets within a tradi-
tional high-level programming language.

A DryadLINQ program is a sequential program composed
of LINQ expressions performing arbitrary side-effect-free op-
erations on datasets, and can be written and debugged using
standard .NET development tools. The DryadLINQ system
automatically and transparently translates the data-parallel
portions of the program into a distributed execution plan
which is passed to the Dryad execution platform. Dryad,
which has been in continuous operation for several years
on production clusters made up of thousands of computers,
ensures efficient, reliable execution of this plan on a large
compute cluster.

This paper describes the programming model, provides a
high-level overview of the design and implementation of the
Dryad and DryadLINQ systems, and discusses the tradeoffs
and connections to parallel and distributed databases.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Distributed programming

General Terms
Design, Languages, Performance
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Distributed programming, cloud computing, concurrency
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1. INTRODUCTION
Large-scale data intensive computation has recently at-

tracted a tremendous amount of attention both in the re-
search community and in industry. A primary goal of our
research is to give the programmer the illusion of writing
for a single computer and to have the system deal auto-
matically with the complexities that arise from scheduling,
distribution, and fault-tolerance. Achieving this goal re-
quires a wide variety of components to interact, including
cluster-management software, distributed-execution engine,
language constructs, parallel compilers, and development
tools.

Parallel databases have for some time been able to store
and process large volumes of data in scalable distributed sys-
tems, and meet the above goal of providing the programmer
with a single-computer interface. They are however spe-
cialized to a subset of fairly simple computations for which
SQL is an effective language. SQL does not make it easy
to operate on complex types or data structures, and lacks
good support for language constructs such as libraries, mod-
ules and loops that simplify the management and long-term
maintainability of large software projects.

The application domain for data-intensive computation
is moving away from traditional relational data-processing
tasks towards areas such as graph analysis, image process-
ing, machine learning, and a spectrum of eScience appli-
cations such as hydrology and astronomy. Consequently,
recent systems have focused on integrating distributed exe-
cution engines with a standard high-level language such as
C++, Java or C#. At the same time they have abandoned
standard database features such as transactions and tables,
which are less relevant to these newer applications.

MapReduce [7] implements a very restricted execution en-
gine and programming model, but has proved influential
due to its simplicity and scalability at low cost. An open-
source implementation of MapReduce called Hadoop [3] has
been widely adopted, and a language layer, PigLatin [14],
was added to Hadoop to hide the complexity of program-
ming the MapReduce interfaces directly. This paper outlines
Dryad [13] and DryadLINQ [15]. Dryad is an execution en-
gine that allows more general execution plans than MapRe-
duce, and is therefore more efficient for some applications.
DryadLINQ is a language layer that targets Dryad, but un-
like PigLatin or SCOPE [5], which introduce new domain-
specific languages, DryadLINQ is embedded as constructs
within existing .NET programming languages.

Most parallel databases tightly integrate their storage, ex-
ecution and language layers. Hadoop/PigLatin and Dryad/-



DryadLINQ both contain three distinct layers in their soft-
ware stacks: a standalone distributed file system; an exe-
cution engine; and a language that targets the execution
engine. This paper describes the abstractions we chose for
Dryad and DryadLINQ, and Section 5 discusses some lessons
learned from these choices.

The structure of this paper is as follows: Section 2 intro-
duces the LINQ programming model. Section 3 provides
a high-level overview of the Dryad execution engine and
Section 4 describes the extensions that DryadLINQ adds
to LINQ, and sketches some features of its implementation.
Section 5 discusses the tradeoffs and connections to database
systems, and outlines future research directions. Section 6
draws conclusions from the development of the systems.

2. PROGRAMMING WITH LINQ
We use LINQ [2] as the foundation for our programming

model. LINQ adds high level data access to traditional .NET
programming languages. It does so by defining a base type
for a dataset, and then implementing a comprehensive set
of relational operators including filtering (Where), equijoin
(Join), and custom aggregation (Aggregate). These oper-
ators act on entire datasets and are typically used in place
of loops over data items. As a simple example, consider the
following code sequence to merge a set of partial sums and
output their average:

class PartialSum

{ public int sum; public int count; };

static double MergeSums(PartialSum[] sums)

{

int totalSum = 0, totalCount = 0;

for (int i = 0; i < sums.Length; ++i)

{

totalSum += sums[i].sum;

totalCount += sums[i].count;

}

return (double)totalSum / (double)totalCount;

}

Using LINQ constructs, this merge method might be re-
placed by the following:

static double MergeSums(PartialSum[] sums)

{

return (double)sums.Select(x => x.sum).Sum() /

(double)sums.Select(x => x.count).Sum();

}

which is both more concise and easier for an intelligent sys-
tem to optimize. In this fragment, x => x.sum is an example
of a C# lambda expression.

While the set of LINQ operators is reminiscent of those
provided by SQL, the objects in a LINQ dataset may be
of any .NET type including nested datasets and complex
object graphs. In addition the operators are embedded di-
rectly in high level .NET languages, giving developers access
to all the .NET libraries as well structuring concepts such as
loops, classes, and modules. LINQ relies heavily on the use
of lambda expressions and generics, and on static type in-
ference, to ensure that the operators can be used effectively
without imposing an unreasonable syntactic burden on the
developer. It is this integration of operators and language

syntax that makes LINQ a convenient and concise program-
ming model.

The fact that the arguments to LINQ operators are ex-
pressions means that it supports higher-order functions. The
fact that LINQ is embedded in .NET languages with full-
fledged type systems means that it is straightforward to
build up libraries of higher-order subcomputations. For ex-
ample, MapReduce can be represented in (slightly abridged)
LINQ syntax as

public static MapReduce( // returns set of Rs

source, // set of Ts

mapper, // function from T→ Ms

keySelector, // function from M→ K

reducer // function from (K,Ms)→ Rs

) {

var mapped = source.SelectMany(mapper);

var groups = mapped.GroupBy(keySelector);

return groups.SelectMany(reducer);

}

where any functions with the appropriate type signatures
can be passed in to perform the Map and Reduce operations.

The LINQ framework provides an interface that allows de-
velopers to introduce new implementations of the operators
by subclassing the base dataset type. There is an imple-
mentation, PLINQ [10], that executes operators in parallel
on a shared-memory multi-processor, and another, LINQ-
to-SQL [2], that allows a .NET program to operate directly
on records that are stored in a SQL database. DryadLINQ is
implemented as another such “LINQ provider,” so is directly
compatible with existing code written to the LINQ program-
ming model. A given method that calls into LINQ operators
will be executed by different implementations depending on
the concrete types of the datasets which are passed in as
arguments, which greatly simplifies debugging since a dis-
tributed program can be tested locally without changing any
of its code except the type of the input dataset.

A crucial aspect of the LINQ design is that implementa-
tions can support lazy evaluation. In this case, when an op-
erator is applied to a dataset the runtime simply adds a node
to an in-memory expression tree. Only when a dataset ele-
ment is accessed, or an expression is explicitly materialized,
does the implementation execute the desired computation
in its entirety. This hybrid of imperative and declarative
programming styles allows the system to perform powerful
optimizations on complex expressions while retaining for the
programmer the convenience and familiarity of imperative
languages.

3. EXECUTION ENGINE
In this section we provide a high-level overview of the

design and implementation of the Dryad execution engine.
More details can be found in [13].

3.1 Computational model
A Dryad job is a directed acyclic graph where each ver-

tex is a program and edges represent data channels. It is
a logical computation graph that is automatically mapped
onto physical resources by the Dryad runtime. In particular,
there may be many more vertices in the graph than compute
nodes in the cluster.

At run time, vertices are processes communicating with
each other through the channels, and each channel is used
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to transport a finite sequence of data records. The chan-
nel abstraction supports multiple implementations that use
shared memory, TCP pipes, or disk files.

3.2 System architecture
Figure 1 illustrates the Dryad system architecture. The

execution of a Dryad job is orchestrated by a centralized“job
manager.” The job manager is responsible for: (1) instanti-
ating a job’s dataflow graph; (2) determining constraints and
hints to guide scheduling so that vertices execute on com-
puters that are close to their input data in network topology;
(3) providing fault-tolerance by re-executing failed or slow
processes; (4) monitoring the job and collecting statistics;
and (5) transforming the job graph dynamically according
to user-supplied policies. A Dryad job manager may con-
tain its own internal scheduler that chooses which computer
each vertex should be executed on, or it may send its list of
ready vertices and their constraints to a centralized sched-
uler that optimizes placement across multiple jobs running
concurrently. All channel data communication occurs di-
rectly between vertices and thus the job manager is only
responsible for control decisions and is not a bottleneck for
any data transfers.

A Dryad cluster has a name server (NS) that can be used
to discover all the available compute nodes. The name server
also exposes the location of each cluster machine within the
network so that scheduling decisions can take better account
of locality. There is a simple daemon (D) running on each
cluster machine that is responsible for creating processes on
behalf of the job manager. The first time a vertex (V) is
executed on a machine its code is sent from the job manager
to the daemon, or copied from a nearby computer that is
executing the same job, and it is cached for subsequent uses.
The daemon acts as a proxy so that the job manager can talk
to the remote vertices and monitor the state and progress of
the computation.

3.3 Runtime policies
Fault-tolerance is achieved by re-executing failed vertices.

For example, if a vertex fails due to a read error on an input
channel, the job manager can simply mark the upstream ver-
tex that generated that version of the channel as failed. This
will cause the vertex that created the failed input channel
to be re-executed, and will lead in the end to the offend-
ing channel being re-created. Dryad guarantees that every
successful execution of a job with immutable inputs and de-
terministic vertex programs will always return the same re-
sult, regardless of the number of machine or network failures
over the course of the execution. The assumption that the
dataflow graph is acyclic considerably simplifies the imple-
mentation, but could be removed if needed.

Dryad also supports a callback mechanism that can be
used to implement runtime optimization policies by dynam-
ically mutating the execution plan graph. In Dryad, each
vertex belongs to a “stage” and each stage has a manager
interface that receives a callback on every state transition
in that stage. A variety of dynamic optimizations can be
supported by implementing stage manager classes that ex-
port the callback interface. For example, it is often useful
to choose the degree of parallelism of a stage of a Dryad job
based on the amount of input data to be consumed by that
stage. This data size may not be known before the job starts
running, since it may be a complex function of the inputs.
In this case Dryad can initially represent the whole stage
by a single “proxy” vertex. As upstream computations com-
plete and their output data sizes become known, the stage
manager is informed of these sizes using callbacks. It can
then rewrite the graph, replacing the initial proxy vertex by
an appropriately-sized set of identical vertices to achieve the
desired degree of parallelism.

3.4 Data model
The inputs to a Dryad job are typically stored as parti-

tioned files in a distributed file system. Partitions are repre-
sented as source vertices in the job graph, and any process-
ing vertex that is connected to such a vertex reads the entire
partition, sequentially, through its input channel. The de-
gree of parallelism of early stages of a Dryad job is therefore
typically determined by the number of partitions in its in-
puts. A Dryad job stage may write a partitioned file to the
distributed file system. Each vertex in the stage writes one
or more partitions into the file system (by writing sequential
data through a channel to a virtual sink vertex), and when
the job completes successfully these partitions are concate-
nated atomically, in a metadata-only operation, by the file
system to form a single distributed file.

Dryad communicates with distributed file systems through
a narrow interface, and has been ported to several underly-
ing storage implementations. The only operations it requires
are: file lookup, to map from a name in the distributed file
system to a set of partitions indicating the location and size
of each partition; sequential read and write of an individ-
ual partition; and concatenation of partitions into a file. We
have used Dryad with file systems that store partitions as flat
files in the local NTFS file systems of the cluster computers
and as tables in SQLServer databases running on the cluster
computers. In the latter case Dryad can implement some of
the functions of a non-transactional parallel database.

4. PROGRAMMING MODEL
While several language layers have been written to target

the Dryad execution engine, we believe that DryadLINQ [15]
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is the most sophisticated and easiest to use. The most dis-
tinctive feature of DryadLINQ is its deep integration of data-
parallel programming into traditional high-level program-
ming languages. This section highlights some important
aspects of DryadLINQ. More details on the programming
model may be found in the LINQ language reference [2] and
materials on the DryadLINQ project website [1]. A com-
panion technical report [16] contains some working sample
programs.

4.1 DryadLINQ Constructs
DryadLINQ preserves the LINQ programming model and

extends it to data-parallel programming by defining a small
set of new operators and datatypes.

The DryadLINQ data model is a distributed implemen-
tation of LINQ collections. A DryadLINQ dataset is still
a sequence of objects of an arbitrary .NET type, but it
is in general distributed across the computers of a clus-
ter, partitioned into disjoint pieces as shown in Figure 2.
The partitioning strategies used — hash-partitioning, range-
partitioning, and round-robin — are familiar from parallel
databases [9]. The system transparently manages dataset
partitioning unless the programmer explicitly overrides the
optimizer’s choices.

The inputs and outputs of a DryadLINQ computation re-
fer to files in the distributed file systems supported by the
underlying Dryad execution engine. Each partition in a dis-
tributed file contains a serialization of a subset of the objects
in a DryadLINQ dataset, and objects cannot cross partition
boundaries. Thus when a Dryad vertex reads a partition
from the file system, the DryadLINQ process running in
that vertex will operate on the corresponding subset of the
overall dataset.

DryadLINQ stores additional information alongside each
file, including schemas for the objects in the dataset and
details of the partitioning scheme used, e.g. the key selec-
tor and range boundaries for a range-partitioned file. Thus
DryadLINQ datasets may be self-describing, however this is
not strictly enforced as it would be in a traditional database
system.

DryadLINQ includes operators that materialize a dataset
to a named file in the storage system, and it is possible
to simultaneously invoke multiple expressions and generate
multiple output tables in a single distributed Dryad job.
This feature (also encountered in parallel databases such as
Teradata) can be used to avoid recomputing or materializing
common subexpressions.

4.2 DryadLINQ operators
DryadLINQ supports almost all of the LINQ operators.

It also introduces a small set of custom operators specifi-
cally targeted to data-parallel programming. The new oper-
ators are integrated into the language using LINQ extensi-
bility, so can be used in programs the same way as standard
constructs. As far as possible we have avoided introducing
DryadLINQ-specific extensions since we would like to main-
tain portability across LINQ implementations.

The first class of new operators allows the user to control
the partitioning of a dataset, for example by supplying a
custom hash function or range boundaries, or overriding the
default number of partitions. It is natural that LINQ does
not natively support partitioning operators because they are
idempotent in the abstract LINQ programming model. Nev-
ertheless, because the partitioning of a dataset directly af-
fects the degree of parallelism of the distributed computa-
tion, allowing user control of partitions can be essential to
get good performance in cases where the optimizer is unable
to automatically determine an appropriate scheme. This
may occur, for example, if the standard hash function in-
duces a very skewed distribution. User-defined partitions
can also be used to ensure that an output dataset is in the
correct format, for example if it is going to be used by an-
other system with its own partitioning scheme.

While the partitioning operators are currently DryadLINQ-
specific, control over the granularity of partitioning can also
be useful to improve the performance of shared-memory dis-
tributed implementations such as PLINQ. We are therefore
working with other groups in Microsoft to define a consis-
tent set of operators that may eventually be included in the
LINQ standard.

The most significant other operator we introduce is Ap-

ply. It takes a function f and passes to it an iterator over an
entire input dataset, allowing arbitrary streaming computa-
tions that sequentially process every object in the dataset.
As a simple example, Apply can be used to perform “win-
dowed” computations on a sequence, where the ith entry
of the output sequence is a function on the range of input
values [i, i + d] for a fixed window of length d.
Apply can be thought of as an “escape-hatch” that a pro-

grammer can use when a computation cannot be expressed
using any of LINQ’s built-in operators, but it can incur a
serious performance penalty since the whole dataset must
be streamed to a single Dryad vertex if f is to process ev-
ery element. However by adding a suitable annotation to f

(see below), the user can instruct DryadLINQ to execute a
separate vertex for each partition of the input dataset, so
each instance of f “sees” the subset of elements of the set
contained in a single partition. This partitioned form of Ap-
ply is frequently used to process input datasets that have
complex custom formats, where for example each partition
must be read in its entirety in order to parse the elements
contained in it.

The last new operator is Fork, which is very similar to Ap-

ply except that it takes a single input and generates multiple
output datasets. This is useful as a performance optimiza-
tion to eliminate common subcomputations. For example, a
document parser could be implemented using Fork to out-
put both plain text and a bibliographic entry to separate
tables.



4.3 Annotations
DryadLINQ allows programmers to specify annotations

of various kinds. These provide manual hints to guide op-
timizations that the system is unable to perform automati-
cally, while preserving the semantics of the program. Anno-
tations in DryadLINQ are simple .NET attributes on classes
and methods. For example annotations can be used to in-
form the system that a user-defined function is associative or
commutative, and thus enable optimizations such as eager
aggregation. The correctness of annotations is not enforced
by the system, so developers are responsible for ensuring
that they do not introduce semantic errors through faulty
annotations.

4.4 Building on DryadLINQ
Many programs can be directly expressed using the Dryad-

LINQ primitives. Nevertheless, our users have begun to
build libraries of common subroutines for various application
domains. The ease of defining and maintaining such libraries
using functions and interfaces highlights the advantages of
embedding data-parallel constructs within a high-level lan-
guage.

As noted above, the MapReduce programming model can
be concisely stated as a static function. DryadLINQ includes
a small library that defines a number of such functions. Ap-
plications are written as traditional programs calling into
library functions, and make no explicit reference to the dis-
tributed nature of the computation. A general-purpose li-
brary for manipulating numerical data has also been written,
and it has been used as a platform to implement machine-
learning algorithms such as linear regression, Expectation–
Maximization (E–M) for a mixture of gaussians, principal
component analysis, probabilistic latent semantic indexing,
and epitome extraction.

Several of those machine-learning algorithms need to iter-
ate over a data transformation until convergence. In a tra-
ditional database this would require support for recursive
expressions, which are tricky to implement [6]. In Dryad-
LINQ it is trivial to use a C# loop to express the itera-
tion. Our users commonly execute loops containing tens of
iterations, unfolding to hundreds of computation stages in
a single distributed job. There is no current support for
data-dependent loop termination, e.g. running a loop un-
til convergence, so users typically write an outer while loop
that repeatedly runs a fixed number of iterations and checks
for the convergence condition. Each iteration of the outer
loop invokes a new distributed computation. Dryad’s graph-
rewriting primitives would support dynamic unrolling at run
time, and we intend to experiment with support for this to
determine whether it is worth adding to the language.

4.5 DryadLINQ implementation
The DryadLINQ system consists of two main components:

a parallel compiler and a runtime. The compiler compiles
DryadLINQ programs to distributed execution plans and
the runtime provides an implementation of the DryadLINQ
operators. Figure 3 shows the flow of execution when a
program is executed by DryadLINQ.

In Steps 1–2, a .NET user application runs. Because of
LINQ’s deferred execution, expressions are accumulated in
a DryadLINQ expression object, and their actual execution
is only triggered by the application invoking a method that
materializes the output dataset. At this point, DryadLINQ
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Figure 3: LINQ-expression execution in DryadLINQ.

takes over and compiles the LINQ expression into a dis-
tributed execution plan that Dryad understands (Step 3).
This step performs most of the compilation work, includ-
ing (a) the decomposition of the expression into subexpres-
sions, each to be run in a separate Dryad vertex; (b) the
generation of code and static data for the remote Dryad
vertices; and (c) the generation of serialization code for the
required data types. DryadLINQ then invokes a custom,
DryadLINQ-specific, Dryad job manager (Step 4).

Dryad takes over at Step 5. It creates the job graph using
the plan created in Step 3, and schedules and spawns the
vertices as cluster resources become available. Each Dryad
vertex executes a vertex-specific program created by Dryad-
LINQ in Step 3. When the Dryad job completes successfully,
it writes the data to the output table(s), and returns the
control back to DryadLINQ at Step 8.

DryadLINQ then creates the local dataset objects encap-
sulating the outputs of the execution, and returns control
back to the user application. The output datasets may be
used as inputs to subsequent expressions in the user pro-
gram. Data objects within a dataset are fetched to the local
context only if explicitly dereferenced.

At the heart of the DryadLINQ system is the parallel com-
piler. It first turns a raw LINQ expression into an execu-
tion plan graph (EPG), and goes through several phases of
semantics-preserving graph rewriting to optimize the exe-
cution plan. The EPG is closely related to a traditional
database query plan, but we use the more general form of ex-
ecution plan to encompass computations that are not easily
formulated as “query trees.” The EPG is a directed acyclic
graph, since the existence of common subexpressions and
operators like Fork makes it difficult to express the execu-
tion plans as trees. The optimizer uses many traditional
database optimization techniques, both static and dynamic.
It annotates the EPG with metadata properties. For edges,
these include the .NET type of the data, the partitioning
scheme, and the compression scheme. For nodes, they in-



clude details of the operations to be performed. The proper-
ties are seeded from the LINQ expression tree and the input
and output tables’ metadata, and propagated and updated
during EPG rewriting.

The EPG represents a “skeleton” of the Dryad data-flow
graph to be executed, and each EPG node is expanded at run
time into a set of Dryad vertices running the same compu-
tation on different partitions of a dataset. As mentioned in
Section 3.3, the number of vertices in an EPG node may be
determined dynamically based on the amount of data out-
put by upstream computations. Other dynamic optimiza-
tions include the construction of network-aware aggregation
and broadcast trees to reduce bandwidth. The topology of
these trees is determined only after the vertices have been
bound to specific computers for execution.

The DryadLINQ runtime is fairly simple, consisting mostly
of: a) an implementation of the new DryadLINQ opera-
tors; and b) serialization and deserialization code for channel
data. In many cases the vertex code generated by Dryad-
LINQ is simply a LINQ query, in which case the runtime can
take advantage of an existing LINQ implementation such as
PLINQ to allow the vertex code to be automatically paral-
lelized on a multi-core cluster computer.

4.6 Query Optimizations
The DryadLINQ optimizer is similar in many respects to

classical database optimizers [12]. It has a static compo-
nent, which performs conditional graph rewrite rules on the
EPG, and a dynamic component, which uses Dryad’s stage
callbacks to optimize the execution at run time. Many of
the core ideas employed by Dryad and DryadLINQ (such
as shared-nothing architecture, horizontal data partition-
ing, dynamic repartitioning, parallel query evaluation, and
dataflow scheduling), have their roots in parallel database
systems [9], such as Gamma [8], Bubba [4], and Volcano [11].

There are also significant differences. First, our EPG is a
directed acyclic graph, a more general representation than
the query tree. This is needed in order to handle vertices
with multiple outputs. Second, many optimizations rely on
the semantics of the operators involved. However, infer-
ring these semantics is substantially harder in the context
of DryadLINQ than a tranditional database. The difficul-
ties stem from the much richer data model and programming
language.

5. DISCUSSION
Dryad has been in continuous use on small, medium and

large clusters for nearly three years. Since we operate clus-
ters and also program to Dryad’s interfaces (for example
to implement DryadLINQ, or to experiment with schedul-
ing policies), we have extensive experience with its pros and
cons. DryadLINQ has been available to developers for well
over a year, but it is still too early to have definitive feed-
back from users. Early adopters are self-selecting since they
seek out the system to solve particular problems that no ex-
isting system is adequately addressing. Also, once diverse
groups start to program with DryadLINQ it becomes much
harder to gather feedback. Users may simply abandon the
system without telling us if they find that it doesn’t meet
their needs; or if our documentation is poor they may strug-
gle with issues that are easily resolved. Nevertheless we have
strongly positive initial impressions, as we discuss below.

5.1 The Dryad system
We believe that our decision to separate the execution

engine into a standalone layer, independent of program se-
mantics, has been very successful. The Dryad layer has only
low-level information about the job that it is executing: it
knows the graph topology and the quantity of data being
transferred along each channel, and can be given simple hints
about the amount of memory, CPU and disk bandwidth that
each vertex is likely to consume. These hints have turned
out to be enough to guide scheduling and placement deci-
sions. By withholding from the Dryad layer any information
about the semantics of the programs running at the vertices
we have been able to keep the scheduling and fault-tolerance
state machines uniform and thus fairly simple.

The contrast with MapReduce is instructive. MapReduce
tightly couples the semantics of its processing vertices with
the execution policy. There are exactly two types of process:
Mappers and Reducers. Mappers read only from replicated
storage which is assumed to be reliable. Reducers read from
the output of the Mappers, so a failure in a Reducer may
trigger the re-execution of a Mapper if the required data
is no longer available—hence the fault tolerance strategy is
different for the two types of vertex. The scheduling policy
is also quite different, since each Mapper reads from a single
replicated input file and has substantial benefit from being
executed close to a replica, while each Reducer reads from all
the Mappers. As a consequence of hard-wiring the semantics
of its processes into the system, MapReduce can specialize
its policies for those two cases, but specialization also makes
it harder to implement more general graphs.

The lack of generality has at least two unfortunate side ef-
fects for MapReduce. First, some computations such as Join
are painful to implement because each Mapper can only read
a single input, while Join naturally consumes two streams
in parallel. Second, MapReduce’s specialization forces Re-
ducers to write to replicated storage even when their output
will immediately be consumed by a subsequent Map stage in
a chained computation. This is necessary because Mappers
rely for their fault tolerance on their inputs being stored
reliably, while Dryad can backtrack through its execution
graph to regenerate intermediate data as necessary. In the
case of failure Dryad must do more work, but it incurs much
less network and disk traffic in the common case since it
does not need to replicate the output of every second stage
of computation. In practice we find the probability of any
given vertex encountering a failure is small, so optimizing
for performance in the non-failure case has proved a suc-
cessful strategy. Of course Dryad can if necessary bound
the amount of backtracking that will be done in case of fail-
ure by replicating intermediate results at strategic points in
the computation.

We have revisited a few aspects of the Dryad design since
it was initially deployed. We originally supported multi-
ple concurrent jobs by giving each job its own standalone
scheduler, and allowing these schedulers to gain some vis-
ibility about the overall state of the system by inspecting
the queues at the process daemons. If one job had sched-
uled a vertex on a particular computer, other jobs could
discover this and might probe the cluster to look for an idle
resource to use. When we eventually implemented a central-
ized scheduler we discovered that it was much more efficient
to perform a global optimization across jobs, giving our sys-
tem improved throughput and fairness. Fortunately, since



the Dryad job manager was originally written with the in-
tention of experimenting with different scheduling policies,
all scheduling actions are accessed through a well-defined in-
terface and moving to a central scheduler involved a fairly
small amount of work.

We initially thought that Dryad jobs would commonly
stream data through TCP-based channels for performance
reasons. In practice, however, we have found that on medium
and large clusters they are almost never used since it is sim-
pler to always buffer the output of channels to disk. We
have not yet implemented cut-through to allow a consumer
vertex to start executing before the producer has completed,
but this is an obvious optimization. We have recently gained
several customers who are trying to implement numerically-
intensive computations that require frequent communication
between vertices, and we are revisiting our support for TCP
channels to see if they are well suited to this type of work-
load.

The weakest part of the Dryad design is the support for
dynamic optimization. As explained in Section 3.3, compo-
nents such as DryadLINQ can modify the job graph during
execution. This has turned out to be extremely powerful
and useful, however it is very low level. In our current im-
plementation the interaction between different optimizations
(for example choosing the number of vertices in a process-
ing stage at runtime, and building a dynamic aggregation
tree) is ad hoc and leads to complex code that is unwieldy
to maintain.

5.2 Data-parallel programming models
We have been very fortunate that LINQ maps so effec-

tively to the requirements of a distributed data-parallel lan-
guage. We were initially attracted to the idea of extending
LINQ rather than designing a new domain-specific language
partly because we believe that good language design is diffi-
cult, and best left to experienced professionals. The decision
to use an existing language framework has been invaluable
for us as system builders, since we do not need to waste
engineering effort reinventing parsers or development envi-
ronments, or worry about the complexity of integrating with
the type system of an underlying language for stored proce-
dures. We have also been able to leverage other LINQ im-
plementations very effectively, for example by using PLINQ
to execute our distributed computations efficiently and in
parallel on multi-core computers. We believe that the inte-
gration of distributed computation inside existing languages
has also been very beneficial for our users. Most develop-
ers using DryadLINQ are already familiar with C# and the
Visual Studio development environment, and find it easy to
get started using our system.

Most systems addressing the same application domain as
DryadLINQ, including SQL databases, PigLatin [14], and
SCOPE [5], take the approach of embedding user-defined
functions within an outer query or script written in a sim-
plified domain-specific language. This seems attractive for
the case of simple computations where essentially all of the
logic can be contained in the scripting language. Many
databases have built-in procedural languages that integrate
seamlessly with the SQL type system, and if programmers
remain within the scope of these built-in languages, things
stay simple. In the case that a program literally consists en-
tirely of a single Map function followed by a single Reduce
function, native MapReduce is very attractive.

The problem with a two-layer approach arises when the
outer scripting language needs to call into user-defined pro-
cedures in a general-purpose language in order to perform
more sophisticated processing. For example, databases often
support stored procedures written in C or C++, PigLatin
calls into Java methods, and SCOPE calls into C#. If a pro-
gram is complex enough to require user-defined functions in
a general-purpose language then we believe it is preferable
to remain within the general-purpose language throughout.
There is generally a mismatch between type systems at the
boundary between a scripting language and a full program-
ming language, which either requires marshaling or restricts
the types that can be accessed in user-defined code. Also,
if control begins in a scripting language then even simple
tasks like reading initialization parameters from a configu-
ration file and passing them to user-defined processing func-
tions can become difficult to implement. Most importantly,
though, complex programs benefit from unifying structure,
and it is a mistake to force the user to use two different
mechanisms to organize code and datastructures within a
single application.

We believe that the approach adopted in DryadLINQ is
simpler than previous approaches when applications involve
even moderately complex user code. We have found that
our users almost always write programs that involve more
than a single Map function followed by a single Reduce, and
usually the application logic cannot be expressed in a sin-
gle SQL query. We have already seen users benefit from
libraries of subroutines such as the linear algebra package
mentioned in Section 4.4, and we anticipate that as we gain
more eScience users, this type of library will become much
more common. It is very useful to blur the boundary be-
tween the code that runs locally on the user’s computer and
that which is distributed, since as a program evolves sub-
computations can migrate between the two. It is also very
convenient to be able to seamlessly inspect the results of one
distributed computation, manipulate them within a single
language and type system, and pass them on to subsequent
processing stages.

One potential benefit of a two-language approach to dis-
tributed computing is that it might make it easier to restrict
the programs that users can write. It can be desirable, when
many users share a large computing resource, to ensure that
a poorly-written program cannot accidentally overwhelm the
system. In practice this kind of enforcement is straightfor-
ward with DryadLINQ as well because the compiler gener-
ates the execution plan to send to Dryad, and the runtime
acts as a sandbox for all user-supplied code.

5.3 Limitations of Dryad and DryadLINQ
Parallel databases offer features such as transactions that

are not supported by systems using MapReduce or Dryad
for their execution engine. Databases also offer much bet-
ter support for very short queries, since both Dryad and
MapReduce incur overhead of a second or more in distribut-
ing code and starting processes before computation can be-
gin. Therefore, databases are a better solution for most
transaction-processing workloads. However, it is worth not-
ing that DryadLINQ can interoperate with SQL databases
using the LINQ-to-SQL provider and in future we may be
able to support a limited notion of transactional update.

DryadLINQ does not currently support all state of the art
database optimization techniques. This is partly because, as



mentioned in Section 4.6, it can be difficult to automatically
infer properties of user-defined operators. We are pursuing
ways to perform more sophisticated inference, for example
using static program analysis techniques such as program
slicing. We also currently perform only rudimentary cost-
based optimizations, and are working to improve this area
of the system.

6. CONCLUSIONS
The ultimate goal of our research is to make data-parallel

cluster computing as easy as writing programs for a sin-
gle computer. We think Dryad and DryadLINQ represent
a significant step towards this goal. In Dryad, we have
built a general-purpose, high performance distributed exe-
cution engine that is considerably more expressive and flex-
ible than previous execution engines. In DryadLINQ, we
have achieved seamless integration of data-parallel comput-
ing into traditional high-level programming languages. We
were able to achieve deep language integration mainly due
to the extensibility of the LINQ framework and the flexi-
bility of the Dryad execution engine. LINQ’s strong static
typing is extremely valuable when programming large-scale
computations—it is much easier to debug compilation errors
in Visual Studio than run-time bugs in the cloud.

Dryad has been in continuous operation for several years
on production clusters made up of thousands of computers.
DryadLINQ has been in use by a small community of devel-
opers for over a year. The systems have been used on a wide
variety of applications, including relational queries, large-
scale log mining, web-graph analysis, and machine learning.
The systems were recently released for academic use to a
number of universities, and the Microsoft External Research
team has been preparing for a formal release that includes
comprehensive programming manuals and tutorials. To fa-
cilitate collaborations, the source code of DryadLINQ is in-
cluded in our academic release.

Our experience so far is that DryadLINQ, by combining
the benefits of LINQ with the efficient and scalable Dryad
execution engine, has proved to be an amazingly simple,
useful and elegant programming environment.
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