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ABSTRACT

The method of finding high-quality answers has a signifi-
cant impact on users’ satisfaction in a community question
answering system. However, due to the lexical gap between
questions and answers as well as spam typically contained in
user-generated content, filtering and ranking answers is very
challenging. Existing solutions mainly focus on generating
redundant features, or finding textual clues using machine
learning techniques; none of them ever consider questions
and their answers as relational data but instead model them
as independent information. Meanwhile, they only consider
the answers of the current question, and ignore any previ-
ous knowledge that would be helpful to bridge the lexical
and semantic gap. We assume that answers are connected
to their questions with various types of links, i.e. positive
links indicating high-quality answers, negative links indicat-
ing incorrect answers or user-generated spam, and propose
an analogical reasoning-based approach which measures the
analogy between the new question-answer linkages and those
of some previous relevant knowledge which contains only
positive links; the candidate answer which has the most
analogous link to the supporting set is assumed to be the
best answer. We conducted our experiments based on 29.8
million Yahoo!Answer question-answer threads and showed
the effectiveness of our proposed approach.
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1. INTRODUCTION

User-generated content (UGC) is one of the fastest-growing
areas of the use of the Internet. Such content includes social
question answering, social book marking, social networking,
social video sharing, social photo sharing, etc. UGC web
sites or portals providing these services not only connect
users directly to their information needs, but also change
everyday users from content consumers to content creators.

One type of UGC portals that has become very popular
in recent years is the community question-answering (CQA)
sites, which have attracted a large number of users both
seeking and providing answers to a variety of questions on
diverse subjects. For example, by December, 2007, one pop-
ular CQA site, Yahoo!Answers, had attracted 120 million
users worldwide, and had 400 million answers to questions
available [21]. A typical characteristic of such sites is that
they allow anyone to post or answer any questions on any
subject. However, the openness of these sites predictably
leads to high variance in the quality of answers. For exam-
ple, since anyone can post any content they choose, content
spam is produced by some users for fun or for profit. Thus,
the ability, or inability, to obtain a high-quality answer has a
significant impact on users’ satisfaction with such sites [28].

Distinguishing high-quality answers from other answers
in CQA sites is not a trivial task. The lexical gap typi-
cally exists between a question and its high-quality answers.
The lexical gap in community questions and answers may
be caused by at least two factors: (1) textual mismatch be-
tween questions and answers; and (2) user-generated spam
or flippant answers. In the first case, user-generated ques-
tions and answers are generally short, and the words that
appear in a question are not necessarily repeated in its high-
quality answers. Moreover, a word itself can be ambiguous
or have multiple meanings, e.g., “apple” can either refer to
“apple computer” or “apple the fruit”. Meanwhile, the same
concept can be described with different words, e.g. “car” and
“automobile”. In the second case, user-generated spam and
flippant answers usually have a negative effect and greatly
increase the number of answers, thereby make it difficult
to identify the high-quality answers. Figure 1 gives several
examples of the lexical gap between questions and answers.

To bridge the lexical gap for better answer ranking, var-
ious techniques have been proposed. Conventional tech-
niques for filtering answers primarily focus on generating
complementary features provided by highly structured CQA
sites [1, 4, 5, 15, 22], or finding textual clues using machine-
learning techniques [2, 3, 19, 20], or identifying user’s au-



Q: How do you pronounce the Congolese city Kinshasa?
A: “Kin” as in your family “sha” as in sharp “sa” as in sargent.
Q: What is the minimum positive real number in Matlab?

A: Your 1Q.

Q: How will the sun enigma affect the earth?

A: Only God truly knows the mysteries of the sun, the universe and
the heavens. They are His secrets!

Figure 1: Real examples from Yahoo!Answers,
which suggest the lexical gap between questions and
answers.

thority via graph-based link analysis by assuming that au-
thoritative users tend to generate high-quality answers [17].

There are two disadvantages of these work. Firstly, only
the answers of the new question are taken into consider-
ation. Intuitively it suffers greatly from the ambiguity of
words since answerers may use different words to describe
the object mentioned by the questioner (e.g. “car” and “au-
tomobile”). Secondly, questions and answers are assumed as
independent information resources and their implicit corre-
lations are ignored. We argue that questions and answers are
relational. Recall the traditional QA approaches based on
natural language processing (NLP) techniques [25] which at-
tempted to discover natural language properties such as tar-
geted answer format, targeted answer part-of-speech, etc.,
and used them as clues to figure out right answers. These are
examples of implicit “semantic” clues, which is more valuable
for right answer detection than the lexical clues suggested
by terms.

We address these two problems in this study. In the of-
fline stage, a large archive of questions and their high-quality
answers are collected as the knowledge base. In the online
stage, given a new question, we retrieve a set of relevant
g-a pairs from this knowledge base with the hope that they
would cover the keywords in the new question and its an-
swers. These g-a pairs construct previous knowledge on a
similar topic which helps bridge the lexical gap. Moreover,
we explicitly model the implicit g-a relationships by assum-
ing that there are some latent linkages between questions
and their answers, and attempt to predict such linkages as-
sisted by the previous knowledge. In particular, we assume
that there are various types of linkages which associate an-
swers to their questions, e.g. the high-quality answers are
connected to their questions via semantic links, the spam
or flippant answers are via noisy links, while low-quality or
incorrect answers are through inferior links, etc. For simplic-
ity, we denote the links associated with high-quality answers
as “positive” links and the rest as “negative” ones and train a
Bayesian logistic regression prediction model. Furthermore,
to discover the “semantic clues”, instead of predicting di-
rectly based on a new question and its answers, we measure
the analogy of the link between the new question and an an-
swer to the links embedded in the previous knowledge; this
is what “analogical reasoning(AR)” means.

Intuitively, taking an ideal case as an example, when the
crawled knowledge base contains all the questions in the
world, to identify the best answer for a new question, what
needs to do is only to find the duplicate question in the
knowledge base and use its best answer to evaluate an an-
swer’s quality. However, since it is impractical to obtain

all the questions in the world, as users are submitting new
questions every day, we can instead search for a set of previ-
ously answered questions that best match the new question
according to some specified metrics and discover analogous
relationships between them. Intuitively, the retrieved simi-
lar questions and their best-answers are more likely to have
words in common with the correct answers to the new ques-
tion. Moreover, the retrieved set provides the knowledge
of how the questions similar to the new question were an-
swered, while the “way of answering” can be regarded as
a kind of positive linkage between a question and its best
answer.

We crawled 29.8 million Yahoo!Answers questions to eval-
uate our proposed approach. Each question has about 15
answers on average. We used 100,000 g-a pairs to train
the link prediction model and tested the entire process with
about 200,000 g-a pairs. We compared our method with two
widely adopted information retrieval metrics and one state-
of-the-art method, and achieved significant performance im-
provement in terms of average precision and mean recipro-
cal rank. These experimental results suggest that taking
the structure of relational data into account is very help-
ful in the noisy environment of a CQA site. Moreover, the
idea of leveraging previous knowledge to bridge the lexical
gap and ranking a document with community intelligence is
more effective than traditional approaches which only rely
on individual intelligence.

The paper is organized as follows. In Section 2, the most
related work is discussed, which covers the state-of-the-art
approaches on community-driven answer ranking. In Section
3, we detail the proposed Analogical Reasoning approach.
We evaluate its performance in Section 4, and discuss some
factors which affect the ranking performance. We conclude
our paper in Section 5 with a discussion on possible future
work.

2. RELATED WORK
2.1 Community Answer Quality Ranking

Different from traditional QA systems whose goal is to
automatically generate an answer for the question of inter-
est [25, 16], the goal of community answer ranking, however,
is to identify from a closed list of candidate answers one or
more that semantically answers the corresponding question.
Since CQA sites have rich structures, e.g. question/answer
associations, user-user interactions, user votes, etc., they of-
fer more publicly available information than traditional QA
domains.

Jeon et al. [15] extracted a number of non-textual fea-
tures which cover the contextual information of questions
and their answers, and proposed a language modeling-based
retrieval model for processing these features in order to pre-
dict the quality of answers collected from a specific CQA
service. Agichtein and his colleagues [1, 23] made great ef-
forts on finding powerful features including structural, tex-
tual, and community features, and proposed a general clas-
sification framework for combining these heterogeneous fea-
tures. Meanwhile, in addition to identifying answer quality,
they also evaluated question quality and users’ satisfaction.
Blooma et al. [5] proposed more features, textual and non-
textual, and used regression analyzers to generate predictive
features for the best answer identification.

Some researchers resorted to machine learning techniques.
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Figure 2: Sketch of the AR-based approach: 1)given a question @ (green block), some previous positive g-a
pairs are retrieved (red dots in dotted blue circle); 2) each candidate g-a pair is scored according to how
well it fits into the previous knowledge w.r.t. their linkages’ properties. The magenta block highlights the
highest-scored g-a pair candidate, which is assumed to contain the best answer.

Ko et al. [19] proposed a unified probabilistic answer rank-
ing model to simultaneously address the answer relevance
and answer similarity problems. The model used logistic re-
gression to estimate the probability that a candidate answer
is correct given its relevance to the supporting evidence. A
disadvantage of this model is that it considered each candi-
date answer separately. To solve this problem, the authors
improved their solution and proposed a probabilistic graph-
ical model to take into account the correlation of candidate
answers [20]. It estimated the joint probability of the cor-
rectness of all answers, from which the probability of cor-
rectness of an individual answer can be inferred, and the
performance was improved.

Bian et al. [3] presented the GBRank algorithm which
utilizes users’ interactions to retrieve relevant high-quality
content in social media. It explored the mechanism to inte-
grate relevance, user interaction, and community feedback
information to find the right factual, well-formed content to
answer a user’s question. Then they improved the approach
by explicitly considering the effect of malicious users’ inter-
actions, so that the ranking algorithm is more resilient to
vote manipulation or “shilling” [2].

Instead of directly solving the answer ranking problem,
some researchers proposed to find experts in communities
with the assumption that authoritative users tend to pro-
duce high quality content. For example, Jurczyk et al. [17]
adapted the HITS [18] algorithm to a CQA portal. They
ran this algorithm on the user-answer graph extracted from
online forums and showed promising results. Zhang et al.
[30] further proposed ExpertiseRank to identify users with
high expertise. They found that the expertise network is
highly correlated to answer quality.

2.2 Probabilistic Relational Modeling

Probabilistic Relational Models [11] are Bayesian Net-
works which simultaneously consider the concepts of objects,
their properties, and relations. Getoor et al. [10] incorpo-
rated models of link prediction in relational databases, and
we adopt the same idea to learn the logistic regression model
for link prediction.

3. THE APPROACH

3.1 Process Overview

Figure 2 shows the entire process of our approach. The
red dots in the “CQA Archives” stand for “positive” g-a pairs
whose answers are good, while the black crosses represent
negative pairs whose answers are not good (not necessarily
noisy). Each g-a pair is represented by a vector of textual
and non-textual features as listed in Table 2.

In the offline stage, we learn a Bayesian logistic regression
model based on the crawled QA archive, taking into account
both positive and negative g-a pairs. The task of the model
is to estimate how likely a g-a pair contains a good answer.

In the online stage, a supporting set (enclosed by the dot-
ted blue circle in Figure 2) of positive g-a pairs is first re-
trieved from the CQA archives using only the new question
Q (the green block) as a query. The supporting set, along
with the learnt link prediction model, is used for scoring
and ranking each new g-a pair, and the top-ranked g-a pair
(the magenta block) contains the best answer. Some real
g-a examples are given to better illustrate the idea.

3.2 Learning the Link Prediction Model

3.2.1 Modeling latent linkage via logistic regression

We train a Bayesian logistic regression (BLR) model with
finite-dimensional parameters for latent linkage prediction
and set multivariate Gaussian priors for the parameters.
The advantage of introducing a prior is that it helps to in-
tegrate over function spaces.

Formally, let X% = [®1(Q", A7), D2(Q%, AT), ..., ®x (Q, A%)]

be a K-dimensional feature vector of the pair of question Q*
and answer A7, where ® defines the mapping ® : Q x A —
R¥. Let CY € {0,1} be an indicator of linkage types,
where C% = 1 indicates a positive linkage, i.e. A7 is a
high-quality answer of Q!, and C*¥ = 0 otherwise. Let
O = [01,0,,...,0k] be the parameter vector of the logistic
regression model to be learnt, i.e.
1

iy _ i _
PCY =11X7,0) = e (1)
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Figure 3: (a) The plate model of the Bayesian logis-
tic regression model. (b) When C =1, Q and A is
positively linked which shares information embed-
ded in O, represented by the undirected edges.

where X € Xirain = {XY,1 < i < Dg,1 < j < Do}
is a training g-a pair and Dy, D, are the number of train-
ing questions and answers respectively. Generally we have
D, > D,. Figure 3(a) shows the plate model. The C' node
is introduced to explicitly model the factors that link a ques-
tion @ and an answer A. Since C represents a link while @
and A represent content, this model seamlessly reinforces
the content and linkage in relational data. If C' = 1 is ob-
served, as shown in Figure 3(b), it means that there exists a
positive link between the corresponding Q and A, and this
link is analogous to links which construct ©. We use undi-
rected edges to represent these implications. To achieve a
more discriminative formulation, we use both positive g-a
pairs and negative g-a pairs to train this model. Meanwhile,
since noisy answers generally occupy a larger population, to
balance the number of positive and negative training data,
we randomly sample a similar number of negative and pos-
itive points.

3.2.2 Learning the Gaussian priar(©)

The reason that we use a Gaussian prior is threefold:
Firstly, instead of directly using the BLR model’s outputs,
we evaluate how probably the latent linkage embedded in a
new g-a pair belongs to the subpopulation defined by the
previous knowledge, with respect to the BLR prediction (we
detail this approach in Section 3.4.2). Therefore Gaussian is
a good prior candidate. Secondly, Gaussian distribution has
a comparatively small parameter space (mean and variance),
which makes the model easier for control. Thirdly, Gaussian
distribution is conjugate to itself, i.e. the posterior is still a
Gaussian, which results in a simple solution.

To ensure the preciseness of the prior, we adopt the ap-
proach suggested by Silva et al.[26]. Firstly the BLR is fit
to the training data using Maximum Likelihood Estimation
(MLE), which gives an initial ©. Then the covariance matrix
3 is defined as a smoothed version of the MLE estimated
covariance:

(B = - XTWX) (2)
where c is a scalar; N is the size of the training data set;

X = {X"} is the N x K feature matrix of the training q-a
pairs, either positive or negative. W is a diagonal matrix
with Wi = p(i) - (1 — p(i)), where p(i) is the predicted
probability of a positive link for the ith row of X.

The prior for © is then the Gaussian N (6,3).

3.3 Previous Knowledge Mining

To our knowledge, none of previous CQA answer ranking

approaches ever leveraged a supporting set. In fact, such an
idea is advantageous in at least two aspects: 1) bridging the
lexical gap: it enlarges the vocabulary, which is more likely
to cover the words not appearing in a question but in its
correct answers. Some traditional QA approaches discov-
ered that the amount of implicit knowledge which connects
an answer to a question can be quantitatively estimated by
exploiting the redundancy in a large data set [6, 24]. 2)
bridging the semantic gap: its positive linkages enable the
analogy reasoning approach for new link prediction. Intu-
itively, it is more advantageous to rank a document based
on community intelligence than on individual intelligence [7,
12].

We use information retrieval techniques to identify such
a supporting set. However, community g-a pairs retrieval
again is not a trivial task. Jeon and his colleagues [14] pro-
posed a translation-based retrieval model using the textual
similarity between answers to estimate the relevance of two
questions. Xue et al [29], furthermore, combined the word-
to-word translation probabilities of question-to-question re-
trieval and answer-to-answer retrieval. Lin et al. [22] and
Bilotti et al. [4], on the other hand, adopted the traditional
information retrieval method but utilized structural features
to ensure retrieval precision.

We adopt Lin and Bilotti’s way for g-a pair retrieval for
simplicity. In particular, let @, be a new question and its
answer list be {47,1 < j < M}, the supporting g-a pairs
S = {(Q': AN, (Q* : A%),...,(Q" : A")} contain those
whose questions’ cosine similarities to the new question are
above a threshold:

S={(Q": AY|cos(Q,, Q") > N\iel,...,D}  (3)

where D is the size of our crawled Yahoo!Answer archive
and A is the threshold. Each question is represented in the
bag-of-word model. The effect of A is shown in Figure 5. As
analyzed before, whether the retrieved questions are seman-
tically similar to the new question is not critical. This is
because the inference in our case is based on the structures
of g-a pairs rather than on the contents. Moreover, accord-
ing to the exhaustive experiments conducted by Dumais et
al. [8], when the knowledge base is large enough, the ac-
curacy of question answering can be promised with simple
document ranking and n-gram extraction techniques. Note
that S contains only positive g-a pairs. Therefore if the
linkage of a candidate g-a pair is predicted as analogous to
the linkages in the subpopulation S, we can say that it is a
positive linkage which indicates a high-quality answer.

3.4 Link Prediction

3.4.1 The idea of analogical reasoning

There is a large literature on analogical reasoning in arti-
ficial intelligence and psychology, which achieved great suc-
cess in many domains including clustering, prediction, and
dimensionality reduction. Interested readers can refer to
French’s survey [9]. However, few previous work ever ap-
plied analogical reasoning onto IR domain. Silva et al. [27]
used it to model latent linkages among the relational objects
contained in university webpages, such as student, course,
department, staff, etc., and obtained promising result.

An analogy is defined as a measure of similarity between
structures of related objects (g-a pairs in our case). The
key aspect is that, typically, it is not so important how each



individual object of a candidate pair is similar to individual
objects of the supporting set (i.e. the relevant previous g-a
pairs in our case). Instead, implementations that rely on
the similarity between the pairs of objects will be used to
predict the existence of the relationships. In other words,
similarities between two questions or two answers are not as
important as the similarity between two g-a pairs.

Silva et al. [27] proposed a Bayesian analogical reasoning
(BAR) framework, which uses a Bayesian model to evalu-
ate if an object belongs to a concept or a cluster, given a
few items from that cluster. We use an example to better
illustrate the idea. Consider a social network of users, there
are several diverse reasons that a user u links to a user v:
they are friends, they joined the same communities, or they
commented the same articles, etc. If we know the reasons,
we can group the users into subpopulations. Unfortunately,
these reasons are implicit; yet we are not completely in the
dark: we are already given some subgroups of users which
are representative of a few most important subpopulation,
although it is unclear what reasons are underlying. The task
now becomes to identify which other users belong to these
subgroups. Instead of writing some simple query rules to ex-
plain the common properties of such subgroups, BAR solves
a Bayesian inference problem to determine the probability
that a particular user pair should be a member of a given
subgroup, or say they are linked in an analogous way.

3.4.2 Answer ranking via analogical reasoning

The previous knowledge retrieved is just such a subpop-
ulation to predict the membership of a new g-a pair. Since
we keep only positive g-a pairs in this supporting set and
high-quality answers generally answer a question semanti-
cally rather than lexically, it is more likely that a candidate
g-a pair contains a high-quality answer when it is analogous
to this supporting g-a set.

To measure such an analogy, we adopt the scoring function
proposed by Silva et al. [27] which measures the marginal
probability that a candidate g-a pair (Qg, Ag) belongs to the
subpopulation of previous knowledge S:

score(Qq, A}) =log P(CJ = 1|X},8,C° = 1)

—log P(C? =1|X}))) @)

where Ag is the j-th candidate answer of the new question.
X represents the features of (Qq, A%). CS is the vector of
link indicators for S, and CS = 1 indicates that all pairs in
S is positively linked, i.e. C* =1,C% =1,...,CF = 1. The
idea underlying is to measure to what extent (Qg, Aé) would
“fit into” S, or to what extent S “explains” (Qq, AJ). The
more analogous it is to the supporting linkages, the more
probability the candidate linkage is positive.

According to the Bayes Rule, the two probabilities in
Eq.(4) can be solved by Eq.(5) and Eq.(6) respectively:

P(C} =1|Xx],8,C% =1) =

/ i i s (5)
P(C? = 1|X],0)P(0]S, C® = 1)dO

P(C) =1|X)) = /P(Cj =1|X],0)P(©)d0  (6)

where © is the parameter set. P(CY = 1|Xg, 0) is given by
the BLR model defined in Eq.(1). The solution of these two
equations is given in the appendix.

Table 1: Summary of our AR-based method

I. Training Stage:

Input: feature matrix X¢rain of all the training g-a pairs
Output: BLR model parameters © and its prior P(©).
Algorithm:

1. Train BLR model on X¢rain using Eq.(1).
2. Learn Prior P(©) using Eq.(2).

II. Testing Stage: _

Input: a query QA thread: {Qq : Ag M,

Output: score(Qq, Ay),i=1,...,.M
Algorithm:

1. Generate the feature matrix Xiest = {Xg} with Xg
the features of the j-th g-a pair (Qq : Ag);

2. Retrieve a set of positive g-a pairs S from the CQA
archive using Eq.(3);

3. Do Bayesian inference to obtain P(©|S,C = 1);

4. For each (Qq, Ag), estimate the probability of a pos-
itive linkage using Eq.(4);

5. Ranking the answers {Ag,j =1,..., M} in descend-
ing order of the scores. The top-ranked answer is
assumed as the best answer of Q).

The entire process is shown in Table 1.

4. EVALUATION

We crawled 29.8 million questions from the Yahoo!Answers
web site; each question has 15.98 answers on average. These
questions cover 1550 leaf categories defined by expert, and
all of them have user-labeled “best answers”, which is a good
test bed to evaluate our proposed approach. 100,000 ran-
domly selected g-a pairs were used to train the BLR model,
and 16,000 g-a threads were used for testing; each contains
12.35 answers on average, which resulted in about 200,000
testing g-a pairs.

A typical characteristic of CQA sites is its rich struc-
ture which offers abundant meta-data. Previous work have
shown the effectiveness of combining structural features with
textual features [1, 15, 23]. We adopted a similar approach
and defined about 20 features to represent a g-a pair, as
listed in Table 2. T'wo metrics were used for the evaluation.
One is Average Precision@K. For a given query, it is the
mean fraction of relevant answers ranked in the top K re-
sults; the higher the precision, the better the performance is.
We use the “best answer” tagged by the Yahoo!Answers web
site as the ground truth. Since average precision ignores the
exact rank of a correct answer, we use the Mean Reciprocal
Rank (MRR) metric for compensation. The MRR of an in-
dividual query is the reciprocal of the rank at which the first
relevant answer is returned, or 0 if none of the top K results
contain a relevant answer. The score for a set of queries is
the mean of each individual query’s reciprocal ranks:

1 1
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Table 2: The BAR Algorithm in CQA Formulation

| Textual Features of Questions-Answers Pairs

Q.(A) TF Question (Answer) term fre-
quency, stopwords  removed,
stemmed

Novel word TF Term frequency of non-dictionary

word, e.g. “ms”

Number of common words in Q
and A

#Common-words

Statistical Features of Questions-Answers Pairs

Q.(A.) raw length Number of words, stopwords not

removed

Q/A raw length ratio | Question raw length / answer raw
length

Q/A length ratio Q/A length ratio, stopword re-
moved

Q/A anti-stop ratio | #stopword-in-

question/#stopword-in-answer

Length of common n-grams in Q
and A

Common n-gram len.

#Answers Number of answers to a question

The position of an answer in the
g-a thread

Answer position

User interaction / Social Elements Features

#Interesting mark Number of votes mark a question

as interesting

Number of votes mark an answer
as good

Good mark by users

Number of votes mark an answer
as bad

Bad mark by users

Rating by asker The asker-assigned score to an an-

swer

Thread life cycle The time span between Q and its

latest A

where @, is the set of test queries; rq is the rank of the first
relevant answer for the question q.

Three baseline methods were used: the Nearest Neighbor
Measure (NN), the Cosine Distance Metric (COS), and the
Bayesian Set Metric (BSets)[12]. The first two directly mea-
sure the similarity between a question and an answer, with-
out using a supporting set; neither do they treat questions
and answers as relational data but instead as independent
information resources.

The BSets model uses the scoring function Eq.(8):

score(x) = log p(z|S) — log p(x) (8)
where x represents a new g-a pair and S is the supporting
set. It measures how probably = belongs to S. The differ-
ence of BSets to our AR-based method is that the former

ignores the g-a correlations, but instead join the features of
a question and an answer into a single row vector.

4.1 Performance

4.1.1 Average Precision@K

Figure 4 illustrates the performance of our method and the
baselines with the Average Precion@K metric when K =
1,5,10. Since each question has less than 15 answers on
average, the average precision at K > 10 is not evaluated.

B QOur
0.55 - WBSets | |
045 - Cos
g ENN
s 0.35
<
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K=1 K=5

K=10

Figure 4: Average Precision@K. Our method signif-
icantly outperformed the baselines.

Table 3: MRR for Our Method and Baselines

[ Method | MRR | Method | MRR
NN 0.56 Cosine 0.59
BSets [12] 0.67 Our Method 0.78

The red bar shows the performance of our approach. The
blue, yellow, and purple bars are of the BSets, COS and
NN methods respectively. In all cases, our method signif-
icantly out-performed the baselines. The gap between our
method and BSets shows the positive effect of modeling the
relationships between questions and answers, while the gap
between BSets and NN, COS shows the power of community
intelligence.

The superiority of our model to BSets shows that model-
ing content as well as data structures improves the perfor-
mance than modeling only content; this is because in CQA
sites, questions are very diverse and the retrieved previous
knowledge are not necessarily semantically similar to the
query question (i.e. they are still noisy). Moreover, from the
experimental result that NN method performed the worst,
we can tell that the lexical gap between questions and an-
swers, questions and questions, and g-a pairs cannot be ig-
nored in the Yahoo!Answers archive.

4.1.2 Mean Reciprocal Rank (MRR)

Table 3 gives the MRR performance of our method and
the baselines. The trend coincides with the one that is sug-
gested by the Average Precision@K measure. Again our
method significantly out-performed the baseline methods,
which means that generally the best answers rank higher
than other answers in our method.

4.2 Effect of Parameters

Figure 5 evaluates how our method performs with the two
parameters: &, the scalar in Eq.(2), and A, the threshold in
Eq.(3). MRR metric is used here.

Figure 5(a) shows the joint effect of these two parame-
ters on the MRR performance. The best performance was
achieved when A = 0.8,% = 0.6. To better evaluate the in-
dividual effect of the parameters, we illustrate the curve of
MRR vs. A and MRR vs. + in Figure 5(b) and Figure 5(c)
respectively by fixing the other to its optimal value.

As described in Section 3.3, the threshold A controls the
relevance of the supporting g-a pair set. Intuitively, if A is
set too high, few g-a pairs will be retrieved. This causes
too small a subpopulation of the supporting g-a pairs such
that the linkage information becomes too sparse and thus is
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Figure 5: The effect of the prior scalar ¥ in Eq.(2) and the similarity threshold A in Eq.(3). The Mean
Reciprocal Rank metric was used. The best performance was achieved at A = 0.8, & = 0.6.

inadequate to predict the analogy of a candidate. On the
other hand, if X\ is set too low, likely too many g-a pairs
will be retrieved which will introduce too much noise into
the subpopulation. Therefore the semantic meaning of the
supporting links is obscured. Figure 5(b) exactly reflects
such a common sense. The best performance was achieved
when A was about 0.8. After that the performance dropped
quickly. However, before A was increased to 0.8, the perfor-
mance improved slowly and smoothly. This indicates that
the noisy g-a pairs corresponding to diverse link semantics
were removed gradually and the subpopulation was getting
more and more focused, thus strengthened the power of ana-
logical reasoning.

+ is used to scale the covariance matrix of the prior
P(©). As shown in Figure 5(c), it is a sensitive parameter
and is stable in a comparatively narrow range (i.e. about
0.4 ~ 0.6). This, intuitively, coincides with the property of
analogical reasoning approaches [9, 27, 26], where a data-
dependent prior is quite important for the performance. In
our approach, we used the same prior for the entire test-
ing dataset which contains g-a pairs from diverse categories.
A better performance can be foreseen if we learn different
priors for different categories.

5. CONCLUSION

A typical characteristic of community question answering
sites is the high variance of the quality of answers, while
a mechanism to automatically detect a high-quality answer
has a significant impact on users’ satisfaction with such sites.

The typical challenge, however, lies in the lexical gap
caused by textual mismatch between questions and answers
as well as user-generated spam. Previous work mainly fo-
cuses on detecting powerful features, or finding textual clues
using machine learning techniques, but none of them ever
took into account previous knowledge and the relationships
between questions and their answers.

Contrarily, we treated questions and their answers as re-
lational data and proposed an analogical reasoning-based
method to identify correct answers. We assume that there
are various types of linkages which attach answers to their
questions, and used a Bayesian logistic regression model for
link prediction. Moreover, in order to bridge the lexical gap,
we leverage a supporting g-a set whose questions are rele-
vant to the new question and which contain only high-quality

answers. This supporting set, together with the logistic re-
gression model, is used to evaluate 1) how probably a new
g-a pair has the same type of linkages as those in the sup-
porting set, and 2) how strong it is. The candidate answer
that has the strongest link to the new question is assumed
as the best answer that semantically answers the question.

The evaluation on 29.8 million Yahoo!Answers g-a threads
showed that our method significantly out-performed the base-
lines both in average precision and in mean reciprocal rank,
which suggests that in the noisy environment of a CQA
site, leveraging community intelligence as well as taking the
structure of relational data into account are beneficial.

The current model only uses content to reinforce struc-
tures of relational data. In the future work, we would like
to investigate how latent linkages reinforce content, and vice
versa, with the hope of improved performance.
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APPENDIX

Jaakkola et al. [13] suggested a variational approximation
solution to the BLR model. Let g(&) be the logistic function,
g(&) = (1 4+ ¢ %)™ and consider the case for the single
data point evaluation, Eq.(6), the method lower-bounds the
integrand as follows:

P(C|X,0) =g(0"X)

> g(€) exp{

—_ 9
o=t _\ouz-ey

tanh( %)

where Ho = (2C — 1)07 X and A(§) = —;

the hyperbolic tangent function.
Thus P(0]X,C) can be approximated by normalizing

P(C1X,0)P(0) 2 Q(C|X,0)P()

where Q(C|X, ©) is the right-hand side of Eq.(9).

Since this bound assumes a quadratic form as a function
of © and our priors are Gaussian, the approximate posterior
will be Gaussian, which we denote by N(,upos, Y pos). How-
ever, this bound can be loose unless a suitable value for the
free parameter £ is chosen. The key step in the approxima-
tion is then to optimize the bound with respect to &.

Let the Gaussian prior P(©) be denoted as N (u, X). The
procedure reduces to an iterative optimization algorithm
where for each step the following updates are made:

EIjols =x! + 2A(§)XXT

. tanh(-) is

_ _ 1
Hpos = Zpols[E 1# + (C - i)X]

€ = (XTSpos X + (X7 ipos)?)?

To approximate Eq.(5), a sequential update is performed:
starting from the prior P(©) for the first data point (X, C) in
(S, C® = 1), the resulting posterior N (spos, Lpos) is treated
as the new prior for the next point. The ordering is chosen
from an uniform distribution in our implementation.
Finally, given the optimized approximate posterior, the
predictive integral Eq.(5) can be approximated as:

log(Q(CV]X7,8,C%)) = log (&) — *2 + A(€i)E}
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where parameters (s, Xs) are the ones in the approximate
posterior ©|(S, C®) ~ N (us, Ys), and (pi5, ;) come from
the approximate posterior ©|(S, CS, X% (). Parameters
(&j,&s) come from the respective approximate posteriors.
And Eq.(6) can be approximated as:
l’iij

2 + )\(fij)gfj

log Q(CV|X") =log g(&i;) —




