
StrobeLight: Lightweight Availability Mapping and Anomaly Detection

James W. Mickens, John R. Douceur, William J. Bolosky
Microsoft Research

mickens,johndo,bolosky@microsoft.com

Brian D. Noble
University of Michigan

bnoble@umich.edu

Abstract
Large-scale distributed systems span thousands of inde-
pendent hosts which come online and go offline at their
users’ whim. Such availability flux is ostensibly a key
concern when systems are designed, but this flux is rarely
measured in a rich way post-deployment, either by the
distributed system itself or by a standalone piece of in-
frastructure. In this paper we introduce StrobeLight, a
tool for monitoring per-host availability trends in enter-
prise settings. Every 30 seconds, StrobeLight probes Mi-
crosoft’s entire corporate network, archiving the ping re-
sults for use by other networked services. We describe
two such services, one offline and the other online. The
first service uses longitudinal data collected by our Stro-
beLight deployment to analyze large-scale trends in our
wired and wireless networks. The second service draws
live StrobeLight measurements to detect network anoma-
lies like IP hijacking in real time. StrobeLight is easy
to deploy, requiring neither modification to end hosts nor
changes to the core routing infrastructure. Furthermore,
it requires minimal network and CPU resources to probe
our network of over 200,000 hosts.

1 Introduction

As distributed systems are built at increasingly larger
scales, it becomes more difficult to understand the re-
lationship between host availability and distributed sys-
tem performance. Loosely coordinated, independently
administered hosts display a wide variety of availabil-
ity patterns [8, 10, 25]. Providing robust services atop
this churning substrate requires substantial effort during
the design and implementation of the distributed system.
Thus, all distributed systems are guided by at least a crude
characterization of host availability in the deployment en-
vironment.

Unfortunately, once these systems are deployed, they
rarely include a component for collecting and analyz-
ing system-wide, fine-grained availability data. Histori-
cal availability traces exist (e.g., [8, 10]), but they were
collected by one-shot tools that were not intended to be
permanent, stable pieces of the distributed infrastructure.

The permanent monitoring tools in existence often fo-
cus on monitoring path characteristics, not individual host
availability, so they issue measurements to and from a
small set of vantage points. For example, RON [4] and
iPlane [24] track latency and loss rates between a set of
topologically diverse end points, but these machines are
assumed to be highly available and small in number; no
mechanism is provided for testing individual host avail-
ability inside a stub network. CoMon [29] provides up-
time monitoring for individual PlanetLab hosts, but it
does not scale to hundreds of thousands of machines. Fur-
thermore, it requires modifications to end hosts, which
may be difficult in non-academic settings where people
are leery of installing new software.

In overlays like Pastry [32] and storage systems like To-
talRecall [9], hosts probe the availability of select peers,
but this data is not archived in a public directory, prevent-
ing global analysis. Schemes to distribute such data ex-
ist [20, 26], but large-scale data mining is difficult due to
the number of wide-area data fetches required, as well as
the need to perform cryptographic calculations to verify
measurements submitted by untrusted peers.

The lack of a persistent infrastructure for availability
monitoring is unfortunate because it could benefit a wide
variety of systems. For example, distributed job alloca-
tors [5] could use historical uptime data in concert with
availability prediction [25] to assign high priority tasks to
machines that are likely to be online for the expected du-
ration of the job. Distributed storage systems could also
use a live feed of availability measurements to guide ob-
ject placement and increase data availability [1].

To address such needs, we introduce StrobeLight, a tool
for measuring availability in an enterprise setting contain-
ing hundreds of thousands of hosts. StrobeLight issues
active probing sweeps at 30 second intervals, archiving
ping results for the benefit of other distributed services
that might find them useful. We describe two examples of
such services. The first is an offline data-miner for lon-
gitudinal availability traces; such an application might be
useful for distributed storage systems trying to make de-
cisions about replica allocation. The second StrobeLight
service monitors network-wide availability in real time,



raising alarms for anomalies such as network partitions
and IP hijacks. StrobeLight detects such problems us-
ing a new abstraction called an availability fingerprint.
Under normal conditions, a subnet’s fingerprint changes
very slowly. Thus, StrobeLight raises an alert when the
similarity between consecutive fingerprints falls below a
threshold. Using Planetlab experiments, simulations, and
a real enterprise deployment, we show that our detection
system is accurate and fast.

By using standard ICMP probes to test availability,
StrobeLight avoids the need to install new software on end
hosts or deploy new infrastructure within the routing core.
By collecting data from a few centrally controlled vantage
points, StrobeLight avoids the trust and complexity issues
involved with distributed solutions while making it easy
for other systems to access availability data.

This paper provides three primary contributions. From
the technical perspective, it demonstrates that frequent,
active probing of a large host set is cheap and practical.
From an analytical perspective, it introduces new tech-
niques for analyzing availability traces that contain tem-
poral gaps (see Section 3.3). Finally, the paper introduces
a new, fine-grained trace of wired and wireless availabil-
ity in a large corporate environment. Using this trace,
we can validate results from previous studies that used
coarser-grained data [10, 25]. We also discover an inter-
esting property about the stability of subnet availability.
From the qualitative perspective, subnet uptime is consis-
tent across weeks—for example, the relative proportion
of diurnal hosts is unlikely to change. However, from the
quantitative perspective, subnet availability may fluctuate
by more than 25% across a month (see Section 3.4.2).

2 Design and Implementation

The design of our availability measurement system was
guided by three principles. First, keep the system simple.
Second, make the system unobtrusive. Third, collect fine-
grained data.

Keep it simple. Our primary design principle was to
keep everything simple, a philosophy reflected in many
different ways. We wanted to avoid solutions which re-
quired new software to be installed on end hosts, an ar-
duous task that is difficult to justify on a corporate-wide
basis. Similarly, we hoped to avoid major modifications
to our internal routing infrastructure. Large-scale decen-
tralization of the probing infrastructure was not a pri-
mary concern. Although coordinated distributed monitor-
ing has certain benefits, previous experience had taught us
that the road to a bug-free distributed protocol is fraught
with peril [11]. Thus, we thought hard about the costs
and benefits of a coordinated peer-to-peer design, and ul-
timately rejected it. One motivating factor was our de-
velopment of analysis techniques which tolerate temporal

gaps in availability data (see Section 3.3). These tech-
niques shifted the payoff curve between the better cover-
age and robustness of a distributed, coordinated solution
and the reduced complexity of a centralized one.

Don’t annoy the natives. We wanted a system that
was unobtrusive—we did not want our measurement ac-
tivity to disrupt normal network traffic or add significant
load. We also required a straightforward mechanism to
turn off measurement activity in specific parts of the net-
work. The latter was important because previous experi-
ence had taught us that at some point, our new network in-
frastructure would break someone else’s experiment or in-
teract with other components in unexpected ways. When
such scenarios arose, we wanted the capability to quickly
remove the friction point.

Collect high-resolution data. We wanted our tool to
collect per-host availability statistics at a fine temporal
granularity. This would allow us to validate previous em-
pirical studies which used coarser data sets [10, 25]. It
would also make the service more useful for anomaly de-
tection, since disruptions like IP hijacking may only last
for a few minutes [31].

These design considerations led to several “non-goals”
for our system.

Infinite scalability is overkill. Our solution only
needed to scale to the size of an enterprise network con-
taining hundreds of thousands of hosts. Building a mea-
surement system to cover an arbitrary number of hosts
in an arbitrary number of administrative domains would
have been extremely challenging. For example, active
availability probing from foreign domains might trigger
intrusion detection systems. Organizations might also be
reluctant to provide outside access to DNS servers and
other infrastructure useful for identifying “live” end hosts.

Complete address disambiguation is difficult. An-
other barrier to performing arbitrary-scale, cross-domain
host monitoring is the widespread use of NATs, firewalls,
and DHCP. These technologies can create arbitrary bind-
ings between hosts and IP addresses, and prevent some
machines from being seen by external parties. Devising a
comprehensive monitoring system that can pierce this het-
erogeneous cloud of addressing policies is an important
research topic. However, this goal was beyond the scope
of our project. By focusing on enterprise-level solutions,
we hoped to avoid many of the issues mentioned above;
NATs were relatively rare in our corporate environment,
and we could configure our firewalls to trust packets gen-
erated by our new monitoring system.

2.1 The Winning Design: StrobeLight
As shown in Figure 1, we eventually chose a centralized
architecture in which a single server measured availabil-
ity throughout our entire network. To determine which IP
addresses to test, the server would download hostname/IP



Figure 1: StrobeLight Architecture

mappings from corporate DNS servers. It would then
test host availability using standard ping probes issued
at intervals of 30 seconds. Recent probe results would
be transferred to an analysis server for real-time anomaly
detection, and longitudinal data would be archived in the
corporation’s standard distributed data store.

This design, which we named StrobeLight, was very
attractive from the implementation and deployment per-
spectives. No new code would have to be pushed to end
hosts or internal routers, and the only additional hardware
required would be the probing server and the analysis en-
gine. We also expected the probing process to have a
light footprint. The total volume of request/response traf-
fic would be trivial compared to the overall traffic level in
the corporate network. Furthermore, we would not have
to deal with control or synchronization issues that might
arise in a more decentralized design. Our main concerns
involved performance and fault tolerance. We feared that
a single server might be overloaded by sending probes for
hundreds of thousands of machines every 30 seconds. A
centralized probing design also had obvious ramifications
for fault robustness. Despite these weaknesses, we com-
mitted to the single-server design due to its relative ease
of implementation, and we pledged to revisit the design if
we encountered undue difficulties after deployment.

2.2 Implementation and Deployment

The core probing infrastructure was deployed first. The
pinging daemon, consisting of 2,200 lines of C++ code,
runs on a standard desktop PC with a 3.2 GHz CPU, 2 GB
of RAM, and a gigabit Ethernet card; this machine resides
within a corporate subnet in Redmond, WA. At boot time,
the daemon reads an exclusion file which specifies the set
of IP prefixes that should never be pinged. This file al-
lows us to selectively exclude parts of the network from
our probing sweeps. To determine which IP addresses to
ping, the daemon downloads zone files from Microsoft’s
DNS servers at 2:10 AM each day. At any given mo-
ment, these zone files contain entries for over 150,000 IP

addresses scattered throughout the world. This set of ad-
dresses evolves over time due to the introduction of new
hosts and the decommissioning of old ones.

Due to these factors, an address may not appear in ev-
ery DNS snapshot. Since StrobeLight only probes the ad-
dresses mentioned in the zone data, an IP may have gaps
in its availability history. To deal with these gaps, Stro-
beLight describes the availability of an address as online,
offline, or unknown. The first two categories result from
the outcome of a ping probe, whereas the third is assigned
to an IP which was not probed at a particular time.

Once the probing daemon had produced a sizable
archive of availability data, we were able to test the of-
fline analysis engine. This engine, totaling about 5,000
lines of C++ code, provides a set of low-level classes to
represent per-host availability. It also defines a high-level
query interface for use by data mining programs. We used
this interface to generate the results in Section 3. Impor-
tantly, the interface defines a subnet of size N as a set
of N consecutive and allocated IP addresses; the queryer
chooses the starting address, N , and the time period over
which “allocated” is defined. An address is considered al-
located during a given time period if it appeared in a zone
file at least once during that period. In practice, we of-
ten set N to a small number like 256 and investigate the
subnets contained within a Class A or B prefix.

2.3 Operational Experiences

The probing server has run with few interruptions for al-
most three years, and it has not struggled with the network
load generated by the ping sweeps. We currently spread
each sweep across 25 seconds to avoid load spikes on our
shared network infrastructure, but brief “full throttle” ex-
periments show that our current prober can scan 270,000
hosts in 7.9 seconds (roughly 35,000 hosts a second).

In general, our ping traffic has not bothered the other
members of our network. We occasionally receive emails
from the network support staff when they unveil a new
intrusion detection system and they conclude that our
probing machine is infected with an IP-scanning virus;
these incidents became rarer after we explained that Stro-
beLight was a piece of permanent infrastructure. We also
received a complaint from another research group who
claimed that our pings were causing problems for their
wireless devices. After generating the appropriate exclu-
sion file and restarting the daemon, we received no more
complaints.

3 Application 1: Offline Analytics

In this section, we describe one application of Stro-
beLight, using it to gather long-term availability data
for offline analysis. Such data could be used in several
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Figure 2: Global availability (10/21/2005 to 11/21/2005)

ways, e.g., to guide replication policy in a distributed data
store [1, 9, 25]. In this section, we use the data in a more
exploratory fashion, looking for interesting patterns in our
wired and wireless networks. We restrict our analysis to
IP addresses which appeared in at least 95% of the daily
DNS snapshots. During the time period examined below,
this included 138,801 wired IPs and 11,670 wireless IPs.
In our corporate environment, the DHCP lease time is 20
days for wired machines and 3 hours for wireless ones.
Thus, a wireless address is likely to be bound to multiple
machines over the course of the day. Although we often
refer to “hosts” and “IP addresses” interchangeably, the
true unit of uniqueness is an address, not a host.

3.1 Global Trends

Figure 2 depicts aggregate availability fluctuations from
October 21 to November 21 of 2005. The bulk of Mi-
crosoft’s machines reside in the American west coast, so
both the wired and wireless networks show large-scale di-
urnal trends aligned with the work day in this time zone.
However, during these large-scale surges and declines
in availability, there are regular, smaller-scale peaks and
valleys. These additional periodic cycles are driven by
phase-shifted diurnal behavior amongst Microsoft hosts
in Europe and the Middle East.

Comparing the two curves in Figure 2, we see that wire-
less IP addresses are much less likely to be associated with
online hosts. However, the wireless network demonstrates
stronger diurnal trends than the wired network. We inves-
tigate this issue further in Section 3.3.

3.2 Subnet-level Trends

We define the mean availability of a subnet as its average
fraction of online hosts. Figure 3 shows the distribution of
mean subnet availability in the wired network for subnets
of size 256 and 2048. In both cases, mean subnet avail-
ability is always higher than 40%. Increasing the subnet
size causes probability mass to coalesce around several re-
gions of mean availability. This is a discretization artifact,
since increasing the subnet size without increasing the to-
tal number of hosts results in fewer subnets to examine
and less smoothness in the resultant distribution.

0%

6%

12%

18%

0% 20% 40% 60% 80% 100%

Mean availability

L
ik

el
ih

o
o

d

(a) 256 hosts per subnet

0%

6%

12%

18%

0% 20% 40% 60% 80% 100%

Mean availability

L
ik

el
ih

o
o

d

(b) 2048 hosts per subnet

Figure 3: PDF for mean subnet availability (wired)
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Figure 4: PDF for mean subnet availability (wireless)

As expected, Figure 4 shows that wireless subnets have
much lower mean availability. Figure 4 shows results for
a subnet size of 256, but increasing the subnet size to 2048
results in an almost identical availability distribution. The
relative lack of discretization artifacts is due to the greater
homogeneity of wireless host availability. Figure 5 shows
the distribution of per-host uptime fractions within each
subnet. Each wired subnet has a skewed bimodal distri-
bution, with a plurality of hosts having very high uptime
and a smaller fraction having very low uptime. How-
ever, in every wired subnet, roughly 50% of the proba-
bility mass is spread across the “plateau” between the two
modes. In contrast, the wireless subnets look more uni-
modal, with the majority of hosts having very low avail-
ability and much less probability mass sheared away from
the mode.

3.3 The Availability of Individual Hosts
To understand the lower-level dynamics driving aggregate
availability, we modified our previous taxonomy for clas-
sifying the uptime behavior of individual hosts [25]. In
the unmodified scheme, a host is declared always-on if its
uptime is greater than 90% and always-off if its uptime
is less than 10%. If a host fails these tests, its availabil-
ity signal is converted into the frequency domain using



 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  0
 5

 10
 15

 20
 25

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

Fraction of Subnet Hosts

Availability Level
Subnet Number

Fraction of Subnet Hosts

(a) Wired subnets (2048 hosts per subnet)

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1Availability Level  0
 0.5

 1
 1.5

 2
 2.5

 3

Subnet Number
 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

Fraction of Subnet Hosts

(b) Wireless subnets (2048 hosts per subnet)

Each curve on the “availability level” axis is a pdf for per-
host uptime fractions in a particular subnet. In each fig-
ure, the pdfs are sorted by standard deviation, with higher
subnet numbers indicating larger standard deviations. The
trends depicted in each graph are insensitive to subnet
size.

Figure 5: Per-host availability within a subnet

a Fourier transform. If the resultant profile demonstrates
harmonic peaks in the daily and weekly spectra, the host is
labeled diurnal. If the spectral curve resembles the curve
1/f, i.e., it contains large amounts of low frequency en-
ergy, the host is labeled as long stretch, meaning that it
has long, uninterrupted periods of uptime and downtime.
Nodes failing all four tests are labeled as unstable. Such
a designation usually implies that the host’s availability is
difficult to predict.

The standard algorithms for Fourier decomposition as-
sume that signals are sampled at a uniform rate and that
no samples are missing. In our data set, the assumption
of a uniform sampling rate was almost always true, since
the vast majority of probe sweeps were separated by 30
second intervals. However, missing samples were fairly
common for two reasons. First, our network used DHCP

to assign IP addresses to physical machines. When an ad-
dress was dormant (i.e., unassigned), it did not show up in
our zone files, meaning that we did not collect availability
data for it during the dormant period. Second, the DNS
servers occasionally failed, or misbehaved and returned
extremely small zone files. Both of these phenomena in-
troduce brief probing gaps for many hosts.

To deal with missing samples, we replaced the Fourier
analyses with two entropy-based techniques. To deter-
mine whether an availability signal contained diurnal pat-
terns, we adapted Cincotta’s method for period detection
in irregularly sampled time series [14]. Let at ∈ {0, 1} be
the value of an availability signal at time t. Given a hy-
pothetical period τ , we calculate the phase of each at as
φt = t

τ −nearestInteger( t
τ ); note that φt ∈ [−0.5, 0.5].

We can interpret each (φt, at) pair as a coordinate in φ×a
space. If the hypothesized period τ is close to the signal’s
actual period (or a harmonic of it), the (φt, at) points will
cluster in the coordinate space. This means that if we di-
vide the coordinate space into bins, the resultant bin dis-
tribution will have low entropy. If the hypothesized pe-
riod is not the signal’s true period, points will be scattered
throughout the φt × at space and the bin distribution will
have high entropy.

To determine whether an availability signal contains di-
urnal patterns, we check whether the entropy for a τ of 24
hours is less than the entropy for a τ of 23 hours. Avail-
ability signals with complex diurnal patterns may have en-
tropy dips in other places, but finding one for a τ of 24 is
sufficient for our purposes.

To determine whether an availability signal contains
long-stretch behavior, we use an approximate entropy
test [30]. Suppose that we have an arbitrary window
of k consecutive samples from the signal. We define
ApEn(k) as the additional information conveyed by the
last sample in the window, given that we already know
that previous k − 1 samples. Low values of ApEn(k)
indicate regularity in the underlying signal. In particular,
if we know that a host is not always-on, always-off, or di-
urnal, but it still has a low ApEn(k), it is likely that the
uptime regularity is driven by long-stretch behavior.

The choice of window size k is driven by the time scale
over which “long stretch” is defined; k should be small
enough that a stretch contains several windows, but not
so small that ApEn(k) measures the incidence of small
k-grams that are actually pieces of larger, more complex
availability patterns. In the results presented below, we
used a k of 8 and sampled our availability trace in steps
of 15 minutes. This meant that we looked for long-stretch
behavior at a time scale of roughly two hours. We de-
fined hosts as long-stretch if their availability signal had
an ApEn(8) of less than 0.16. This cutoff was deter-
mined by hand, but our results were not very sensitive to
the exact value.
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Figure 6: Availability taxonomy

Figure 6 depicts the availability taxonomy for the wired
and wireless networks. We found that roughly half of the
wired hosts were always online. This result is congru-
ent with smaller-scale observations of the Microsoft net-
work which used an hourly sampling period [10, 25]. In-
deed, the fact that the always-on fraction is the same at
a finer sampling granularity implies that the natural time
scale for availability fluctuation in wired corporate en-
vironments is hours, not minutes. This claim is further
validated by the fact that almost none of the wired hosts
had unstable availability. In other words, if a host was
not always-on, always-off, or diurnal, then it at least had
availability that was stable across one or two hours.

The wireless network was dominated by always-off
machines, which comprised 61% of all hosts. The wire-
less network had almost twice as many diurnal machines
as the wired network (25% versus 13% respectively) but
almost half as many long-stretch hosts (12% versus 23%).
These trends were unsurprising. In contrast to desktop
machines that were always “plugged in,” wireless devices
with limited battery lives were more likely to have shorter
sessions. Also, users often took these devices home at the
end of the day, removing them from the physical proxim-
ity of a corporate access point. Thus, wireless connec-
tivity exhibited stronger diurnal patterns and less long-
stretch behavior than wired uptime.

3.4 Availability Fingerprints

Up to this point, we have investigated aggregate availabil-
ity trends over a five week window. However, many net-
work anomalies occur over a much smaller time scale. For
example, an IP hijacking attack might only last for several
minutes [31], and BGP misconfigurations can be just as
transient [13].

Both types of anomaly change the mapping between IP
addresses and physical hosts. In a hijacking attack, an en-
tire range of IPs is bound to a different set of physical ma-
chines; similarly, a misconfigured router can cause arbi-
trary desynchronizations. Active availability probing can
detect such problems if three conditions are true. First,
the probing interval must be less than the duration of the
desynchronization episode, lest the anomaly escape un-
detected between probing sweeps. Second, in the absence
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is very high. The graph depicts results for wired subnets
of size 256, but the outcome is insensitive to subnet size.
The results are extremely similar for wireless subnets.

Figure 7: PDF for self-similarity of delta fingerprints (15
minute probe interval)

of anomalies, a subnet’s availability “fingerprint” must be
stable across multiple consecutive probing periods. This
gives us confidence that when the fingerprint changes, an
actual problem has arisen. Third, at any given moment,
the availability fingerprint for each subnet should be glob-
ally unique. This allows us to detect routing problems in
which two subnets have their IP bindings swapped.

With these desired characteristics in mind, we can pro-
vide a formal definition of a fingerprinting system. Given
a specific subnet and a time window of interest, a finger-
printing algorithm examines per-host availability trends
during that window and produces a bit-string that is a
function of those trends. A fingerprinting system also
defines a distance metric which determines the similar-
ity of two fingerprints. To detect an anomaly in a subnet,
we maintain a time series of its fingerprints and raise an
alarm if the most recent fingerprint is too dissimilar from
the previous one.

In the remainder of this section, we provide a concrete
description of a fingerprinting system and evaluate its per-
formance on trace data collected by StrobeLight. We fo-
cus on basic issues such as how a subnet’s fingerprint
evolves over time, and the accuracy with which we can
distinguish two subnets based solely on their fingerprints.
We present more applied results in Section 4, where we
show how fingerprints can be used to detect anomalies
within the enterprise and across the wide area.

3.4.1 Delta Fingerprints

During a single probe sweep, we test the availability of
each known host in our network. Given a subnet of size
s, we represent its probe results as an s-bit vector where
a particular bit is 1 if the corresponding host was online
and 0 if the host was offline or unknown (remember that
a host is not probed if it is not mentioned in the current
DNS mapping). We call such a vector an instantaneous or
delta fingerprint because it represents a snapshot of subnet
availability at a specific time.
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A natural distance metric for two delta fingerprints is
the number of bit positions with equivalent values. Thus,
we define the similarity of two fingerprints as the number
of equivalent bit positions divided by s and normalized to
the range [−1, 1]. For example, if two fingerprints match
in half of their bit positions, they will have a similarity of
0. If they match in all positions or no positions, they will
have a similarity of 1 or -1 respectively.

Given the availability probing period ρ, we define a
subnet’s self-similarity as the expected similarity of its
fingerprints at time t and time t + ρ. Figure 7 depicts the
pdf for self-similarity in the wired network with a ρ of 15
minutes. As shown in Section 3.3, the natural time scale
of availability fluctuation in the wired network is hours,
not minutes. Thus, with a 15 minute sampling granular-
ity, delta fingerprints are very stable across two consecu-
tive snapshots, with 95% of all fingerprint pairs exhibiting
similarities of 0.96 or greater. Decreasing ρ results in even
greater stability, which is possible since StrobeLight has
a 30 second probing granularity.

The delta similarity of two different subnets at time t
is simply the similarity of their fingerprints at t. Figure 8
depicts the pdf for cross-subnet similarity as a function of
subnet size. As the subnet size grows, probability mass
shifts towards the center of the similarity spectrum. How-
ever, even for subnets as small as 32 hosts, less than 2%
of all subnet pairs have similarities greater than 0.8. The
reason is that the various availability patterns described in
Section 3.3 are randomly scattered throughout each sub-
net. For example, even though most subnets have a large
set of always-on hosts, these hosts are randomly posi-
tioned throughout each subnet’s fingerprint vector. Thus,
two vectors are unlikely to have high correlations in all
bit positions, and each fingerprint is likely to be globally
unique.

The tiny peaks along the right side of Figure 8 indicate
a small probability that at any given moment, two subnets
have completely equivalent fingerprints. To understand
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Figure 9: Temporal evolution of cross-subnet delta simi-
larity (15 minute probe interval)
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Network anomalies during November 3 and 4 of 2005
caused the spike in fingerprint similarity seen in Figure 9.

Figure 10: Punctuated availability disruptions

the origin of these peaks, we plotted cross-subnet simi-
larity as a function of time. Figure 9 indicates a large
spike in fingerprint similarity during the middle of the
trace period. As Figure 10 shows, this spike was syn-
chronous with a dramatic availability drop in several IP
blocks during November 3 and 4 of 2005. When these
blocks went offline, their fingerprint vectors transitioned
to an “all-zeros” state, leading to an immediate increase
in cross-subnet similarity.

Once the anomaly terminated, the similarity distribu-
tion returned to a steady state in which all fingerprints
were distinguishable. Thus, during the whole trace pe-
riod, the global uniqueness property was only violated
during the severe network disturbance. We return to the
issue of anomaly detection in Section 4.
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Figure 11: Cross-subnet similarity for wired and wireless
subnets (24 hour window)

3.4.2 Fingerprinting Over Larger Windows

As currently described, a fingerprint is a bit vector repre-
senting the instantaneous availability of a set of hosts. In
this section, we briefly describe how to extend our finger-
prints to cover longer observation periods.

Cross-subnet Similarity: To create a fingerprint
which covers a longer time window, we can associate each
host with a floating point number instead of a single bit.
Each float represents the mean availability of a host dur-
ing the time period of interest. To compute the similar-
ity between two floating point fingerprints, we examine

each pair of corresponding floats and calculate the abso-
lute magnitude of their difference. We sum these absolute
magnitudes, divide by the subnet size, and then normalize
the result to the range [−1, 1].

Figure 11(a) shows the temporal evolution of cross-
subnet similarity using a day-long window; the subnet
size was 256 hosts and each host was associated with a
32-bit floating point number. Comparing Figure 11(a) to
Figure 8, we see that lengthening the fingerprint window
does not change the fundamental distribution of subnet
similarity. Most subnets are weakly similar or weakly
dissimilar, but almost none are very similar or very dis-
similar.

Figure 11(b) depicts cross-subnet similarity using a 24
hour window and “1-bit floats.” In this scenario, a finger-
print contained a single bit for each host; the bit was 1 if
the host was majority-online during the window and 0 if
it was majority-offline. Comparing Figure 11(a) to 11(b),
we see that using these truncated floats has little impact on
the similarity distribution. Even if we decrease the subnet
size to 32 hosts, Figure 11(c) shows that 1-bit floats pro-
vide enough resolution to keep the likelihood of perfect
cross-subnet similarity well below 1%.

Using 1-bit floats, very little storage space is needed to
maintain longitudinal fingerprint databases. For example,
suppose that one needs to store fingerprints for a network
containing 250,000 hosts. Using 1-bit floats, an individual
snapshot would consume 250,000 bits (roughly 30 KB).
Assuming a 24 hour window, a full year of data will only
require 11 MB of storage space.

Self-similarity: Most subnets exhibit diurnal uptime.
However, the true period of their availability is a week, not
a day, since availability during the weekend lacks diurnal
fluctuation and is depressed relative to that of the work
week. Thus, if we examine subnet self-similarity using
a day-long window, there are discontinuities during the
transitions into and out of the weekend. However, one
might expect self-similarity to be high using a week-long
window, since this window size would precisely capture a
full cycle of the seven day availability pattern.

Figure 12(a) shows the distribution of wired subnet
self-similarity between the first and fourth weeks of our
observation period. Although self-similarity was almost
always positive, the correlation was unexpectedly weak,
with the bulk of the probability mass residing between
0.0 and 0.5. This surprised us, since we had predicted
that a host’s availability fraction would not change much
across weeks. Confronted with these results, we gener-
ated a new hypothesis, predicting that a host’s availability
class would vary less than its availability fraction. For
example, the uptime fraction of a long-stretch host might
vary between weeks, but its availability would be unlikely
to transition from long-stretch behavior to (say) diurnal
behavior.
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(a) If we represent host uptime as a 32-bit floating point avail-
ability fraction, subnet self-correlation across weeks is mildly
positive. However, raw subnet availability often varied by
more than 25%.

Self-similarity: Week 1 vs Week 4
(FeatureVec Fingerprints)

0

0.03

0.06

0.09

0.12

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Similarity

P
ro

b
ab

ili
ty

(b) Self-correlation is higher if we represent host availability
using a 2-bit enumeration type {ALWAYS-ON, ALWAYS-
OFF, DIURNAL, OTHER} and check for behavioral equiva-
lence amongst corresponding fingerprint entries.

Figure 12: Wired subnet self-similarity using week-long
windows

To test this hypothesis, we devised a new type of finger-
print called a feature vector fingerprint. Instead of associ-
ating each host with a floating point availability fraction,
we gave each host a 2-bit identifier representing whether
it was always-on, always-off, diurnal, or “other” (either
long-stretch or unstable). We defined the similarity be-
tween two feature vectors as the number of corresponding
positions with equivalent feature identifiers. As before,
we divided this number by the vector size and normalized
it to the range [−1, 1].

Figure 12(b) confirmed our hypothesis that, at the gran-
ularity of individual hosts, availability classes are more
stable than availability fractions. However, subnet self-
similarity was still lower than expected given the observed
stability of weekly availability cycles at the subnet level.
This topic remains an important area for future research.

4 Application 2: Detecting IP Hijacking

The Internet is composed of individual administrative
domains called autonomous systems (ASes). The Bor-
der Gateway Protocol (BGP) stitches these independent
domains together to form a global routing system [16].
Packets follow intra-domain routing rules until they hit an
inter-AS border, at which point BGP data determines the
next AS that will be traversed.

As currently described, StrobeLight detects intra-AS
anomalies. For example, in Section 3.4.1, we showed
how StrobeLight discovered the unreachability of several
large subnets from within our corporate network. In this
section, we describe how to detect BGP anomalies which
affect subnet visibility from the perspective of external
ASes. To detect such anomalies, we must deploy Stro-
beLight servers outside of the local domain. We describe
the architecture for such a system and evaluate it using
Planetlab experiments and simulations driven by our cor-
porate availability trace.

4.1 Overview of IP Hijacking
An AS declares ownership of an IP prefix through a BGP
announcement. This announcement is recursively propa-
gated to neighboring ASes, allowing each domain to de-
termine the AS chain which must be traversed to reach a
particular Internet address. BGP updates are also gener-
ated when parts of a route fail or are restored. Since BGP
does not authenticate routing updates, an adversary can
fraudulently declare ownership of someone else’s IP pre-
fix and convince routers to deliver that prefix’s packets to
attacker-controlled machines. An attacker can also hijack
a prefix by claiming to have an attractively short route to
that prefix.

Zheng et al describe three basic types of hijacking at-
tack [38]. In a blackhole attack, the hijacker simply drops
every packet that he illegitimately receives. In an impos-
ture attack, the hijacker responds to incoming traffic, try-
ing to imitate the behavior of the real subnet. In an inter-
ception attack, the hijacker forwards packets to their real
destination, but he may inspect or manipulate the packets
before forwarding them.

Due to vagaries in the BGP update process, the at-
tacker’s fraudulent advertisement may not be visible to
the entire Internet. This means that during the hijack,
some ASes may route traffic to the legitimate prefix al-
though others will not [6]. If the hijack causes divergence
in external views of the prefix’s availability, we can de-
tect the attack by deploying multiple StrobeLight servers
at topologically diverse locations.

For all but the least available subnets, a blackhole attack
will create a dramatic instantaneous change in externally
measured fingerprints. Fingerprint deviations may be less
dramatic during an imposture attack; however, as we show
in Section 4.3, two arbitrary subnets are still dissimilar
enough to make imposture detection easy. Interception
attacks cannot be detected through fingerprint deviations
since the attacker will forward StrobeLight’s probes to the
real hosts in the target prefix. However, we describe a pre-
liminary scheme in Section 4.4 that uses carefully chosen
probe TTLs to detect such interceptions.
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Figure 13: Availability of live IPs from different views

In our distributed StrobeLight system, the individual
StrobeLight servers do not need to reside within the core
routing infrastructure—they merely need to be deployed
outside of the AS that they monitor. Furthermore, since
anomalies are defined with respect to local measurements,
there is little need for communication between the indi-
vidual servers. Thus, a distributed StrobeLight system
should be easy to deploy and maintain.

4.2 Does the Wide-Area Distort Probing?
As shown in Figure 7, a subnet’s fingerprint changes
very slowly under normal network conditions. However,
that conclusion was derived from the perspectives of van-
tage points inside the enterprise. To detect BGP anoma-
lies, StrobeLight servers must be deployed at external
locations. This exposes probes to the vagaries of wide-
area traversal, possibly increasing delay or loss in a way
that destroys fingerprint stability during non-anomalous
regimes.

To determine whether fingerprints could provide di-
agnostic power across the wide area, we deployed Stro-
beLight servers on 10 topologically diverse Planetlab
hosts. From April to July of 2008, these servers probed
45 Class C subnets belonging to the computer science
department at the University of Michigan. We also de-
ployed a StrobeLight server inside the local campus do-
main. Each server launched a probe sweep every 30 sec-
onds, similar to our deployment inside the Microsoft cor-
porate network. The campus network contained roughly
11,000 live IP addresses. Figure 13 shows the measured
availability of these addresses from the local perspective
and those of four representative Planetlab hosts. Avail-
ability was always greater than 90% from the local van-
tage point. This was also true for the first two external
views. The third and fourth views were measured from
servers that were heavily loaded with other Planetlab ex-
periments. Processor and network utilization were con-
sistently high on these hosts; particularly severe spikes
caused the StrobeLight servers to miss incoming probe re-
sponses and underestimate true domain availability by up
to 80%. However, these incidents were rare, and would
not arise in a real StrobeLight deployment that used dedi-
cated probing machines.

Near time step 7100, external views 2, 3, and 4 were
almost completely partitioned from the campus domain.
This partition was caused by a switchgear failure at a
Detroit Edison power plant that caused punctuated router
failures throughout southeast Michigan. Interestingly, this
event simulated a selective blackhole attack—although
views 2, 3, and 4 were cut off from the local domain, view
1 enjoyed continuous connectivity. Thus, the Planetlab
deployment showed two things. First, wide-area network
effects do not destroy the diagnostic utility of availabil-
ity fingerprints. Second, StrobeLight can detect blackhole
attacks if probe servers are deployed at topologically di-
verse locations.

4.3 Imposture Attacks
Blackhole attacks are not subtle. In such an attack, the
adversary drops all traffic destined for the target network,
creating dramatic decreases in subnet availability and thus
dramatic changes in subnet fingerprints. Imposture at-
tacks are potentially more difficult to detect, since the ad-
versary seeks to mimic the behavior of hosts in the tar-
get domain. In particular, we are interested in detecting
spectrum agility attacks, first described by Ramachandran
and Feamster [31]. The goal of a spectrum attack is to
elude IP-based blacklists using short-lived manipulations
of BGP state. Spammers hijack a large network, e.g., a
/8 prefix, send a few pieces of spam from random IP ad-
dresses within the prefix, and then withdraw the fraud-
ulent BGP advertisement a few minutes later. By using
short-lived routing advertisements, spammers increase the
likelihood that their hosts will be unreachable by the time
that white hat forensics begin. By sending a small amount
of traffic from each host, and by randomly scattering the
traffic throughout a large address space, spammers avoid
filtering by DNS-based blacklists [21].

To determine whether StrobeLight can detect spectrum
attacks, we used simulations driven by availability data
from the Microsoft network. We used this trace data in-
stead of the Michigan data because it contained many
more IP addresses, and spectrum attacks require large ad-
dress spaces for maximum effectiveness. Our simulations
used a trace gathered between July 29, 2006 and Septem-
ber 1, 2006. To include the largest possible host set in
our evaluation, we did not filter hosts based on their un-
known fraction. During this observation period, we saw
238,951 unique IP addresses. Our simulations examined
the largest subnets demarcated by standard Class A/B/C
rules. We also examined a “mega” subnet consisting of
all IP addresses in the trace.

During each simulation run, we iterated through our
availability data in strides of 15 minutes; during each iter-
ation, we compared each subnet’s fingerprint to that of a
similarly sized attacker subnet in which a random fraction
of hosts responded to StrobeLight’s pings. StrobeLight
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Figure 14: Detecting spectrum agility attacks

detected the spectrum attack if the similarity of the two
fingerprints was beneath a threshold c. More specifically,
let freal,t represent the fingerprint of a real subnet at time
t and ffake,t be the fingerprint of the attacker subnet. Let
sim() compute the similarity of two fingerprints. Given a
similarity cutoff c, we define StrobeLight’s detection ac-
curacy at time t as follows:
• True positive: sim(freal,t−1, ffake,t) < c.

The attacker’s fake subnet at time t is too dissimi-
lar to the real subnet’s fingerprint from the previous
timestep. StrobeLight raises an alarm in this case.

• False negative: sim(freal,t−1, ffake,t) ≥ c.
The fake subnet is sufficiently similar to the real sub-
net that StrobeLight does not raise an alarm.

Every simulated comparison should raise an alarm, so
there are no true negatives or false positives.

Figure 14 shows StrobeLight’s detection accuracy in
the five largest subnets. We also show results for an at-
tack against the “mega-subnet” containing all hosts, since
this is the best that we can approximate a large /8 pre-
fix. Each cluster of bars represents detection accuracy for
a specific subnet. Within a cluster, the i-th bar is our de-
tection accuracy when a random i ∗ 10% of hosts in the
attacker subnet respond to probes. For all of the results,
we used a similarity cutoff c of 0.78; this value minimized
the false negative rate.

In the mega-subnet containing 238,951 hosts, Stro-
beLight had perfect detection accuracy across all time
steps. StrobeLight also had perfect accuracy for two
of the five classful subnets. In the other three, detec-
tion accuracy for low response fractions dipped as low as
90%. These subnets were affected by a DNS failure which
caused their hosts to spend part of the observation period
in an unknown state. StrobeLight assumes that unknown
hosts are offline, so an attacker could hijack these sub-
nets during the DNS failure and evade detection by rarely
responding to StrobeLight pings. However, StrobeLight
would raise alarms at the beginning of the DNS anomaly,
since a large number of hosts would appear to go offline
suddenly. Thus, human operators would be more vigilant
for additional problems during this time period. In Sec-
tion 4.6, we return to the issue of StrobeLight’s reliance
on DNS infrastructure.

If an attacker could measure availability trends in our
subnets, he could mimic the legitimate distribution of
probe responses during the spectrum attack and avoid de-
tection by StrobeLight. However, many organizations al-
ready perform ingress filtering of ping probes destined for
internal hosts, eliminating the most obvious way for an
adversary to collect availability data.

The attacker could try to spoof the IP address of a real
StrobeLight server, and use the spoofed address to launch
surveillance probes. There are several ways to deal with
such an attack. One simple solution is to have the legiti-
mate StrobeLight servers periodically audit each other us-
ing a shared-secret challenge/response protocol. If an at-
tacker spoofs server S0’s address, and the spoof is visible
by another server S1, the fake S0 will fail S1’s challenge,
and S1 can raise an alarm.

4.4 Interception Attacks
In an interception attack, the adversary convinces routers
to send other people’s traffic through attacker-controlled
machines. These machines may inspect or tamper with
the packets before forwarding them to their real destina-
tion. The current version of StrobeLight cannot detect
such interceptions, since the interceptor does not drop le-
gitimate probe packets or generate false probe responses.
We have preliminary thoughts about how to modify Stro-
beLight to detect interceptions, and we briefly sketch
some ideas below. However, a full exploration is left to
future work.

Since two arbitrary prefixes are likely to be topolog-
ically distant [38], an interception attack that affects a
StrobeLight probing path should lengthen the route be-
tween the StrobeLight server and the monitored prefix. In
theory, this will increase the latency from the server to the
monitored prefix. So, the server can raise an alarm if it
detects a correlated spike in response latencies across all
prefix hosts. Unfortunately, latency may display signif-
icant jitter during non-anomalous conditions, so a naive
implementation of this scheme will generate excessive
false alarms.

Instead of looking for latency changes, StrobeLight
could look for hop count changes. Previous research has
shown that the hop count between two arbitrary prefixes
is stable in the short to medium term [36, 38]. We ver-
ified this result with our StrobeLight deployment at the
University of Michigan. Figure 15 shows the stability of
hop counts from the internal Michigan server and from
several external vantage points. Both internal and ex-
ternal servers recalculated their hop count to Michigan
hosts once an hour; these recalculations were staggered
across each hour. Recalculations typically resulted in
TTL changes for less than 1% of all nodes, and we believe
that most changes were due to lost tracing packets instead
of actual host movement within the target domain.
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Stub networks rarely change their location with respect to
the network core. Thus, the hop counts between hosts in
that stub and an external vantage point are stable.

Figure 15: Hop count stability
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Figure 16: Scalability of Analysis Engine

Since interception attacks are likely to lengthen the
route between a StrobeLight server and its target prefix,
they are detectable by monitoring the hop count between
the target prefix and the distributed measurement sites.
This idea was first proposed by Zheng et al [38], and a
variant could be integrated into StrobeLight. Each server
would carefully set the TTLs of its probes to the expected
hop count to the target prefix. A sudden increase in this
path length will cause the probes to be dropped before
they reach their destination; the StrobeLight server will
perceive this as a sudden decrease in prefix availability
and raise an alarm. This solution is more attractive than
the latency-based scheme since hop counts are much more
stable than latency. However, the hop count technique
assumes that the attacker has limited topological knowl-
edge. In particular, if the interceptor knows the routes
connecting the target prefix, the StrobeLight servers, and
the interceptor’s routers, he can rewrite TTLs in a straight-
forward way to elude detection.

4.5 Performance

Anomaly detection consists of three steps: issuing the
ping sweep from the probe machine, transferring the
probe results to the analysis machine, and performing fin-
gerprint calculations on the analysis machine. The first
step is the slowest one, since we spread the probing sweep
over several seconds to avoid noticeable network spikes.
The second step should be fast even if the probing ma-

chine is different than the analysis machine, since probe
results are just small bit vectors. As shown in Figure 16,
the final calculation step is also fast. Figure 16 shows that
once the analyzer has pulled the ping results onto local
storage, the time needed to calculate new fingerprints and
perform threshold calculations is less than half a second,
even for networks with 130,000 hosts.

4.6 Discussion

StrobeLight queries DNS servers to determine which IP
addresses to probe. Depending on one’s perspective, this
is a vice or a virtue. StrobeLight’s sensitivity to DNS state
means that it can detect some anomalies in DNS opera-
tion. However, this opens StrobeLight to DNS-mediated
attacks in which adversaries try to disrupt StrobeLight’s
DNS fetches before tampering with BGP state. The IP
prefixes owned by an enterprise are fairly stable, so we
could manually configure StrobeLight with these prefixes
and probe every address without regard to whether it was
assigned internally (in fact, this is what we did for the
StrobeLight deployment at the University of Michigan,
since we lacked access to the DNS zone files). The
penalty would be an increase in the prober’s network load;
also, if there are many unassigned addresses, cross-subnet
similarity will naturally be higher, leading to more false
alarms.

5 Related Work

Several commercial products provide enterprise-scale net-
work monitoring without requiring end-host modification.
For example, in the SiteScope system [17], a centralized
server remotely logs into client systems and reads local
performance counters. Tools like this collect a wider vari-
ety of data than StrobeLight, which only measures avail-
ability. However, StrobeLight can scan more machines
per second, since it uses simple ping probes instead of
comparatively heavyweight remote logins. StrobeLight is
also easier to deploy in heterogenous end-host environ-
ments, since ICMP probes work “out-of-the-box” across
all commodity operating systems, but remote login proce-
dures can differ substantially across OSes.

Passive introspection of preexisting traffic can be used
to infer path characteristics or host availability. For ex-
ample, Padmanabhan et al record the end-to-end loss rate
inside a client-server flow and use Bayesian statistics to
extrapolate loss rates for interior IP links [28]. Passive
detection of host availability is attractive for two reasons.
First, it does not generate new traffic. Second, explicit
probing may trigger intrusion detection systems on leaf
networks, a problem occasionally encountered with ac-
tive probing systems deployed on PlanetLab [34]. Despite
these advantages, passive probing was ill-suited for our



goal of tracking per-host availability in a large network.
The time that a host is online is a superset of the time that
it is generating network traffic, so passive observations of
per-host packet flows may underestimate true availability.
Also, a key design goal was to minimize the new infras-
tructure that had to be pushed to end hosts or the corporate
routing infrastructure. Installing custom network intro-
spection code on every end host was infeasible. Placing
such code inside the core network infrastructure was also
infeasible due to the complex web of proxies, firewalls,
and routers that would have to be instrumented to get a
full view of each host’s network activity.

Most prior work on IP hijack detection has required
modification to core Internet routers. Some systems re-
quire routers to perform cryptographic operations to val-
idate BGP updates [2, 12, 19], whereas others require
changes to router software to make BGP updates more
robust to tampering [35, 37]. We eschewed such designs
due to the associated deployment problems.

Several systems use passive monitoring of BGP dy-
namics to detect inconsistencies in global state [22, 23,
33]. These systems typically search for anomalies in
one or more publicly accessible databases such as Route-
Views [27], which archives BGP state from multiple van-
tage points, or the Internet Routing Registry [3], which
contains routing policies and peering information for each
autonomous system. Passive monitoring eases deploya-
bility concerns. However, data freshness becomes a con-
cern when dealing with “eventually updated” repositories
such as the IRR, and even RouteViews data is only up-
dated once every two hours. Legitimate changes to rout-
ing policy may also be indistinguishable from hijacking
attacks in terms of BGP semantics, making disambigua-
tion difficult in some cases. In contrast, if our availability
fingerprints indicate that a large chunk of hosts have sud-
denly gone offline or changed their availability profile, it
is extremely unlikely that this is a natural phenomenon.

Hu and Mao were the first to use data plane fingerprints
in the context of hijack detection [18]. In their system, a
live BGP feed is monitored for suspicious updates. If an
IP prefix is involved in a questionable update, its hosts
are scanned from multiple vantage points using nmap OS
fingerprinting [15], IP ID probing [7], and ICMP times-
tamp probing [18]. The results are presented to a human
operator who determines if they are inconsistent. Our sys-
tem differs in three ways. First, we do not require privi-
leged access to a live BGP feed, easing deployability. Sec-
ond, we continually calculate subnet fingerprints, whereas
Hu’s system only calculates fingerprints upon detecting
suspicious BGP behavior, behavior which may take sev-
eral minutes to propagate to a particular vantage point.
Third, we can finish a probing sweep in less than 30 sec-
onds, whereas several of Hu’s scans may take several min-
utes to complete. Given the short-lived nature of spectrum

agility attacks [31], we believe that quick, frequent scan-
ning is preferable, if only to serve as a tripwire to trigger
slower, “deeper” scans.

Zheng et al detect hijacking attacks by measuring the
hop count from monitor hosts to the IP prefixes of inter-
est [38]. For each prefix, the monitor selects a reference
point that is topologically close to the prefix and lies along
the path from the monitor to the prefix. In normal situ-
ations, the hop count along the monitor-reference point
path should be close to that of the monitor-prefix path.
When the prefix is hijacked, the hop count along the two
paths should diverge. Zheng’s system avoids the deploya-
bility problems mentioned above, since hop counts can be
determined by any host that can run traceroute. However,
the system assumes that a reference point can be found
which is immediately connected to the target prefix and
responds to ICMP messages; if the reference point is fur-
ther out, the hijacker can hide within the extra hops. Our
system only requires that end hosts respond to pings. Fur-
thermore, our system tracks the availability of individual
hosts, whereas Zheng’s system only tracks the availability
of a few representative hosts in each target prefix.

6 Conclusion

Many distributed systems would benefit from an infras-
tructure that collected high resolution availability mea-
surements for individual hosts. Unfortunately, existing
frameworks either do not scale, do not track every host in
the network, or store data in such a way that makes global
analysis difficult. In this paper we describe StrobeLight,
an enterprise-level tool for collecting fine-grained avail-
ability data. Our current prototype has measured the up-
time of hundreds of thousands of hosts in our corporate
network for almost two years. Using the longitudinal data
generated by this tool, we performed extensive analyses
of availability in our wired and wireless networks. Us-
ing external Planetlab deployments and simulations, we
also demonstrated how StrobeLight’s real-time analysis
engine can detect wide-area network anomalies. Our op-
erational experiences indicate that StrobeLight’s anomaly
detection is fast and accurate.
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