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ABSTRACT
When search is against structured documents, it is bene-
ficial to extract information from user queries in a format
that is consistent with the backend data structure. As one
step toward this goal, we study the problem of query tag-

ging which is to assign each query term to a pre-defined
category. Our problem could be approached by learning a
conditional random field (CRF) model (or other statistical
models) in a supervised fashion, but this would require sub-
stantial human-annotation effort. In this work, we focus on
a semi-supervised learning method for CRFs that utilizes
two data sources: (1) a small amount of manually-labeled
queries, and (2) a large amount of queries in which some
word tokens have derived labels, i.e., label information au-
tomatically obtained from additional resources. We present
two principled ways of encoding derived label information in
a CRF model. Such information is viewed as hard evidence
in one setting and as soft evidence in the other. In addition
to the general methodology of how to use derived labels in
semi-supervised CRFs, we also present a practical method
on how to obtain them by leveraging user click data and
an in-domain database that contains structured documents.
Evaluation on product search queries shows the effectiveness
of our approach in improving tagging accuracies.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval—Search process; I.5.1 [Pattern
Recognition]: Models—Statistical

General Terms
Algorithms, Experimentation
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Semi-supervised learning, conditional random fields, infor-
mation extraction, metadata
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1. INTRODUCTION
The World Wide Web is a large reservoir of information

that is still growing at a rapid rate. Unlike data found in a
database, the vast majority of the Web documents are only
semi-structured, making information retrieval a challenging
task. In recent years, there has been a surge of interest in
extracting structured information from Web documents and
converting the extracted data into database objects [2, 16,
20, 17]. Moreover, many vertical search engines crawl data
directly from a relational database, and their indexes con-
tain highly structured information that is less ambiguous in
nature. Such data representations, if appropriately utilized,
can greatly help enhance search experience.

When search is against structured data, it is beneficial to
extract information from user queries that is explicitly rep-
resented in a structured form. In this work, we study the
problem of query tagging as one step toward this goal. More
specifically, we view a query as a sequence of word tokens;
given a set of pre-defined fields (or states), our aim is to as-
sign each word token a label indicating which field it belongs
to. In particular, we focus our attention on tagging prod-
uct search queries, since this is one representative domain
where structured information can have a substantial influ-
ence on search experience. Below is an example showing a
product search query annotated with field information. The
complete schema of field definition is given in Table 1 with
details given in Section 5.

canon powershot sd850 camera silver

| | | | |
Brand Model Model Type Attribute

For our task, it is possible to construct (from a database)
field-dependent lexicons that enumerate possible values for
each field. However, a pure lexicon-lookup based approach is
insufficient largely due to the presence of ambiguous words.
For example, the word “red” is in most cases seen as At-

tribute, but can mean Brand in the context of “red hat”.
Another challenge is that users may formulate queries us-
ing out-of-lexicon words. For these reasons, we take a sta-
tistical approach to our problem for its known success in
sequential labeling tasks. In particular, we use conditional
random fields (CRFs) [10] that model probabilistic depen-
dencies between two consecutive fields and between fields
and observations. Indeed, despite the fact that user queries
are commonly viewed as bags of words, we found that the
field ordering in product search queries does display statis-
tically significant patterns that can help sequential labeling.

If queries fully-annotated with field information were avail-



Fields Example use in queries

Brand canon powershot sd850
Model canon powershot sd800
Type canon digital cameras silver
Attribute canon digital cameras silver
Merchant digital cameras at best buy
SortOrder best digital cameras
BuyingIntent buy canon digital cameras
ResearchIntent digital cameras review
Other digital cameras at best buy

Table 1: A example schema that defines fields in
product search queries. The top and bottom rows
contain fields that correspond to product metadata
and product-independent keywords respectively.

able in abundance, our problem could be approached by
learning a CRF model in a supervised fashion. However,
supervised training data will hardly ever be sufficient in this
space as the volume of web search queries is extremely large.
Often times, while it is expensive to ask human annotators
to label a large amount of queries, it is relatively easy to ob-
tain “labels” for some word tokens from additional resources.
We use the term derived labels to refer to partial labeling
information obtained in this fashion. This should be distin-
guished from manual labels which are acquired via human
annotation. Note that derived labels may be available only
for a subset of word tokens in a query, and thus cannot be
directly used as supervised training data. Moreover, such
information is often noisy depending on the data source.

In this work, we investigate a semi-supervised learning
method for CRFs that utilizes two sources of information:
(1) a small amount of manually-labeled queries, and (2) a
large amount of queries with derived labels obtained in an
unsupervised fashion. Our goal, then, is to make use of
these two data sources to learn a better CRF model. Our
contribution is two-fold. First, we assume the availability
of the second data source and explore two principled ways
of incorporating such information into conditional random
fields. In one setting, derived labels are considered as hard
evidence on the corresponding state variables. In the sec-
ond setting, derived labels are used as soft evidence in the
form of a feature function, expressing preferences over val-
ues of state variables. Both approaches are expressed in a
graphical model framework, and their respective optimiza-
tion objectives are discussed.

Our second contribution is to present a practical method
that generates derived labels for a large amount of queries
with minimum human supervision. We demonstrate our ap-
proach in the product search domain. Suppose that we have
access to user click data in the form of (query, product title)
pairs, and to a product database that contains product ti-
tles and their corresponding field data. Then we are able to
associate queries with their relevant field data. This enables
us to automatically attach labels to some word tokens in
queries, and to use them as derived labels in the proposed
semi-supervised learning paradigm.

We evaluate our approach in the task of tagging product
search queries, while our method is general enough to be
applied to other domains (such as local search and sports
search). Experiments show that our proposed approach can
significantly increase tagging performance on practical data.

2. RELATED WORK
There are not many works on query tagging that we are

aware of. The only slightly relevant work is by [3] on part-
of-speech tagging of queries. Therefore, we review related
works mostly from a machine learning perspective.

A good number of semi-supervised methods for CRFs have
been published in recent years. One school of approaches
makes the standard assumption that, in addition to a small
amount of labeled data, there exists a large amount of unla-
beled data. In this setting, it is natural to apply self-training

[18] which trains a seed model using the labeled data, and it-
eratively uses high-confidence predictions on the unlabeled
data to expand the training set. This approach, however,
lacks a theoretical justification for optimality, unless certain
non-trivial conditions are satisfied [1].

A common challenge to applying semi-supervised learn-
ing to CRFs is that the entire state sequences of unlabeled
data are hidden. Since CRFs have a maximum conditional-
likelihood objective, the Expectation-Maximization (EM)
used in generative models [8] is not directly applicable. To
solve this problem, entropy minimization, originally pro-
posed by [7] and extended to CRFs by [9], aims to maxi-
mize the conditional likelihood of labeled data while mini-
mizing the conditional entropy of unlabeled data. Another
approach, referred to as JESS-CM [15], embeds a generative
model (HMMs) into the CRF framework with an objective
that can be iteratively optimized.

A second group of works makes an additional assumption
that alternative label resources can be utilized in learning;
and our work falls into this category. When unlabeled data
have partial labeling information, it becomes possible to op-
timize a CRF model using the EM algorithm. This is essen-
tially the first approach we explore in this work that treats
derived labels as hard evidence. The idea is also akin to the
methodology proposed by [14] to integrate hidden variables
in CRFs. Another work, generalized expectation [6, 12], uses
aggregated “derived label” information to regularize the con-
ditional distributions of a state variable given individual
features. Our second approach bears a resemblance to their
idea in that derived labels are viewed as soft evidence to
bias the values of state variables. The key difference is that
we use such information in the context of an input sequence
to provide local, as opposed to global, preferences over state
hypotheses. In this regard, our method is analogous to the
use of virtual evidence in directed graphical models [4]. But
our goal is to optimize a discriminative model, instead of a
generative model, that incorporates such evidence.

Additionally, there are a fairly large amount of works on
using additional resources for semi- or un-supervised infor-
mation extraction in general. Here we only mention the most
relevant few. In [5], a database is used to create artificially-
annotated training data or to train a language model for an
HMM-based sequence labeler. A similar approach is used by
[19] for CRF-based text segmentation. Both works resort to
relational tables to create field labels for text segments. In
our work, we additionally make use of click data to maxi-
mally reduce ambiguity in this process.

3. CONDITIONAL RANDOM FIELDS
Linear-chain CRFs have been widely used in sequential la-

beling tasks such as part-of-speech tagging and information
extraction [10, 13]. We choose to apply CRFs to our task



for its ability of incorporating arbitrary features functions
on observations without complicating the training. For-
mally, we let x = (x1, x2, . . . , xT ) denote an input query
of T terms, and y = (y1, y2, . . . , yT ) the corresponding state
(field) sequence. Each yt can take on a pre-defined categor-
ical value. We further augment a state sequence with two
special states: Start and End, represented by y0 and yT+1

respectively. The conditional probability p(y|x) is given by

p(y|x; Λ) =
1

Z(x; Λ)
exp

{

∑

k

λk

T+1
∑

t=1

fk(yt−1, yt,x, t)

}

(1)

The partition function Z(x; Λ) normalizes the exponential
form to be a probability distribution. fk(yt−1, yt,x) are
feature functions, and Λ = {λk} are their corresponding
weights. There are typically two types of features used in
first-order, linear-chain CRFs: transition features and emis-

sion features. A transition feature is a binary function that
indicates whether a transition (yt−1 = i, yt = j) occurs, i.e.,

f
TR
i,j (yt−1, yt,x, t) = δ(yt−1 = i)δ(yt = j) (2)

An emission feature is a binary function that indicates whether
a observation-dependent feature co-occurs with state j. For
example, a unigram feature function is defined as

f
UG
w,j (yt−1, yt,x, t) = δ(xt = w)δ(yt = j) (3)

where w represents a unigram. In a more general form,
δ(xt = w) can be replaced with an arbitrary function on
x. Different forms of this function would express different
characteristics of the input query.

Given a set of manually-labeled queries {(x(i),y(i))}m
i=1,

we can estimate model parameters in a supervised fashion.
This training paradigm is expressed in the graphical model
language in Figure 1(a). Note that the decoding graph for
CRFs is the same as Figure 1(a) except that the entire state
sequence becomes hidden. In supervised training, we aim
to estimate Λ that maximizes the conditional likelihood of
training data while regularizing model parameters:

J1 =
m

∑

i=1

log p(y(i)|x(i); Λ) −
1

2σ2
‖Λ‖2 (4)

The objective can be optimized using stochastic gradient
descent, generalized iterative scaling, or other numerical op-
timization methods.

3.1 Application to Query Tagging
When applying CRFs to query tagging and particularly

product search query tagging, it is curious to ask if such a
model is suitable for solving our problem. A major ques-
tion one may raise is that CRFs assume a probabilistic de-
pendency between two consecutive states, which may not
have a strong presence in queries. If that were the case,
an instance-based classifier that tags each word token inde-
pendently would be more appropriate. We thus randomly
selected 4.5K product search queries across different cate-
gories, and had them manually labeled based on the schema
in Table 1. Interestingly, we found that the distribution of
transition features is rather skewed in this dataset. For ex-
ample, (yt−1=Type, yt=End) occurred in 80% of the queries,
meaning that most queries in this dataset end with the field
Type. This suggests that CRFs could be more effective than
instance-based models in tagging product search queries, as
will be supported by experimental evidence in Section 6.

In addition to transition features that are implicitly as-
sumed by CRFs, we introduce three types of emission fea-
tures for our task. First, we use ngram features including
both unigrams and bigrams. A unigram feature has been de-
fined in Equation (3); and a bigram feature can be defined
in a similar way. Specifically, for a given state variable in
the linear chain, we use the current word and its preceding
word to form a bigram, i.e.,

f
BG
w,w′ ,j(yt−1, yt, x, t) = δ(xt−1 = w)δ(xt = w

′)δ(yt = j)
(5)

We can also use the bigram that consists of the current word
and its following word or use both types of bigrams simul-
taneously, but did not observe significant performance dif-
ference with these alternatives. The use of bigrams offers
contextual information that is helpful in word disambigua-
tion. Consider the examples in Table 1. The word “buy” is
typically seen as BuyingIntent, but most likely means Mer-

chant in the context of “best buy” (same with the earlier
example “red” and “red hat”). When used in a CRF model,
each ngram feature is assigned a separate weight, providing
fine-grained information for sequential labeling. However,
this can cause overfitting if the training data is sparse.

To improve the generalization ability of our model, we
introduce a second type of features referred to as regular

expression (regex) features:

f
REGEX
r,j (yt−1, yt,x, t) = δ(xt ∼ r)δ(yt = j) (6)

where xt ∼ r means that xt matches the regular expres-
sion r. For example, sd700, sd800 and sd850 all match the
regular expression “[a-z]+[0-9]+” (in the pattern matching
language). This can be useful in representing word tokens
that correspond to fields like Model and Attribute. Further-
more, we introduce lexicon features which are given by

f
LEX
L,j (yt−1, yt,x) = δ(xt ∈ L)δ(yt = j) (7)

Here L denotes a lexicon of words or phrases, and this fea-
ture is activated if xt occurs in that lexicon. Field-dependent
lexicons, e.g., a Brand lexicon, can be extracted from a prod-
uct database, enumerating possible values for each field. The
advantage of using such features is that they generalize to
words that do not occur in the training data.

4. SEMI-SUPERVISED LEARNING WITH
DERIVED LABELS

The last section gave an overview of CRFs in a supervised
learning paradigm. While it is not always feasible to have
a large amount of manually-labeled data, it is often easy to
automatically obtain derived labels for some word tokens.
Here we make the following distinction between manual and
derived labels:

• Manual labels, denoted by y = (y1, y2, . . . , yT ), are ob-
tained via human annotation.

• Derived labels, denoted by z = (z1, z2, . . . , zT ), are ob-
tained automatically from additional resources. They
can be available only for a subset of word tokens. We
use zt = null to represent missing labels.

As one can imagine, derived labels can be valuable to
learning since they may offer information, often in a vast
amount, complementary to that provided by manual labels.
We will leave the discussion of how to obtain derived labels
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Figure 1: Graphical model representation of CRFs for three different training settings: (a) supervised CRF;
(b) semi-supervised CRF with derived labels as hard evidence; (c) semi-supervised CRF with derived labels
as soft evidence. Solid and empty nodes denote observed and hidden variables respectively.

for a specific domain in Section 5. In this section, we present
a general methodology of incorporating derived labels in
CRFs for semi-supervised learning. For this we assume the
availability of two data sources: (1) a set of manually-labeled

samples, denoted by {(x(i),y(i))}m
i=1, and (2) a set of sam-

ples with derived labels, denoted by {(x(i), z(i))}n
i=m+1. Our

goal, then, is to learn a CRF model leveraging these two
sources of information.

4.1 Derived Labels as Hard Evidence
One natural solution is to treat derived labels the same

as manual labels, and use them as hard evidence on state
variables. Specifically, for queries in the second data source,
we assume that a state variable is observed with value yt =
zt, if zt 6= null, and is hidden otherwise. This training
setting is depicted in the graphical model in Figure 1(b).

We let y
(i)
o denote the set of observed state variables, and

let y
(i)
h denote the complement set of state variables that are

hidden. Our goal is to maximize the conditional likelihood
of the incomplete data, i.e., log p(yo|x), which is not directly
optimizable. However, we can apply the EM algorithm that
iteratively maximizes its low bound. Our learning objective,
therefore, is given by

J1 +
n

∑

i=m+1

E
p(y

(i)
h

|x(i),y
(i)
o ;Λg)

[

log p(y(i)|x(i); Λ)
]

(8)

The first term is the same as Equation (4). The second term
denotes the expected conditional likelihood of auto-labeled
data. This is akin to the optimization objective of hidden-
state CRFs [14]. In the E-step, we compute the posterior

probability p(y
(i)
h |x(i),y

(i)
o ; Λg), for i = m + 1, . . . , n, based

on the current model Λg . This can be efficiently computed
using the Forward-Backward algorithm. In both the forward
and backward paths, the values of the observed state vari-
ables are committed to their derived labels. In the M-step,
we fix the posteriors and update Λ that maximizes Equa-
tion (8). This step can be solved using stochastic gradient
descent. The gradient has a similar form as that of J1 except
for an additional marginalization over yh.

There are a number of implementation issues worth at-
tention. First, our semi-supervised learning objective is no
longer convex due to the existence of hidden variable. The
initialization of model parameters, therefore, becomes criti-
cal to learning performance. Here we initialize the model by
performing supervised learning on manually-labeled data,
but we extract emission features from both data sources.
Secondly, since queries are typically short, computation is
in general not an impediment to exact inference. As for the

stopping criterion, we empirically found that running 2-3
epochs of the EM algorithm gives reasonably good results.

4.2 Derived Labels as Soft Evidence
By taking derived labels as hard evidence, we are facing

the risk that some state variables may take on erroneous val-
ues. The second solution we explore in this work is to use
derived label information as soft evidence. For queries in
the second data source, we view the entire state sequence as
hidden variables, but use derived labels to provide extra ev-
idence in inference. This is achieved by creating a sequence
of soft evidence nodes zt, t = 1, 2, . . . , T , in parallel to hid-
den state nodes yt. This training setting is encoded in the
graphical model in Figure 1(c).

Since all state variables are hidden, the learning objective
in Equation (8) is no longer applicable. Instead, we pro-
pose to optimize log p(z|x). In this case, we can apply the
EM algorithm in the same fashion as in Section 4.1 which
iteratively optimizes an expected conditional likelihood:

J1 +
n

∑

i=m+1

Ep(y(i)|x(i),z(i);Λg)

[

log p(y(i)
, z(i)|x(i); Λ)

]

(9)
where the conditional probability in the second term is de-
fined as

p(y, z|x; Λ) =

1

Z′(x; Λ)
exp

{

∑

k

λk

T+1
∑

t=1

fk(yt−1, yt,x) + ω

T
∑

t=1

s(yt, zt)

}

(10)
Here Z′(x; Λ) is a normalization function (obtained by sum-
ming the numerator over both y and z); s(yt, zt) is a soft

evidence feature with a pre-defined weight ω. The informa-
tion of derived labels is thus incorporated in the model via
this feature function. To use zt as a “prior” of yt, we choose
the following function form,

s(yt, zt) =







0 if zt = null

1 else if yt = zt

−1 else
(11)

To understand the impact of the soft evidence feature on
p(y|x, z; Λg) and hence on training, we re-write this poste-
rior probability using the Bayes rule. It is easy to see that
p(y|x, z; Λg) has the same exponential form as p(y, z|x; Λg)
in Equation (10) except that it has a different normalization
function. This means that (a) if xt does not have an de-
rived label, i.e., zt = null, the soft evidence function assigns
equal values (zero) to all state hypotheses and the poste-
rior probability solely depends on transition and emission



features fk; (b) when there does exist an derived label, the
function assigns a relatively large value to the state hypoth-
esis that agrees with the derived label. In other words, the
soft evidence function regularizes a hidden state towards the
value of the corresponding derived label. The larger ω is, the
more influence this feature has on the posterior probability.
At one extreme where ω = 0, the derived label informa-
tion is completely ignored in training. At the other extreme
where ω → +∞, all state hypotheses would have extremely
small posterior probabilities except the one consistent with
the derived label, which is equivalent to using derived labels
as hard evidence.

As one last remark, the soft evidence feature is only used
in training. Once trained, the CRF model in Equation (1)
is used to predict the state sequences for unseen queries.

5. OBTAINING DERIVED LABELS
So far we have assumed the availability of derived labels

in our proposed semi-supervised learning approaches. In
practice, however, the feasibility of acquiring such data in a
large amount is critical to the success of our approach. In
this work, we give one practical example that automatically
obtains such information for product search queries, while
our method can be applied to many other domains.

First of all, we define the fields to be extracted from prod-
uct search queries as in Table 1, and call such a set of fields
a target schema. Note that there may well be other ways
of defining such a schema. The first four fields, i.e. Brand,
Model, Type, and Attribute, correspond to product metadata
we can find from a relational database. The other fields, on
the other hand, represent words that frequently occur in
product search queries but are not directly related to prod-
uct metadata. For example, Mechant represents a physical
or online store that sells products; SortOrder represents a
way of sorting product listings; BuyingIntent and Research-

Intent correspond to intents to buy and research products
respectively; and Other covers everything else. Since the
second set of fields do not exist in a product database, they
can only be obtained via manual labeing.

Given the target schema, our goal is to obtain derived
labels for some word tokens in queries, which are to be used
in our proposed semi-supervised CRFs. Briefly speaking,
our method leverages product search click-through data in
conjunction with a product database. Intuitively, the click
data links queries to relevant products, which are then linked
to the corresponding metadata via a relational database.
With the association between queries and product metadata,
it is much easier to predict the field information for some
word tokens using simple heuristics. Figure 2 gives a high-
level diagram of our approach, while the rest of this section
describes each step in detail.

5.1 Click data
The click data is extracted from the query log of Live

Search. When a user clicks on a document after issuing a
query, a click event (query, document) will be recorded in
the query log. In particular, we extract click events where
the document is known to be a product listing page. To this
end, we mine the URL pattern of the product listing pages
of an online shopping website http://shopping.msn.com, and
select the click events in which their document URLs match
such a pattern. Note that the click data could be drasti-
cally increased if more shopping websites were considered.

Figure 2: Diagram of obtaining derived labels for
product search queries

We further extract product titles from the selected product
listing pages. This can be easily achieved by extracting the
corresponding field in these pages, which are typically well
structured. In this way, a click event is represented in the
form of (query, product title). Alternatively, such pairs can
be directly obtained if the query log of a product search
engine is readily available.

5.2 Product metadata
At the second stage, we leverage a relational database that

contains structured information of product listings, includ-
ing product titles and other metadata such as Manufacturer,
Color and Weight. There are over a few hundred metadata-
related fields in the product database that we have, and this
set of fields will be referred to as a source schema. With
both the click data and the product database, we are able
to associate user queries with their relevant metadata via
fuzzy match of product titles. Specifically, given a click
event (query, product title), we look for the database entry
that has the most similar product title, and attach the cor-
responding metadata to the query if the similarity is above
certain threshold. In this work, we use tf-idf based cosine
similarity and use an empirically-chosen threshold 0.75 to
select (query, metadata) pairs. The reason we use fuzzy
match instead of exact match is to increase the coverage of
user queries for which we can obtain metadata.

5.3 Schema mapping
Next, we convert the metadata represented in the source

schema to that in the target schema defined in Table 1. In
fact, Table 1 was created as a simplified version of the source
schema in the first place. For example, Color, Weight and
Dimension in the database all correspond to Attribute in
the target schema. As a first attempt to extract structured
information from queries, we use the simplified schema (i.e.,
target schema) in order to reduce human annotation effort.



The mapping is deterministic. Thus it is straightforward to
convert the metadata form as shown in Figure 2.

5.4 Auto labeling
Given (query, metadata) pairs where the metadata corre-

sponds to field information represented in the target schema.
We apply the following heuristics to generate derived labels
for some word tokens in the queries:

• If a word token does not appear in any field or it ap-
pears in more than one field of the metadata, it will
be labeled as null.

• If a word token appears in exactly one field of the meta-
data, e.g., “streetpilot” in Model, that word token will
be labeled with the corresponding field name.

Note that none of the fields in the second row of Table 1 exist
in our product database. Consequently, the word tokens of
these fields are bound to have null labels, e.g., the word
“cheap” in Figure 2. In this regard, a pure unsupervised
approach is inadequate to label such fields correctly.

6. EVALUATION
We evaluate our approach on the task of tagging prod-

uct search queries based on Table 1, where two evaluation
metrics are used. (1) Sentence accuracy is the percentage of
“sentences” (queries in our case) that are correctly tagged,
meaning that the entire decoded state sequence has to be
correct. (2) Word accuracy is the percentage of word to-
kens that are correctly tagged. Note that there is another
widely-used evaluation metric, entity accuracy, which was
found following a similar trend as the first two metrics and
thus was not reported in this work.

6.1 Data
Our experiment data was collected from a 3-month query

log of www.live.com. We selected queries that clicked on
product listing pages of shopping.msn.com. The selected
queries (presumably with product search intent) were fur-
ther classified into 20 product categories. This was done by
an automatic query classifier that was built based on [11].
Our evaluation focuses on the largest two categories, i.e.,
clothing-shoes and computing-electronics.

Recall that two data sources are needed in our frame-
work: (1) manually-labeled queries and (2) queries with de-
rived labels. To obtain the first source of data as well as
to collect test data for evaluation, we randomly sampled
product search queries in each category and asked human
annotators to label them. Specifically, a user interface was
created where each query was presented along with search
results from two major search engines. Then a human an-
notator browsed through both results before assigning the 9
labels in Table 1 to word tokens. We collected 4K queries
as supervised training data for clothing-shoes, and another
900 queries (2.5K tokens) as test data. For computing-

electronics, the training and test data were 15K and 700 (2K
tokens) respectively. We labeled a drastically larger number
of training-set queries for the second category, only to study
the impact of the amount of such data on semi-supervised
learning performance. Due to resource limit, each query was
labeled only once. However, we had 400 and 1300 queries
from these two categories labeled by a secondary annotator.

The inter-rater agreement is around 80% at query level and
91% at token level for both categories.

Next, we followed our procedure in Section 5 to collect
the second source of data. On one hand, we extracted 500K
and 250K (query, product title) pairs for clothing-shoes and
computing-electronics respectively based on Section 5.1. On
the other hand, we had a relational database that contains
20M (product title, metadata) pairs across different cate-
gories. Applying the fuzzy match of product titles and fol-
lowing the auto-labeling heuristics, we obtained 50K and
20K queries with derived labels (at least one word token
must be labeled) for these two categories respectively.

6.2 Results
We used three types of emission features that have been

defined in Section 3. In addition to ngram features that can
be automatically extracted from queries, 7 regex features
were defined to represent variations of digit-letter combina-
tions. Furthermore, 4 lexicons were extracted from the prod-
uct database, corresponding to Brand, Model, Type and At-

tribute respectively. For example, for all fields in the source
schema that were mapped to Attribute in the target schema,
their values were aggregated to be the Attribute lexicon.

In our evaluation, we use two different feature settings
for all experiments: (a) ngram features only, including both
unigram and bigram features, and (b) ngram + regex +
lexicon features. The former setting completely relies on
training data, requiring no feature engineering efforts from
human. The latter setting has a better generalization abil-
ity, but the design of regex features requires some degree of
human intervention.

Under the above feature settings, we compare the follow-
ing methods for query tagging:

• Supervised MaxEnt. Use an instance-based maximum
entropy model which classifies each word token inde-
pendently. The model is estimated solely on manually-
labeled samples. Note that a prior feature is added in
this case as a standard MaxEnt feature.

• Supervised CRF. Train a linear-chain CRF on manually-
labeled samples.

• Self-training CRF. Apply self-training [18] on unla-
beled queries without using any derived label infor-
mation. Here the unlabeled queries correspond to the
second data source with derived labels removed.

• Semi-supervised CRF with hard evidence. Apply the
method proposed in Section 4.1.

• Semi-supervised CRF with soft evidence. Apply the
method proposed in Section 4.2 with ω = 1 (chosen by
cross-validation) in Equation (10) for all experiments.

In all models above, the regularization parameter σ2 is cho-
sen via cross-validation.

We first inspect tagging performance when we vary the
amount of supervised data while maintaining the same set of
auto-labeled data. We only experimented with computing-

electronics since only for this category we obtained a large
number of manually-labeled queries. Figure 3 shows the
sentence/word accuracies when we gradually increase the
number of manually-labeled queries from 500 to 15K and
when we use all 20K queries with derived labels. While the
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Figure 3: Tagging accuracies (left: sentence acc.; right: word acc.) for computing-electronics with different
amounts of manually-labeled queries and a fixed amount of (20K) queries with derived labels.

first two supervised approaches (MaxEnt and CRF) only
use the first data source, the three semi-supervised learning
methods additionally use the second data source.

There are several observations from Figure 3: (1) Adding
regex and lexicon features works better than using ngram
features alone (by comparing the top two plots with the
bottom two), especially with a relatively small amount of
manually-labeled samples. The difference becomes trivial,
though, when the supervised data is significantly increased.
This makes sense since regex and lexicon features general-
ize better, and thus are especially beneficial when super-
vised data is limited. (2) Supervised CRF performs signif-
icantly better than supervised MaxEnt in both feature set-
tings. This confirms that transition features are helpful in
sequential labeling of queries. (3) Semi-supervised CRFs
with derived label information greatly improve over super-
vised training and self-training. The improvement is rela-
tively large when supervised data is limited. Finally, (4)
treating derived labels as soft evidence is in general superior
to treating them as hard evidence. This is mainly because
derived label information is noisy in our task.

In a second set of experiments, we investigate the per-
formance of our best approach, i.e. semi-supervised CRF

with soft evidence, when fixing the amount of supervised
data and exponentially increasing the second data source.

We conducted this experiment for both clothing-shoes and
computing-electronics. We use all 4K manually-labeled queries
for the former category, and 3K queries for the latter cate-
gory just to be comparable. As shown in Table 2, the ac-
curacy generally improves when more queries with derived
labels are used. The gain is especially large for clothing-

shoes. This is largely because word ambiguity is more se-
vere a problem in this category (which also accounts for its
relatively poor baseline performance). Adding auto-labeled
training samples, therefore, is more likely to help.

7. CONCLUSIONS AND FUTURE WORK
This work presented semi-supervised CRFs that incor-

porate derived label information from additional resources.
Two principled approaches were explored to encode derived
labels into CRFs, one as hard evidence and the other as
soft evidence expressed by a feature function. Their respec-
tive optimization objectives were discussed. Furthermore,
we presented a practical method on how to obtain derived la-
bels by leveraging user click data and an in-domain database
in the context of tagging product search queries. Evaluation
shows that our semi-supervised learning CRFs with derived
labels are effective in improving tagging performance com-
pared with both supervised training and self-training. In
addition, we found that treating derived labels as soft ev-



# derived ngram features ngram+regex+lex
queries Sent. Word Sent. Word

0 37.12 65.90 45.04 68.19
50 38.46 63.61 46.27 69.23
500 41.69 66.90 50.61 73.44
5K 44.93 69.15 51.73 73.94
50K 46.93 71.19 51.95 74.10

(a) Clothing-Shoes with 4K manual samples

# derived ngram features ngram+regex+lex
queries Sent. Word Sent. Word

0 65.02 82.25 68.31 84.10
20 65.92 81.63 68.01 84.87
200 68.31 83.03 69.96 85.22
2K 69.06 84.04 72.20 86.28
20K 71.21 84.66 72.05 86.00

(b) Computing-Electronics with 3K manual samples

Table 2: Tagging accuracies of semi-supervised
CRFs with soft evidence, where we use the same sets
of manually-labeled samples and vary those with de-
rived labels. The first row corresponds to supervised
learning results.

idence performed the best in our task. In the future, we
would like to apply the soft evidence approach to manually-
labeled data as well, since this data source can also be noisy.
It is also important to show the benefit of query tagging to
information retrieval.
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