
iWIRES: An Analyze-and-Edit Approach to Shape Manipulation

Ran Gal
Tel Aviv University

Olga Sorkine
New York University

Niloy J. Mitra
IIT Delhi

Daniel Cohen-Or
Tel Aviv University

Figure 1: A complex model (left) consisting of 108 components is analyzed and 250 intelligent wires (in green) are extracted. Editing a few
wires induces a new wire configuration (in blue) and leads to the result on the right.

Abstract

Man-made objects are largely dominated by a few typical features
that carry special characteristics and engineered meanings. State-
of-the-art deformation tools fall short at preserving such character-
istic features and global structure. We introduce iWIRES, a novel
approach based on the argument that man-made models can be dis-
tilled using a few special 1D wires and their mutual relations. We
hypothesize that maintaining the properties of such a small number
of wires allows preserving the defining characteristics of the entire
object. We introduce an analyze-and-edit approach, where prior
to editing, we perform a light-weight analysis of the input shape
to extract a descriptive set of wires. Analyzing the individual and
mutual properties of the wires, and augmenting them with geomet-
ric attributes makes them intelligent and ready to be manipulated.
Editing the object by modifying the intelligent wires leads to a pow-
erful editing framework that retains the original design intent and
object characteristics. We show numerous results of manipulation
of man-made shapes using our editing technique.

Keywords: mesh editing, man-made objects, structured deforma-
tion, space deformation, constraint propagation

1 Introduction

In recent years, shape editing has been extensively studied by the
geometric modeling community. In particular, research efforts have
been devoted to allow the user to directly manipulate surfaces while
preserving their geometric surface details. Generally speaking, a
key challenge in shape editing is to enable intuitive manipulation –
that is, the performed change is the one expected. Clearly, such
a notion is highly domain dependent. It is natural to expect that
manipulation applied to the shape preserves the local surface de-
tails [Botsch and Sorkine 2008]. Such detail-preserving techniques
treat the edited object to be made of a homogeneous, rubber-like
material that responds uniformly to user manipulations. These ap-
proaches have been highly successful for organic objects, such as
faces, body parts, animals, etc. However, they are less suited for
man-made shapes, such as furniture, cutlery, mechanical parts or
electronic devices. Such engineered models are largely dominated
by flat or smooth faces, where the shape is defined by a few typical
features which carry special characteristics and geometric meaning.

We hypothesize that conserving the properties of this rather small
number of features allows preserving the defining characteristics of
the entire object. In contrast, a surface manipulation that assumes a
homogeneous surface, oblivious to the special characteristics of the
shape, actually damages its high-level structure, thus defeating the
purpose of editing. We use the term editing, rather than deforma-
tion, as the former is not supposed to be destructive by definition.
Editing is rather a constructive operation that implicitly aims at pre-
serving the essence of the shape (see Figure 1).

Our work is inspired by the research of Singh and Fiume [1998]
and Orzan et al. [2008]. These works show that an entire shape or
an image can be defined and characterized by a rather small set of
curves. We adopt the name wires of Singh and Fiume to denote
the curves that are key structural features capturing the shape. Our
3D geometry editing framework aims to preserve these key features
and characteristics of objects, especially man-made ones.



edit
propagation

wire optimization 
within the groupgroup optimization

final wires +
induced surface edit result

original + wires user input individual
wire
optimization

group
optimization

propagation

Figure 2: Deforming a Lego model using iWIRES. Given the model geometry, we extract wires (shown in green), learn their individual
characteristics and mutual relations, and preserve them when the model undergoes deformation. The user-prescribed edit, defined by the
yellow and red handles, is mapped to one of the wires (in gray). We optimize the individual wire (as shown in blue), propagate the edit
operation to other wires (gray), and perform a multi-stage constrained optimization to enforce the individual properties and mutual wire
relations. The resulting wire positions, shown in blue, determine the final edited shape (see Section 2 for details).

We take a analyze-and-edit approach, where prior to editing, we
perform a light-weight analysis of the input shape to extract the
wires, their individual geometric characteristics, and relationships
with other wires. Supplementing the wires with these special ge-
ometric attributes makes them intelligent and ready to be manipu-
lated. Edits are applied to the wires while preserving the attached
characteristics and relations. Editing the intelligent wires results
in a constrained deformation setup rather than a free-form defor-
mation. For instance, when the object contains a circular feature
or boundary, the edited shape tends to maintain this property (see
Figure 1). The final shape of the object is determined using the
deformed wire scaffolding. The accompanying video exhibits our
editing system in action.

2 Overview

Our analyze-and-edit approach is based on the observation that
man-made shapes can often be characterized by a few special
curves or wires. During editing, by maintaining the individual char-
acteristics of the wires and their mutual relationships, we attempt
to preserve the essence of the manipulated shape. Figure 2 demon-
strates the basic flow of our method. Our framework comprises of
two main subparts:

Analysis. Given a shape, we first extract a set of defining curves
or wires. We analyze the object to identify the characteristics of
the individual wires (Section 4.1), and learn their mutual relation-
ships (Section 4.2), thus making the wires intelligent. Though for
general models it is challenging to extract feature curves [Ohtake
et al. 2004], for most man-made models, sharp crease lines are good
candidates. Even such simple curves capture powerful shape char-
acteristics. In our Lego example, we identified eight circles and
twelve line segments to form the wire collection. Our framework
deals with how to efficiently and intelligently deform/edit such a
collection of wires, and is oblivious to their extraction process.

A key step of our algorithm deals with identifying the defining
properties of the wires and their global relations. For example, the
analysis step for the Lego yields the following: the eight planar cir-
cular curves are identified as individual wires, as well as the six
rectangles. The mutual relations are recorded by grouping the rel-

evant wires: for instance, wires lying on the same plane or on par-
allel planes form (not necessarily mutually exclusive) groups (see
Figure 3).

Edit. Like most deformation tools, we allow the user to indicate
modeling constraints by manipulating deformation handles or by
sketching (Section 6). We propagate this deformation to the closest
wire and optimize it to enforce its individual characteristics (Sec-
tion 5.1). In our Lego example, an individual “seed” wire is first
free-form deformed using the user manipulation, and then opti-
mized to become a rectangle. This edit is propagated to other wires
which are mutually related to the seed wire (i.e., the wires in the
groups the seed wire belongs to), using a dedicated local frame en-
coding. The groups are optimized in order to restore the group char-
acteristics (for instance, planarity), as described in Section 5.2. The
edit then continues to propagate to other wire groups, influencing
the shape of their wires (for example, the rectangular wires of the
Lego influence the circular wires, as depicted in gray on the bottom
right of Figure 2). The individual shape of each newly influenced
wire is optimized, as well as the mutual (group) properties. Once
all the wires have been treated and their final form is set, they serve
as modeling constraints for a differential surface deformation (Sec-
tion 5.3), and the model is reconstructed respecting the edited wires
(see Figure 2, bottom left).

The key argument of this work is that man-made or engineered ob-
jects can be distilled using a few special 1D wires and their mu-
tual relations, and edited using simple means while preserving their
defining characteristics. In this paper we take a first attempt to re-
alize this approach, and present a technique that allows a quick cre-
ation of models by reusing and editing existing shapes [Funkhouser
et al. 2004] (see Figure 10). A notable property of our method is
that it can deal with disconnected surfaces, and in general, mod-
els that consist of a multitude of parts (for example, the model in
Figure 1 has 108 parts). Surface-based methods cannot deal with
disconnected components in a coherent way. Space-deformation
methods can, however, they are oblivious to the characteristics and
properties of the model features since they treat the entire space and
the embedded surfaces uniformly. Even editing a simple model like
the Lego by state-of-the-art methods, while keeping its characteris-
tic features, is extremely hard (see Figure 6). On the other hand,
iWIRES provides an intuitive outcome with easy interaction.



parallel planes same plane wires lying on parallel planes with centers of mass aligned

Figure 3: Wire groups resulting from the analysis of the Lego model. Each group is rendered in a distinct color. Note that the groups are not
necessarily mutually exclusive.

3 Related work

Space deformations (also called free-form deformations) are to this
day the method of choice for shape deformation. A space defor-
mation is defined via a (usually simple) control object; user-defined
deformation of this object is interpolated to the 3D space and eval-
uated at the input surface points. Space deformations are popu-
lar since they can handle various object representations, including
free-form surfaces, meshes with multiple connected components, or
even unstructured point clouds. In addition, space deformations are
simple to implement, and they are highly efficient and robust, be-
cause the cost of the deformation is mainly dependent on the com-
plexity of the control object and not on the deformed shape. Early
space deformations used lattices as control objects [Sederberg and
Parry 1986; Coquillart 1990; Milliron et al. 2002]; these, however,
are cumbersome to manipulate manually since the control points do
not necessarily correspond to meaningful parts of the shape that the
user wishes to modify. The structure of the underlying shape that is
being deformed by the space warp can be easily destroyed, unless
the space warp is very carefully designed.

Over the last decade it has been recognized that precise control over
the properties of the deforming surface is required for more satis-
factory results. Since space deformations are oblivious to the actual
shape that is being edited, better control can be gained by employ-
ing control objects whose shape and structure is closely related to
that of the edited shape. The Wires framework by Singh and Fi-
ume [1998] employs spatial curves to construct the deformation;
the curves are aligned with prominent characteristic features of the
edited shape and affect the surface parts in their vicinity. The frame-
work uses a clever way to blend the space deformations induced by
multiple curves; however, the deformation of the individual wires
and the interaction among multiple wires is completely left to the
user. In our work, the wires are supplied with intelligence about
their own shape and about other influencing wires, such that impor-
tant relationships are preserved during deformation.

Later work proposed the use of so-called cages as control objects
for shape deformations. Typically, the cage is a very coarse and
offsetted version of the input shape. Various coordinate functions
have been designed to carry over the deformation of the cage to the
entire space, such as mean-value coordinates [Ju et al. 2005], har-
monic coordinates [Joshi et al. 2007], Green coordinates [Lipman
et al. 2008]. Radial-basis functions [Botsch and Kobbelt 2005],
volume-preserving warps [Angelidis et al. 2004; von Funck et al.
2006] and locally rigid transformations [Sumner et al. 2007; Botsch
et al. 2007] have also been explored. Still, all these approaches im-
plicitly treat the edited shape as a homogeneous surface and pay no
special attention to its high-level structure and features.

In a parallel vein of research, deformation approaches that work
directly on the input shape have been developed. Their great ad-
vantage is the ability to formulate the deformation process so as to
precisely control the low-level differential surface properties of the
edited object, with the downside being the direct dependence of the
computational costs on the complexity of the object’s representa-

tion (e.g., the number of mesh vertices). State-of-the-art surface-
based deformation techniques have achieved a good understanding
of the necessary deformation mechanisms that preserve such low-
level shape characteristics as curvature, normals or local rigidity by
formulating corresponding variational problems (see the survey of
linear methods in [Botsch and Sorkine 2008]; for nonlinear tech-
niques we refer to [Botsch et al. 2006; Sorkine and Alexa 2007]
and the references therein). For articulated shapes, local volume
preservation, limb rigidity and other physical constraints have been
explored [Botsch and Kobbelt 2003; Zhou et al. 2005; Huang et al.
2006; Lipman et al. 2007; Shi et al. 2007; Au et al. 2007].

Several surface-based approaches allow manual specification of
varying surface stiffness [Botsch et al. 2006; Popa et al. 2007],
thus allowing some surface parts to behave more rigidly than oth-
ers. However, no higher-level knowledge about the structure of the
object is deduced, which makes these techniques rather difficult to
use for the editing of man-made objects. It is worth noting that
a restricted type of space deformation was designed in [Kraevoy
et al. 2008] for axis-aligned non-homogeneous scaling of struc-
tured man-made models; the space deformation protects certain
parts of space, occupied by sensitive object features, such that they
only undergo similarity transformations. This method is related to
material-aware deformation [Popa et al. 2007], yet again, mostly
low-level differential information is considered when defining the
parts to be protected during axis-aligned scaling.

Masuda et al. [2007] propose to manually mark features (such as
hole boundaries or sharp curves) and incorporate hard constraints
into the deformation to rigidly preserve the features’ individual
shapes; their deformation framework was later extended to non-
manifold meshes and disconnected meshes in [Masuda and Ogawa
2007] using proximity constraints. Complete rigidity of the features
may be too restrictive in many scenarios. Further, the relationships
between the features are not considered in the works above. Cabral
and colleagues [2009] focus on reshaping architectural models and
propose a more lenient way to handle features (mostly rectilinear
in their case) by constraining the angles but allowing changing the
length of individual segments. We explore a more general approach
to optimize the shape of the features (Section 5.1).

As mentioned above, our work is inspired by the idea that many
man made shapes can be described by a sparse collection of charac-
teristic curves. This was the motto of Wires [Singh and Fiume 1998]
that introduced a novel modeling paradigm for space deformations;
the notion of a curve network that induces an interpolating surface
has been long used in traditional CAD/CAM to model shapes from
scratch using free-form surface patches. The idea has been recently
combined with sketch-based mesh modeling [Nealen et al. 2007],
relieving many topological and geometric restrictions of a classic
curve network. Collections of 2D curves with attached color in-
formation are used to define piecewise-smooth color gradients of
arbitrary geometry for 2D vector graphics in [Orzan et al. 2008],
again capitalizing on the observation that a sparse set of charac-
teristic feature curves often suffices to completely define the entire
object (a drawing, in this case). Our work contributes the idea of



W 
R

W 
D

W 
R

W 
C

W 
R

W 
D

W 
R

W 
C

W 
R W 

D

W 
R

W 
C

Figure 4: Individual wire optimization. WR (green) denotes the reference curve, WD (gray) is the deformed wire (following user manipu-
lation or edit propagation) and WC (blue) is the final, optimized shape of the wire.

equipping the curves with additional information about their shape
and relation to other curves, such that high-level structure editing
can be performed without destroying important features and shape
properties of the object.

It should be noted that our goal is not rigorous reverse engineering
of the input shape [Benkö et al. 2001; Attene et al. 2007] or struc-
ture detection [Pauly et al. 2008], but rather light-weight analysis
and easy subsequent interaction. This allows us to handle a rather
broad spectrum of shapes and avoid the typical hurdles and restric-
tions of CAD boundary representations such as NURBS patches,
making the technique attractive to a wider user audience.

4 Wire extraction and analysis

Our shape analysis is a weak form of reverse engineering, as we
do not precisely reconstruct the entire shape, but rather require just
enough information to enable structure-preserving edits. This re-
quirement is much simpler compared to the classical (and notori-
ously hard) problem of shape understanding. We select a sparse
set of one-dimensional features and mark them as wires. These are
salient curves on the object that sufficiently describe a shape for the
purpose of editing. We do not pose any topological restrictions on
the collection of wires, nor do the wires necessarily segment the
shape into surface patches. Instead of directly preserving charac-
teristics of the input surface, we encode them using our wire collec-
tion. We identify the characteristics of the individual wires and their
mutual relations, thus making them intelligent. This knowledge is
used during subsequent edits. We identify a set of properties com-
mon to typical engineered models, such as linearity and planarity,
parallelism, symmetry, and maintain such relations during defor-
mations. Each individual wire is made aware of its characteristic
properties, while we store their mutual relationships by groups.

Wire extraction. For many man-made objects, the defining lines
of the shape lie on the intersections between smooth surfaces.
Therefore, to extract the wires, we identify “sharp” mesh edges –
those that have sharp dihedral angles or lie on the boundary. We
use a tracing procedure to form the wires: starting from a sharp
edge that has not yet served as a wire “seed”, a wire is formed
by walking along consecutive sharp edges; whenever a crossing is
reached, we choose the edge that would keep the wire planar, if
possible. The wire ends when either the curve becomes a closed
loop, or further walk is not possible. The wire extraction process
continues until all the sharp edges have been processed. Note that
our extraction procedure relies on relatively clean input due to the
use of dihedral angles. While it is very often the case with man-
made objects, still a more robust technique can be applied in place
of our heuristic, such as geometric snakes [Lee and Lee 2002] or
ridges and ravines [Ohtake et al. 2004]. This would be suitable
when dealing with scanned input that may contain noise. For all
the examples shown in the paper and the supplementary video, the
wires were automatically extracted from the models using a thresh-
old angle of 40 degrees.

4.1 Individual wire characterization

The following properties are associated with each wire:

• Planar or non-planar.

• “Atomic” type: the entire wire can be well approximated by a
straight line, (part of) a circle, (part of) an ellipse or a polyno-
mial curve of a bounded degree. For most man-made objects,
we observe that lines and elliptical features capture the defin-
ing characteristics of the models. Preserving such character-
istics is crucial during the subsequent deformation stage.

• Compound wire: when the fitting error using a single element
is large, we segment the wire into sub-wires by dividing it at
salient internal angles. Each sub-wire is classified according
to an atomic type (if the fitting error is still large, no special
attribute is attached). A polyline is a special case of a com-
pound wire, where each sub-wire is a straight line. Polylines
appear to be the most common wires in the objects we have
tested.

The atomic attribute of a wire (or a sub-wire) is decided by fit-
ting each type and selecting the one with the smallest fitting error.
To qualify as a circle or ellipse, the wire should cover a substantial
part – at least a quarter of a circle/ellipse in our implementation. For
the polynomial curve fitting, we find the degree of the polynomial
that best approximates the curve using arc-length parameterization
as the domain for the approximation and fitting three separate poly-
nomials along the three principal axes of the curve, with the curve’s
center of mass as the origin. We test all polynomials with degree
between 2 and dmax, selecting the lowest degree polynomial with
fitting error below a threshold. We used dmax = 5 in our imple-
mentation.

For compound wires, we also analyze and record the relations be-
tween the sub-wires. For a pair of adjacent sub-wires, denote by t1

t1

t2

t1

t2

t1
t2t1

t2
the unit tangent vector to the first sub-
wire at the connection (joint) point, and
t2 the unit tangent of the second wire.
We record the following relations:

Equal connection angles: we identify
sets of pairs of adjacent sub-wires that
are connected at (approximately) equal
angles, i.e., have similar tT

1 t2 values.
Clusters that have special values of
connection angles (in our implementation, 90 and 45 degrees) are
additionally noted.

Parallel connections: We are interested in clustering pairs of sub-
wires, for which the tangents at the connection point form paral-
lel planes. Namely, we marks sets of sub-wires that have similar
t1 × t2 vectors.

Equal lengths: cluster sub-wires that have nearly equal lengths.

These individual wire constraints are respected in subsequent edits.



propagationwire optimizationfinal wiresinduced surface editcompare: uniform scaling

original wires user input symmetry parallel concentric

Figure 5: Various stages of edit propagation on the Phone Dial model (see accompanying video).

4.2 Mutual relations

Any man-made model typically yields a large number of wires
(see Figure 8). We analyze their mutual inter-relationships to form
groups of wires that share certain common traits. This is a key step
of our algorithm, since the success and the intuitiveness of subse-
quent edit operations depend on it. We group wires based on two
general criteria (note that the groups are not mutually exclusive):

• Common properties: We identified the following properties,
although others can be easily considered as well: wires lying
on the same plane; wires lying on parallel planes; wires on
parallel planes with approximately aligned centers of mass.
In addition to these common properties, we cluster the wires
by proximity, such that a wire may belong to a group if its
Euclidean distance from the group is smaller than a parameter
Tprox. For all our examples we used 20− 40% of the object’s
bounding box diagonal length as Tprox (for the Lego model
we used 100%).

• Symmetry: We use the method of [Mitra et al. 2006] to de-
tect the global symmetry between each pair of wires. We then
filter out any symmetry that is common to less than Tsymm

wires, and group the wires belonging to the remaining sym-
metry sets (we set Tsymm as 5 in our implementation).

Note that symmetry relation between different parts is an important
aspect of many shapes. Such relations often constitute the defin-
ing characteristics of objects, and it is desirable to preserve them
under any deformations. While local deformation techniques suc-
cessfully preserve surface details, often global symmetry relations
are lost during edit operations. In our framework, we retain de-
tected symmetry relations, specifically reflective and discrete rota-
tional symmetry, by preserving the necessary inter-wire relations
during the edit phase.

5 Wire editing

The user initiates edit operations in any of the following interaction
modes: directly dragging a surface part, deforming an individual
wire, or a sketch-based interaction (see Section 6). The user input
defines a modeling constraint that propagates to the wires, which in
turn undergo an optimization, with the goal to maintain the individ-
ual and the group properties as much as possible, while satisfying
the modeling constraint. Finally, the new configuration of the edited
wires induces a deformation of the surface itself.

The core of our editing method is the modification of the wires to
fit the modeling constraints while preserving their original prop-

erties. The problem is naturally ill-posed: on the one hand, pre-
serving all the characteristics of the individual wires and the wire
groups exactly is usually impossible, and on the other hand, there
are infinitely many ways to define an approximate preservation. We
opted out of defining a single global optimization function, be-
cause the various terms describing individual wire properties and
the mutual relations all have very different nature, and finding an
appropriate weight assignment for all of them is difficult and non-
intuitive. Instead, we propose a prioritized propagation approach,
where the different wire properties are optimized at different stages,
starting with the individual wires directly affected by the modeling
constraints, then moving on to the groups these wires belong to,
and continuing to other groups by proximity and symmetry. This
approach, while being greedy, eliminates painstaking (and model-
dependent) weight tweaking and global nonlinear optimization, and
works well in practice (see Figure 5).

5.1 Individual wire optimization

When the shape of a wire is altered (as a result of direct user ma-
nipulation, or indirectly, when the edit operation is propagated), the
original wire characteristics can be destroyed. We perform an op-
timization process to restore them, as much as possible. Let us
denote the original (reference) shape of the wire curve by WR,
and the deformed state by WD . We fit a new curve WC to WD ,
such that WC possesses the original properties of WR as much
as possible, while resembling WD in position and shape. WC

is a function of both the reference and the deformed curve states:
WC = C(WR,WD) (see Figure 4). At any point during editing, a
wire is thus associated with three entities: W = (WR,WD,WC).

As described in Section 4, we analyze the properties of the refer-
ence curve WR and classify the wire as planar/non-planar; atomic
(straight line, circle, ellipse, polynomial) or compound. During
editing, we fit a corresponding curve type to the deformed state
WD . When the wire is atomic, we fit the particular atomic type us-
ing the center of mass ofWD as the origin of the coordinate system
and the principal axes (computed by PCA) as the coordinate axes –
essentially, the same procedure we used at the analysis stage (Sec-
tion 4.1). For planar primitives, we define the fitting plane as the
plane spanned by the two strongest principal components of WD .

For compound wires, we fit the corresponding type to each sub-
wire, and moreover, we optimize the relationships between the sub-
wires (that were analyzed as described in Section 4.1). We define
a nonlinear energy functional that measures the deviation from all
the properties we have identified in the analysis stage, and find a
curve that minimizes this energy while staying close to WD . The



details of this process are described in the Appendix. Note that the
shape optimization may result in a non-planar wire; if originally the
wire was planar, we fit a plane to the optimized shape and project
to restore planarity. We used a simple vertex-to-vertex distance ac-
cording to arc-length parameterization; a more accurate albeit ex-
pensive approach would be to employ a shape distance metric based
on feature correspondence, e.g. as in [Zimmermann et al. 2007].

5.2 Wire group optimization

When some of the wires in a group change their shape, the group
properties may become invalidated. We attempt to restore the group
properties as follows. For symmetry, whenever the shape of a single
wire changes, the same transform (adjusted according to symmetry)
is applied to the symmetric wires, i.e., to the symmetry groups the
wire participates in. For planar, parallel and concentric groups, we
move the wires using small steps of rigid transforms towards their
mean configuration (using an appropriate distance measure) to it-
eratively restore the group property. In the case the grouped wires
lie on the same plane, we iteratively translate each wire towards the
average plane that best approximates all the other wires and rotate
the wire towards lying on that plane. We take incremental steps by
translating each wire by 5% of the distance to the average plane
and rotating by 5% of the necessary angle. We iterate over all the
wires in the group, recomputing the average plane each time, until
convergence or a maximum number of steps is reached. A simi-
lar approach is employed for wires lying on parallel planes and for
concentric wires (in the latter case, we fit a straight line to all the
centers in each iteration step).

5.3 Edit propagation

Here we explain how the edit of a single wire is propagated to other
wires and groups. Starting from an initial set of wires that are af-
fected by the user input (i.e., the modeling constraints), we first
propagate their influence to all the wires in the groups that contain
those wires (technical details below). We then start proximity-based
propagation, influencing groups of wires that are closest, according
to Euclidean distance, to the ones already treated. When we opti-
mize each individual wire, we also perform the same change on all
the wires that are sharing a global symmetry with it, so treating a
wire on one side of the object might influence wires on a remote
part of the object. We continue to propagate the edit influence until
all the wires are treated.

Influence propagation from a set of wires onto a new wire.
The basic building block of the edit propagation procedure is be-
ing able to transfer the change of one or several wires to another
wire in the vicinity. Assume U is an “untreated” wire that will be
influenced by a collection of wires {Wi = (WR

i ,W
D
i ,W

C
i )} that

have already been treated. We only have the reference state UR of
U , and we are looking for the deformed state UD based on the in-
fluence propagation. The optimized state UC is then computed as
previously described in Section 5.1.

We employ local frames encoding, where every point p on a curve
has a canonical orthonormal frame (p;b1,b2,b3) associated with
it, centered at p. To propagate the edit influence from the set {Wi}
onto U , we transfer the change between the local frames of WR

i

and WC
i onto U . For each point p on UR, we find the closest point

qR among {WR
i }. We encode p in the local frame of qR on its

corresponding reference curve WR
i , i.e.:

(αR, βR, γR)T = (BR)T (p− qR), (1)

where BR = (bR
1 ,b

R
2 ,b

R
3 ) is the matrix of the local frame axes.

We then “decode” p using the corresponding local frame of the
edited curve WC

i :

pD = qC + αRbC
1 + βRbC

2 + γRbC
3 . (2)

By performing this process for all points p on UR, we obtain a de-
formed version UD = {pD}. An example of the shape we may ob-
tain is given in Figure 5 (bottom right): the set of dialing holes was
transformed due to user manipulation and symmetry, and this set in-
fluences the other wires (the inner and the enclosing circles) using
the procedure described above. The result is the “wavy” curves de-
picted in gray. The constrained optimization operator C(UR, UD)
is then applied to obtain the final curve(s) UC (as in Section 5.1).
We use a heuristic to avoid over-constraining: if a compound wire
had been influenced by two or more wires, we relax the optimiza-
tion operator C(UR, UD) so that it ignores the equal angles and
equal lengths properties (i.e., we remove the corresponding energy
terms from the optimization, see Appendix). This allows, for in-
stance, for the side wires of the Lego in Figure 2 to assume trape-
zoidal shape, instead of locking them as rectangles.

Overall influence propagation procedure. We start from a seed
set of wires As that were treated as a direct result of the user ma-
nipulation. We propagate the edit operation onto all the wires in
the groups that contain the wires of As as described above. After
the propagation step, each group is optimized as described in Sec-
tion 5.2. The edit propagation then continues in the same fashion to
other groups, in the order of proximity to the already treated groups.
The process ends when all the wires have been treated.

original + handles simple FFD [Lipman et al. 2005]

[Botsch et al. 2006] [Sumner et al. 2007] iWIRES

original + handles simple FFD [Lipman et al. 2005]

[Botsch et al. 2006] [Sumner et al. 2007] iWIRES

Figure 6: Comparison with simple space deformation (2×2×2 FFD
in 3D Studio Max) and state-of-the-art shape deformation methods.
We keep one side of the Lego fixed (depicted in red) and scale (top
two rows) or move (bottom rows) the opposite side (the handle is
marked in yellow).



Final Deformation. The result of the wire editing process is a
set of wires, each with a reference curve WR and a corresponding
optimized curve WC (see Figure 4, where reference wires are in
green, and optimized versions in blue). We can now use these pairs
of curves as modeling constraints to any mesh deformation method.
While we used the rotation-invariant coordinates method [Lipman
et al. 2005] in this work, other techniques can also be utilized. In
addition to the positional constraints, we also derive rotation con-
straints for the wires by computing the rotation between the local
frames on WR and the corresponding frames on WC . The method
requires each connected component of the object to have at least
one positional and one rotational constraint. Hence, we ensure that
at least one wire is extracted per connected component of the mesh.

6 Results and discussion

In this section, we describe a few edit sessions performed using
iWIRES (please refer to the accompanying video). The setup stage
comprises of extracting the wires and learning their properties, as
well as having the user mark the modeling constraints, as described
below. Figure 8 shows the wires extracted for various models, many
of which consist of multiple components. In special cases, it can be
desirable for the user to mark additional curves as wires, especially
those which are geometrically less distinct (and thus were not de-
tected automatically), but carry strong semantic cues. Among the
presented examples, only in the Phone model, we manually added
one wire to facilitate a link across two disconnected components.

Although the number of individual wires can be large, they are often
strongly related. We extract this information as mutual relations,
and bin the wires into (possibly intersecting) groups according to
their common properties and symmetry relations. The time required
to propagate subsequent edits depends on the complexity of the wire
relations structure established during this analysis phase, as well as
on the number of wire groups that are non-trivially affected due to
the desired edit . Thus, our edit framework is output sensitive. The
Toy Jeep, the Alien Space-object, and the Phone result in 574, 250
and 75 individual wires, respectively. These wires get grouped into
80, 54, and 13 groups, respectively, before factoring out symmetry.
A single edit propagation on models with less than a hundred wires
takes less than 2 seconds on a 3GHz machine. On our most complex
model, the Toy Jeep, edit propagation takes under 4 seconds.

The iWIRES editing framework can be combined with a multitude
of common user interfaces: the only requirement is to be able to in-
fer a reasonable and intuitive change to one or more wires from the
user manipulation, i.e., to derive appropriate modeling constraints.
While alternative metaphors are conceivable, we experimented with
three basic types of interaction described below:

Grab-and-drag. The user, oblivious to the underlying wire struc-
ture, simply selects a portion of the model as a handle and applies an
affine transformation to it (translation, rotation, scaling, etc.). The
user also indicates a part of the object that should remain static. In
our system, the wire H closest to the handle undergoes the same
transformation as specified by the handle to yield the intermediate
wire HD; the wire closest to the static area is internally marked as
“treated”, to prevent changes during the subsequent optimization.
Once these modeling constraints have been set, the optimization
is applied to HD yielding HC , and the edit operation is propa-
gated (see Section 5 for details).

Explicit wire manipulation. In this mode, the user can see the
wires. She is expected to mark wires as fixed, or select and manipu-
late them using an arbitrary curve editing mechanism (for instance,
Laplacian editing [Sorkine et al. 2004] or fiber editing [Nealen et al.

2007]). As before, this yields the sequence HR → HD → HC

that triggers the edit propagation. This mode is useful for clean
models with clear defining wires (see Figure 2).

Sketch-based interface. In this mode, the user can draw guid-
ing strokes to affect a significant portion of the model at once. The
strokes influence the spatial arrangement of a set of wires (see Fig-
ure 7). We assume that the user identifies a set of wires, which
we call the handle set, that she would like to edit. A reference 3D
curve A is computed as the polyline connecting the centers of mass
of the wires in the handle set (the red curve in Figure 7). The user
then draws a stroke B, shown in yellow, over-sketching the refer-
ence curve, and the handle wires around it transform accordingly.
Specifically, we establish a correspondence betweenA andB based
on arc-length parameterization (alternatively, sophisticated match-
ing techniques can be used, as in [Zimmermann et al. 2007]), and
the depth of each point on B is taken from the corresponding point
on A. For each handle wire W , we compute the (rigid) transforma-
tion T between the PCA frame of W and the corresponding local
frame of A. We translate W such that its center of mass lies at
the corresponding point on B, and apply the same transformation
T relative to the new local frame. This interaction mode is espe-
cially useful for dealing with complex models with a large number
of wires, like Lamp or Bench (see the accompanying video). While
this simple sketch-based interface generates quite powerful manip-
ulations, in the future we would like to explore alternate interaction
modes that do not expose the wires to users.

Figure 10 showcases a wide range of edits performed on various
engineered models using iWIRES. For procedural models, or mod-
els available in parametric forms, similar edits are easy. When such
representations are not available, it is difficult to reverse engineer
such complex shapes. We demonstrate that by merely extracting
a few important curves and properly editing/deforming them, it is
possible to get intuitive results. Algorithms which are designed for
detail preserving deformations of smooth shapes, are ill-suited to
perform such edits (see Figure 6). Although for complex mod-
els, the number of extracted wires can reach a few hundreds, to the
user the system remains simple and intuitive. For example, novice
users easily edited complicated models like the Toy Jeep, Phone,
or Alien Space-object, to create final forms as shown in Figure 10.
Typical sessions, for reasonably complex models included two min-
utes setup time, followed by edit times of about three–four minutes.
Note that edits, unless extreme ones, involve optimizing only a few
wire groups and not all the wires scaffolding the models.

Limitations. iWIRES is only as powerful as the detected struc-
ture or wire relations. Spurious wires or false learned relations
can lead to over-constraining the model (see Figure 9). On the

Figure 7: Sketch-based interface. The user influences a chosen
set of wires (light green, left) by drawing a stroke (in yellow). The
affected wires are re-arranged accordingly (middle), and then the
edit is propagated to the rest of the wires (right).



#W = 15 #W = 54 #W = 16 #W = 70 #W = 75 #W = 27 #W = 40
#C = 7 #C = 27 #C = 3 #C = 33 #C = 11 #C = 8 #C = 6

Figure 8: Some of the models we used, with the wires highlighted, and the connected components indicated by different colors. The number
of wires is denoted by #W, and the number of connected components in the model by #C.

other hand, especially for organic shapes, we fail to retain desir-
able model properties when important features or appropriate inter-
relationships are not detected. For noisy models, denoising along
with robust feature curve detection may be needed as a preprocess-
ing step before editing the shape using iWIRES. Also, since we do
not handle continuous symmetry, we may fail to detect any wires on
cylindrical or spherical object parts. In such cases, user assistance
may be required. In the extreme, when no relations are detected,
our framework reduces to simple surface-based deformation.

In our approach, the final order of edit propagation does influence
the results. However, once a wire is treated by group optimiza-
tion, it is never touched again, preventing conflicts. Although in
our system, we apply the constraints in the following order: sym-
metry, then planarity, then co-planarity, additional control can be
given to the user, whereby she can possibly select preferable modes
and constraint types.

7 Conclusions

We believe that the analyze-and-edit approach has further poten-
tial beyond the application demonstrated here. However, analysis
of models which were carelessly generated remains a challenging
task that requires more research. Many additional properties and
engineering constraints can be detected and analyzed, and then pre-
served during editing. The approach that we took in this work,
namely, using intelligent wires as basic primitives, proved to be a
versatile editing framework. However, we believe that with a bit of
user guidance, especially with easy-to-mark model semantics, we
can provide significant gains towards intuitive control and perfor-
mance. This should allow novice users to quickly generate large
variations of existing non-parametric models.

Acknowledgements

We are grateful to Mario Botsch and Bob Sumner for helping us
with Figure 6. The models used in this paper were collected from

(a) (b) (c)

Figure 9: Limitations: (a) Spurious wires on the cylindrical parts
cause over-constraining, and these parts no longer move during
editing. (b) We may fail to detect meaningful relationships between
the wires, resulting in limited effects when editing. (c) Our simple
wire extraction procedure may fail to detect any wires; the editing
framework then simply reduces to detail-preserving deformation.

the Princeton Shape Benchmark, AIM@SHAPE, and via personal
communication with Hongbo Fu and Vladislav Kraevoy. We are in-
debted to Marc Alexa, Andrew Nealen, Denis Zorin and the anony-
mous reviewers for their valuable comments and suggestions, and
thank Andrew Nealen for his lucid narration of the accompanying
video. This work was supported in part by the Israeli Ministry
of Science, the Israel Science Foundation, and by an ADVANCE
Research Challenge Grant funded by the NSF ADVANCE-PAID
award HRD-0820202. Niloy was supported by a Microsoft out-
standing young faculty fellowship.

References

ANGELIDIS, A., CANI, M.-P., WYVILL, G., AND KING, S. 2004.
Swirling-sweepers: Constant-volume modeling. In Proc. of Pa-
cific Graphics, 10–15.

ATTENE, M., ROBBIANO, F., SPAGNUOLO, M., AND FALCI-
DIENO, B. 2007. Semantic annotation of 3D surface meshes
based on feature characterization. Lecture Notes in Computer
Science 4816, 126–139.

AU, O. K.-C., FU, H., TAI, C.-L., AND COHEN-OR, D. 2007.
Handle-aware isolines for scalable shape editing. ACM Trans.
Graph. 26, 3, 83.

BENKÖ, P., MARTIN, R. R., AND VÁRADY, T. 2001. Algorithms
for reverse engineering boundary representation models. Com-
puter Aided Design 33, 11, 839–851.

BOTSCH, M., AND KOBBELT, L. 2003. Multiresolution surface
representation based on displacement volumes. In Proc. of Eu-
rographics, 483–491.

BOTSCH, M., AND KOBBELT, L. 2005. Real-time shape editing
using radial basis functions. In Proc. of Eurographics, 611–621.

BOTSCH, M., AND SORKINE, O. 2008. On linear variational sur-
face deformation methods. IEEE Trans. on Visualization and
Computer Graphics 14, 1, 213–230.

BOTSCH, M., PAULY, M., GROSS, M., AND KOBBELT, L. 2006.
PriMo: Coupled prisms for intuitive surface modeling. In Proc.
of Sym. on Geometry Processing, 11–20.

BOTSCH, M., PAULY, M., WICKE, M., AND GROSS, M. 2007.
Adaptive space deformations based on rigid cells. In Proc. of
Eurographics, 339–347.

CABRAL, M., LEFEBVRE, S., DACHSBACHER, C., AND DRET-
TAKIS, G. 2009. Structure preserving reshape for textured ar-
chitectural scenes. In Proc. of Eurographics, 469–480.



Figure 10: iWIRES workshop. The original model is rendered in green, and the edited results in blue.



COLEMAN, T., AND LI, Y. 1996. An interior, trust region approach
for nonlinear minimization subject to bounds. SIAM Journal on
Optimization 6, 418–445.

COQUILLART, S. 1990. Extended free-form deformation: A sculp-
turing tool for 3D geometric modeling. In Proc. of ACM SIG-
GRAPH, 187–196.

FUNKHOUSER, T., KAZHDAN, M., SHILANE, P., MIN, P.,
KIEFER, W., TAL, A., RUSINKIEWICZ, S., AND DOBKIN, D.
2004. Modeling by example. ACM Trans. Graph. 23, 3, 652–
663.

HUANG, J., SHI, X., LIU, X., ZHOU, K., WEI, L.-Y., TENG,
S., BAO, H., GUO, B., AND SHUM, H.-Y. 2006. Subspace
gradient domain mesh deformation. ACM Trans. Graph. 25, 3,
1126–1134.

JOSHI, P., MEYER, M., DEROSE, T., GREEN, B., AND
SANOCKI, T. 2007. Harmonic coordinates for character articu-
lation. ACM Trans. Graph. 26, 3, #71.

JU, T., SCHAEFER, S., AND WARREN, J. 2005. Mean value coor-
dinates for closed triangular meshes. ACM Trans. Graph. 24, 3,
561–566.

KRAEVOY, V., SHEFFER, A., COHEN-OR, D., AND SHAMIR, A.
2008. Non-homogeneous resizing of complex models. ACM
Trans. Graph. 27, 5, #111.

LEE, Y., AND LEE, S. 2002. Geometric snakes for triangular
meshes. In Proc. of Eurographics, 229–238.

LIPMAN, Y., SORKINE, O., LEVIN, D., AND COHEN-OR, D.
2005. Linear rotation-invariant coordinates for meshes. ACM
Trans. Graph. 24, 3, 479–487.

LIPMAN, Y., COHEN-OR, D., GAL, R., AND LEVIN, D. 2007.
Volume and shape preservation via moving frame manipulation.
ACM Trans. Graph. 26, 1.

LIPMAN, Y., LEVIN, D., AND COHEN-OR, D. 2008. Green coor-
dinates. ACM Trans. Graph. 27, 3.

MASUDA, H., AND OGAWA, K. 2007. Application of interactive
deformation to assembled mesh models for CAE analysis. In
ASME Int. Design Engineering Technical Conferences.

MASUDA, H., YOSHIOKA, Y., AND FURUKAWA, Y. 2007. Pre-
serving form features in interactive mesh deformation. Computer
Aided Design 39, 5, 361–368.

MILLIRON, T., JENSEN, R. J., BARZEL, R., AND FINKELSTEIN,
A. 2002. A framework for geometric warps and deformations.
ACM Trans. Graph. 21, 1, 20–51.

MITRA, N. J., GUIBAS, L., AND PAULY, M. 2006. Partial and
approximate symmetry detection for 3D geometry. ACM Trans.
Graph. 25, 3, 560–568.

NEALEN, A., IGARASHI, T., SORKINE, O., AND ALEXA, M.
2007. FiberMesh: Designing freeform surfaces with 3D curves.
ACM Trans. Graph. 26, 3, 41.

OHTAKE, Y., BELYAEV, A., AND SEIDEL, H.-P. 2004. Ridge-
valley lines on meshes via implicit surface fitting. ACM Trans.
Graph. 23, 3, 609–612.

ORZAN, A., BOUSSEAU, A., WINNEMÖLLER, H., BARLA, P.,
THOLLOT, J., AND SALESIN, D. 2008. Diffusion curves: a
vector representation for smooth-shaded images. ACM Trans.
Graph. 27, 3.

PAULY, M., MITRA, N. J., WALLNER, J., POTTMANN, H., AND
GUIBAS, L. 2008. Discovering structural regularity in 3D ge-
ometry. ACM Trans. Graph. 27, 3, #43, 1–11.

POPA, T., JULIUS, D., AND SHEFFER, A. 2007. Interactive and
linear material aware deformations. Proc. of Shape Modeling
International 13, 1, 73–100.

SEDERBERG, T. W., AND PARRY, S. R. 1986. Free-form defor-
mation of solid geometric models. In Proc. of ACM SIGGRAPH,
151–160.

SHI, X., ZHOU, K., TONG, Y., DESBRUN, M., BAO, H., AND
GUO, B. 2007. Mesh puppetry: cascading optimization of mesh
deformation with inverse kinematics. ACM Trans. Graph. 26, 3.

SINGH, K., AND FIUME, E. 1998. Wires: a geometric deformation
technique. In Proc. of ACM SIGGRAPH, 405–414.

SORKINE, O., AND ALEXA, M. 2007. As-rigid-as-possible sur-
face modeling. In Proc. of Sym. on Geometry Processing, 109–
116.

SORKINE, O., LIPMAN, Y., COHEN-OR, D., ALEXA, M.,
RÖSSL, C., AND SEIDEL, H.-P. 2004. Laplacian surface edit-
ing. In Proc. of Sym. on Geometry Processing, 179–188.

SUMNER, R. W., SCHMID, J., AND PAULY, M. 2007. Embedded
deformation for shape manipulation. ACM Trans. Graph. 26, 3.

VON FUNCK, W., THEISEL, H., AND SEIDEL, H.-P. 2006. Vector
field based shape deformations. ACM Trans. Graph. 25, 3.

ZHOU, K., HUANG, J., SNYDER, J., LIU, X., BAO, H., GUO,
B., AND SHUM, H.-Y. 2005. Large mesh deformation using the
volumetric graph Laplacian. ACM Trans. Graph. 24, 3, 496–503.

ZIMMERMANN, J., NEALEN, A., AND ALEXA, M. 2007. SilS-
ketch: automated sketch-based editing of surface meshes. In
Proc. of Sketch-based Interfaces and Modeling, 23–30.

Appendix

Here are the details of the nonlinear optimization of a compound
wire (Section 5). We define the following energy terms to measure
the deviation of WC from the properties of the sub-wires of WR:

• Elen for each cluster of equal length sub-wires, we compute
the standard deviation of the lengths of the sub-wires, to pe-
nalize deviation from the equal length property.

• Eang for each cluster of equal connection angles between
adjacent sub-wires, we compute the standard deviation of the
angles. For the special connection angle clusters (90 or 45 de-
grees in our implementation) we measure the deviation from
these constant values.

• Eplan for each cluster of parallel connections, we compute
the standard deviation of the vector products t1 × t2 from
their mean direction.

We also define Edist, the sum of distances of each sample on WC

from WD , to penalize the deviation of WC from WD . We find
WC by solving the nonlinear optimization:

min
W C

Elen + w1Eang + w2Eplan + w3Edist , (3)

with weights w1 = 103, w2 = 104, w3 = 10−5. For the opti-
mization we used a subspace trust-region method, which is based
on the interior-reflective Newton method [Coleman and Li 1996].
Each iteration involves the approximate solution of a linear system
using preconditioned conjugate gradients.


