Privacy Integrated Queries

An Extensible Platform for Privacy-Preserving Data Analysis

Frank McSherry
Microsoft Research, SVC
mcsherry@microsoft.com

ABSTRACT

We report on the design and implementation of the Privacy
Integrated Queries (PINQ) platform for privacy-preserving
data analysis. PINQ provides analysts with a programming
interface to unscrubbed data through a SQL-like language.
At the same time, the design of PINQ’s analysis language
and its careful implementation provide formal guarantees
of differential privacy for any and all uses of the platform.
PINQ’s unconditional structural guarantees require no trust
placed in the expertise or diligence of the analysts, substan-
tially broadening the scope for design and deployment of
privacy-preserving data analysis, especially by non-experts.

Categories and Subject Descriptors

H.3 [Online Information Services]: [Data Sharing]

General Terms
Algorithms, Security, Theory

Keywords

anonymization, confidentiality, differential privacy, LINQ

1. INTRODUCTION

Vast quantities of individual information are currently col-
lected and analyzed by a broad spectrum of organizations.
While these data clearly hold great potential for analysis,
they are commonly collected under the premise of privacy.
Careless disclosures can cause harm to the data’s subjects
and jeopardize future access to such sensitive information.

This has led to substantial interest in data analysis tech-
niques with guarantees of privacy for the underlying records.
Despite significant progress in the design of such algorithms,
privacy results are subtle, numerous, and largely disparate.
Myriad definitions, assumptions, and guarantees challenge
even privacy experts to assess and adapt new techniques.
Careful and diligent collaborations between non-expert data
analysts and data providers is all but impossible.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGMOD’09, June 29-July 2, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-551-2/09/06 ...$5.00.

This work presents a platform for interactive data analysis
against live data which enforces one of the strongest known
unconditional privacy guarantees: differential privacy [1, 2].
Differential privacy requires that computations be formally
indistinguishable when run with and without any one record,
almost as if each participant had opted out of the data set.
The platform comprises a declarative programming language
in which all written statements provide differential privacy,
and an execution environment carefully implemented to re-
spect the formal requirements of differential privacy.

The important feature of this approach is that the privacy
guarantees are provided by the platform itself; they require
no privacy sophistication on the part of the platform’s users.
This is unlike many prior instances of privacy research that
rely heavily on expert design and analysis to create analyses,
and expert evaluation to properly vet proposed approaches.
In such a mode, non-expert analysts are unable to express
themselves clearly or convincingly, and non-expert providers
are unable to verify or interpret their privacy guarantees.
Here the platform itself serves as a common basis for trust,
even for analysts and providers with no previous experience
with privacy, or even with each other.

Our advantage over prior platforms is differential privacy;
its robust guarantees are compatible with many declarative
operations and permit end-to-end analysis of such programs.
Its guarantees hold in the presence of arbitrary prior knowl-
edge and for arbitrary subsequent behavior, simplifying the
attack model and allowing realistic, incremental deployment.
Its formal nature also enables unexpected new functionality,
including the use of groupby and join on sensitive attributes,
the analysis of text and unstructured binary data, modular
algorithm design (i.e. without whole-program knowledge),
and analyses integrating multiple independent data sources.
Perhaps most importantly, differential privacy requires no
assumptions about the semantics of the underlying records;
analysts will be able to write analyses directly against even
the most sensitive and subtle of data sets, in their raw form,
without concern of disclosure.

The main restriction of our approach is that analysts can
only operate on the data from a distance: the operations are
restricted to declarative transformations and aggregations;
no source or derived data are ever returned to the analysts.
This restriction is not entirely unfamiliar to many analysts,
who are unable to personally inspect large volumes of data.
Instead, they write computer programs to distill the data to
manageable aggregates, on which they base further analyses.
While the proposed platform introduces a stricter boundary
between analyst and data, it is not an entirely new one.

1.1 An Overview of PINQ

We have implemented a prototype of our proposed archi-
tecture in a platform we call Privacy Integrated Queries.
The implementation is based around C#’s LINQ language,
a well-integrated declarative language extension to .NET.
Data providers can use PINQ to wrap arbitrary LINQ data
sources with a specified privacy allotment for each analyst.
Analysts write arbitrary C# programs using PINQ data
sources as if they were using unprotected LINQ data sources.
PINQ’s restricted language and run-time checks ensure that
the provider’s differential privacy requirements are respected,
no matter how an analyst uses these protected data sets.

Figure 1: PINQ provides a thin protective layer in
front of existing data sources, presenting an inter-
face that appears to be that of the raw data itself.

PINQ is designed as a thin layer in front of an existing
analysis engine; it does not manage data or execute queries.
Instead, it supplies differentially private implementations of
common transformations and aggregations written in LINQ,
executed by the LINQ providers of the underlying data sets.
This approach substantially simplifies our implementation,
but also allows a large degree of flexibility in its deployment:
a data source only needs a LINQ interface to support PINQ.

1.1.1 Mathematics of PINQ

Differential privacy requires an outcome of a computation
be almost as likely with and without any one input record;
we defer the quantitative form of the definition for now.
Computations with this guarantee behave, from the point
of view of each participant, as if their data were never used.
It is a very strong requirement, in part because it makes no
assumptions about prior knowledge or the data’s semantics.
It is also realizable; the simplest example is noisy counting;:
releasing of the number of records in a data set perturbed by
symmetric exponential (Laplace) noise. Many other simple
aggregations have similarly accurate randomized analogs.

We can significantly extend the set of differentially-private
computations by introducing transformations of data sets.
We provide an analysis of the “stability” of many relational
transformations, showing that small changes to their inputs
always result in relatively small changes to their outputs.
A differentially-private analysis applied to transformed data
masks small changes in the transformation’s output, and
so mask small changes in its inputs as well. The composed
transformation and analysis will provide differential privacy.
Such transformations can be composed arbitrarily, propa-
gating differential privacy guarantees to their source data.

Finally, a sequence of differentially-private computations
also provides differential privacy; the privacy depletions are
at worst additive, and consequently can be tracked on-line.
Analysts may pose query after query, folding their outcomes
into subsequent queries, without compromising our ability
to describe and constrain end-to-end privacy properties.

1.1.2 Implementation of PINQ

We have implemented PINQ as a capability-based system.
PINQ allows data providers to wrap LINQ data sources in
protected objects with an encoded differential privacy limit,
where the objects are implemented to assess the differential
privacy properties of queries and respect the imposed limit.
This assessment is triggered by any aggregation, is traced
through the transformations used in the query, and com-
pared to the current limits of the participating data sources.
If the assessment passes, the effective limits are decremented,
and the query executed against the source LINQ provider,
returning via PINQ’s differentially-private implementations.

We stress that PINQ represents a very modest code base;
in its current implementation it is only 613 lines of C# code.
The assessment logic, following the math, is uncomplicated.
The aggregations must be carefully implemented to provide
differential privacy, but these are most often only a matter
of post-processing the correct aggregate (e.g. adding noise).
PINQ must also ensure that the submitted queries conform
to our mathematical model for them. LINQ achieves sub-
stantial power by allowing general C# computations in pred-
icates of Where, functions of Select, and other operations.
PINQ restricts and shepherds these computations to miti-
gate the potential for exploitation of side channels.

1.1.3 Applications of PINQ

Programming with PINQ is done through the declarative
LINQ language, in an otherwise unconstrained C# program.
The analyst is not given direct access to the underlying data;
instead, information is extracted via PINQ’s aggregations.
In exchange for this indirection, the analysis is allowed to
operate on unmasked, unaltered, live records.

With a few important exceptions, programs written with
PINQ look almost identical to their counterparts in LINQ.
The analysts assembles an arbitrary query from permitted
transformations, and specifies the accuracy for aggregations.
Example 1 contains a C# PINQ fragment for counting dis-
tinct IP addresses issuing searches for an input query phrase.

Example 1 Counting searches from distinct users in PINQ.

var data = new PINQueryable<SearchRecord>(... ...);
var users = from record in data
where record.Query == argv[0]

groupby record.IPAddress

Console.WriteLine(argv[0] + ": " + users.NoisyCount(0.1));

We will develop this example into a more complex search
log visualization application showcasing several of PINQ’s
advantages over other approaches: rich data types, complex
transformations, and integration into higher level applica-
tions, among many others. The full application is under one
hundred lines of code and took less than a day to write.

We have written several other examples of data analyses
in PINQ), including k-means clustering, perceptron classifica-
tion, and contingency table measurement. These examples
are relatively easy adaptations of existing approaches [3, 4].
We have also implemented association rule mining in PINQ),
exhibiting many interesting trade-offs; different approaches
to measuring the same quantity (in the absence of noise) can
lead to strikingly different results, of incomparable quality.

1.2 Related Work

There has been a volume of research on privacy-preserving
data analysis, resulting in many distinct approaches and al-
most as many distinct definitions of privacy. Although we
can reproduce many — but not all — of these results in PINQ),
its contribution is not in the existence of such reproductions,
but rather it is in the manner in which they are reproduced.
Each instance of prior work required substantial effort by
expert researchers in design, analysis, and implementation.
Those written in PINQ do not.

Several platforms for interactive data access have been
proposed, ranging from simple remote access, to query au-
diting schemes [5], to the closely related Secure Queries [6].
Our main departure from these prior works lies in our aim of
providing formal end-to-end differential privacy guarantees
under arbitrary use; we are unaware of any existing analysis
platform providing such guarantees.

Publication is one alternative to interactive data access,
in which data sets are scrubbed, perturbed, aggregated, sup-
pressed, and otherwise altered to mask specific information.
Unfortunately, sanitization is neither easy to do, nor even
to define; research in the area has yet to stabilize on robust
definitions that come without known vulnerabilities [7, 8, 9].
Furthermore, these approaches intentionally contort the data
before release, requiring the analyst to understand this (of-
ten intentionally secret) process before they can make valid
statistical inferences. In contrast, analyses in PINQ are run
against raw source data, producing results that are exactly
correct up to a well defined (and small) additive error.

The cryptography community uses the phrase “privacy
preserving data mining”, see [10], but for cryptographically
secure function evaluation, which reveals the result of the
computation but no further information about the inputs
other than what the result may imply. This definition side-
steps the important issue of what results are safe to release.
Even simple counts accurately reported disclose information
given prior knowledge or repeated use. Our concern in this
paper is not only that a security breach might occur but
that sensitive information may be directly disclosed even by
faithful and secure execution of the computation.

Information Flow Control [11] tracks the flow of sensitive
information through general computation. Such analysis has
a binary description of dependence; either a computation
depends on an input or it does not. Statistical analyses and
aggregations are typically handled by a trusted de-classifier,
using many inputs and yet treated as if it depends on none.
Differential privacy appears to generalize Information Flow
Control’s notion of dependence to a more fine-grained and
partial notion of dependence. PINQ provides a formal tool
for declassification in such a context.

PINQ leans heavily on prior work on differential privacy.
Many works have developed differentially-private computa-
tions, and informed the design and implementation of PINQ.
Their main practical shortcoming lay in their requirement
(like other work) that analysts and providers themselves es-
tablish that an implementation provides differential privacy.
Furthermore, they do not provide any of the necessary tools
for analysts to produce new differentially-private algorithms.
Going forward, we would like to base our privacy guarantees
on trusted components rather than reproving results from
first principles, and thereby avoid the possibility of getting
the algorithms, proofs, or implementations incorrect.

1.3 Contributions

PINQ’s main contribution is to supply the functionality of
differential privacy to its users, both analysts and providers,
through tools that do not require privacy expertise to use.
PINQ factors often-complex privacy reasoning into a small,
transparent, and trustworthy substrate; it removes the re-
sponsibility for such reasoning from the analyst or provider,
and simplifies an analysis’ path from design to deployment.

Assembling this platform requires several important steps,
from privacy theory, to language design, to implementation.
Theoretically, we reproduce several important meta-results
about properties of differential privacy and introduce the use
of transformation stability reasoning to differential privacy.
The language design draws substantially from LINQ, but
requires careful adaptation to support differential privacy:
methods like Join must be adapted, and new methods like
Partition must be introduced for effective and efficient use.
Finally, the implementation of a platform like PINQ has sub-
tle issues both to support flexible and efficient deployment
and to constrain exploits that indirectly leak information.

Applications written using PINQ can safely perform many
computations that reasonable privacy experts have previ-
ously consider dangerous: grouping by sensitive identifiers,
joining protected tables, operating on binary data or text,
integrating multiple data sets, and execution without whole
program knowledge, among several others. These important
features have long been anathema to privacy technology, but
are now available with formal privacy guarantees.

This surprising flexibility comes from differential privacy.
By moving away from ad hoc and intuitional approaches to
privacy we not only provide formal end-to-end guarantees,
but a formal basis for expanding the space of computations.
While the point of PINQ is not specifically to promote differ-
ential privacy, it is the only privacy definition we know that
supports resilience to prior knowledge, secure composition,
and transformation logic, among several other properties.
If other privacy definitions establish the properties PINQ
requires, its core ideas should lead to trusted platforms sup-
porting their privacy guarantees as well.

As well as a useful platform in itself, we hope that PINQ’s
existence leads to a different approach to privacy research.
Rather than conduct and publish research using ad hoc
definitions, inaccessible proofs, and casual implementation,
a large volume of research could derive privacy properties
through common primitives with public implementations.
Although much research may not be expressible with PINQ),
and although PINQ is unlikely to be the final word in trust-
worthy privacy platforms, it demonstrates the feasibility of
such a principled approach to privacy research.

1.4 Paper Outline

The paper continues in three parts, paralleling Section 1.1.
We start in Section 2 by reviewing the definition of differ-
ential privacy, and presenting supporting mathematics that
are necessary for end-to-end analysis of our computations.
We detail PINQ’s design and implementation in Section 3,
as well as some advanced features and security challenges.
In Section 4 we develop a sequence of applications written
against PINQ to demonstrate its ease of use and generality,
culminating in a visualization tool for web search queries.
Finally, we conclude in Section 5 with closing comments and
directions for further research.

2. MATHEMATICAL FOUNDATIONS

We now develop some supporting mathematics for PINQ.
We review the privacy definition we use, differential privacy,
and develop several properties necessary to expose a pro-
grammatic interface to data. Specifically, the data types
we can support, common differentially-private aggregations,
how several transformations of the data sets impact privacy,
and how privacy guarantees of multiple analyses compose.
All of our conclusions are immediate consequences of differ-
ential privacy, rather than additional assumptions or imple-
mentation details.

2.1 Differential Privacy

Differential privacy is a relatively new privacy definition,
building upon the work of [1] and publicly articulated in [2].
It differs from most previous definitions in that it does not
attempt to guarantee the prevention of data disclosures, pri-
vacy violations, or other bad events; instead, it guarantees
that participation in the data set is not their cause.

The definition of differential privacy requires that a ran-
domized computation yield nearly identical distributions over
outcomes when executed on nearly identical input data sets.
Treating the input data sets as multisets of records over an
arbitrary domain and using & for symmetric difference:

DEFINITION 1. We say a randomized computation M pro-
vides e-differential privacy if for any two data sets A and B,
and any set of possible outputs S C Range(M),

Pr[M(A) € 8] < Pr[M(B)e S| xexp(ex |[A® B]).

When z is much less than one, we have that exp(z) ~ 1+ z.
Differential privacy ensures that the behaviors of M under
A and B are essentially indistinguishable when |A & B| is
small relative to 1/e.

The definition is not difficult to motivate to non-experts.
Any potential participant can choose between two inputs to
the computation M: a data set containing their records (A)
and the equivalent data set with their records removed (B).
Their privacy concerns stem from the belief that these two
inputs may lead to noticeably different outcomes for them.
However, differential privacy requires that any output event
(S) is almost as likely to occur with these records as without.
From the point of view of any participant, computations
which provide differential privacy behave almost as if their
records had not been included in the analysis.

Taking a concrete example, consider the sensible concern
of most web search users that their name and search history
might appear on the front page of the New York Times [12].
For each participant, there is some set S of outputs of M
that would prompt the New York Times to this publication;
we do not necessarily know what this set S of outputs is,
but we need not define S for the privacy guarantees to hold.
For all users, differential privacy ensures that the probability
the New York Times publishes their name and search history
is barely more than had it not been included as input to M.
Unless the user tells someone else, this is improbable indeed.

One important distinction between differential privacy and
most other definitions is that it only bounds the change in
probability of an event S; it does not discuss the probability
of the event itself. The event may be possible or even likely.
Nonetheless, it is inappropriate to charge the mechanism
with mishandling a participant’s data if the disclosure would
have been as likely to occur even without these records.

2.1.1 Data Types

Differential privacy relies only on the assumption that the
data sets are comprised of records, and is most meaningful
when there are few records for each participant. It requires
no assumptions about the types of the underlying records.
Its privacy guarantees are not a consequence of classifying
attributes as sensitive or non, nor perturbing the source
data, nor suppressing values that are scarce or sensitive.

Independence of data type is a very liberating property.
We needn’t worry about customizing privacy guarantees for
different domains, misclassifying attributes as insensitive, or
overlooking sensitive combinations of insensitive attributes.
We can provide meaningful guarantees for unstructured data,
like free text and binary data that have previously vexed sen-
sitivity classification. We can even support mutable records,
replacing each record with a timeline of its contents.

Furthermore, by ignoring entirely the records’ semantics
we can provide guarantees for arbitrary functions of them.
This property is fundamental to allowing analysts to write
their own ad-hoc analyses, rather than choose from a set of
pre-screened computations over declassified attributes.

2.2 Aggregations: Noisy Counts

The simplest differentially-private aggregation (from [1])
releases the number of records in a data set, perturbed by
symmetric exponential (Laplace) noise, with density func-
tion p(z) x exp(—|z|), as in Figure 2.

.

< I ; ; ;

< + + + + + + + + + + +—
102 1038 104 105 106 107 108 109 110 m 12 113

; ; ; ’ —

Figure 2: Adding symmetric exponential noise to
counts causes the probability of any output (or set
of outputs) to increase or decrease by at most a mul-
tiplicative factor when the counts are translated.

Changing an input data set from A to B can shift the
true count by at most |A @ B|. The Laplace distribution is
chosen because it has the property that translating its center
(shifting the true value) by one unit scales the probability
of any output by a multiplicative factor of at most exp(1).
If the noise is first multiplied by 1/e this becomes exp(e),
resulting in e-differential privacy.

THEOREM 1. The mechanism M (X) = | X |+ Laplace(1/€)
provides e-differential privacy.

PrOOF. From the definition of the Laplace distribution,
for any input A the probability density of M(A) at x is

Pr[M(A) =z] o« exp(—ex|z—|Al|).

Using the triangle inequality |x—|A|| > | —|B||—||A|—|B]],
and noting that ||A| — |B|| < |A & B, we derive

Pr[M(A)=2] < Pr[M(B)=2z]xexp(ex|A® B|).
Differential privacy follows by integrating x over S. [

The Laplace distribution has exponential tails in both di-
rections, and the probability that the error exceeds t/e in

either direction is exponentially small in . The released
counts are very likely to be close to the true counts.

2.2.1 Other Primitive Aggregations

There are many other mechanisms that provide differen-
tial privacy; each paper on the subject typically contains sev-
eral. To date each has privacy established as above, by writ-
ten mathematical proof based on intended behavior. While
this is clearly an important step in developing such a com-
putation, the guarantees are only as convincing as the proof
is accessible and the implementation is correct.

Our goal is to enable the creation of as many differentially-
private computations as possible using only a few primitive
components, whose mathematical properties and implemen-
tations can be publicly scrutinized and possibly verified.
While we shouldn’t preclude the introduction of novel prim-
itives, they should be the exceptional, rather than default,
approach to designing differentially-private algorithms.

2.3 Stable Transformations

Rather that provide access to a set of fixed aggregations,
with limited potential for creative use, we intend to supply
analysts with a programming language they can use to de-
scribe new and unforeseen computations. Most of the power
of PINQ, and one of its main contributions, lies in arming
the analyst with a rich set of transformations to apply to
the data set before differentially-private aggregations.

We start by identifying a general parameter of transfor-
mations that allows us to bound the privacy implications of
arbitrary sequences of such transformations.

DEFINITION 2. We say a transformation T is c-stable if
for any two input data sets A and B,

[T(A)@T(B)] < c¢x|A® B]J.

Transformation stability will play a central role in PINQ.
Transformations with bounded stability constants propagate
differential privacy guarantees made of their outputs back to
their inputs, diminished by their stability constant.

THEOREM 2. Let M provide e-differential privacy, and let
T be an arbitrary c-stable transformation. The composite
computation M o T provides (e X c)-differential privacy.

Proor. Using the definitions of differential privacy and
c-stability, we see that for any A and B,

Pr[M(T(A)) € S]
Pr[M(T(B)) € 8] x exp(e x |T(A) & T(B)|)

<
< Pr[M(T(B)) € S] xexp(e x c x |[A® B|) .

M oT satisfies the definition of (e x ¢)-differential privacy. []

Differentially-private aggregations applied even to multi-
ply transformed data sets have precise privacy implications
for the source data. The bounds result from repeated appli-
cation of Theorem 2, compounding the stability constants of
the applied transformations with the e value of the analysis.

REMARK. An early form of transformation can be seen
in the first differentially-private algorithms for counts over
arbitrary subsets of the domain. The subset of interest could
be specified by the analyst, and the noised count returned.
Transformations intend to separate more formally what the
analyst can do freely (e.g. restrict the data set) from the
operations that have cost (e.g. measuring counts with noise).
This flexibility allows us to introduce new transformations,
and allows the analysts to combine the transformations as
they require, reflecting their interests and expertise.

2.3.1 Stable Transformations

We now discuss four of the transformations that PINQ
supports, Where, Select, GroupBy, and Join, to see what
sort of stability bounds to expect. There are many other
operations that PINQ supports, drawn from LINQ, but this
set is largely representative of the issues faced.

Where takes as input a predicate and returns the subset
of the data satisfying the predicate. The stability of Where
is one, as the addition or deletion of a source record can
change the result by at most the presence of that element.

Select takes and applies a function mapping each source
record to a new record, of a possibly different type. Select
commonly extracts columns from a relational database, but
is substantially more general. The stability of Select is one,
as each source record results in exactly one output record.

GroupBy takes a function mapping records to key values,
and results in a list of groups: for each observed key, the
group of records that map to that key. GroupBy is more
complicated than the previous two transformations in that
the addition or deletion of an input record can change an
output record, not simply adding or deleting it, resulting in
a symmetric difference of two. However, this is the largest
change that can occur, and the stability constant is two.

We stress that the output of a GroupBy operation is a
protected list of groups of elements, rather than a list of
protected groups of elements; to achieve the latter we must
wait until the special Partition operator of Section 3.5.

Join takes two data sets, key selection functions for each,
and returns the list of all pairs of elements whose keys match.
Unrestricted, a Join has the ability to multiply input records,
so that a single input record can influence an arbitrarily large
number of output records, implying unbounded stability.

Instead, we will use a restricted form of Join, in which
each input data set is first grouped by its join keys, and
the list of groups are then joined using their group keys.
The result is a compact representation of the output of the
original Join, as each pair of groups could in principle be
expanded to their full Cartesian product. Much more impor-
tantly, however, the arrangement of the output data bundles
records so that we can apply stability mathematics. Each
input record participates in at most one pair of groups, and
as with GroupBy the stability constant is at most two.

This structural restriction on Join limits the information
that can be extracted privately, by insisting that each join
key result in a single record and, for example, contribute at
most one to a NoisyCount no matter how large the group.
Nonetheless, without the pre-grouping privacy bounds sim-
ply do not exist, and Join would not be available (and has
not been, in prior work). Moreover, the enforced grouping
does not interfere with many common tasks such as the use
of Join to link unique identifiers between data sets.

REMARK. Join introduces the practical matter that
transformations may have multiple inputs, and an applied
analysis reveals information about both of its sources. This
is uncomplicated unless the inputs derive from common data.
Even so, a single change to a data set in common induces a
bounded change in each of the transformation’s inputs, and
a bounded change in its output (i.e. the stabilities add).

2.4 Composition

Any approach to privacy must address issues of composi-
tion: that several outputs may be taken together, and should
still provide privacy guarantees even when subjected to joint
analysis. The issue of composition underlies many of the
shortcomings of current privacy guarantees. For example,
Ganta et al. [13] show that independent k-anonymizations
of intersecting data sets can leak volumes of sensitive data.
Here we review two prior results on the composition prop-
erties of differential privacy, one with a slight improvement.

For a general series of analyses with ¢;-differential privacy,
the epsilon values add, providing (3, €;)-differential privacy.
It is not unnatural that the privacy guarantees degrade as we
expose more information; the important point is that they
do so in a well-controlled manner, rather than collapsing
utterly as demonstrated of k-anonymity and variants in [13].
Theorem 3 presents the bounds for sequential composition.

In the special, but not uncommon, case that the analyses
operate on structurally disjoint subsets of the data, the same
sequence of analyses provides (max; ¢;)-differential privacy.
A common example of such a sequence of analyses is the
GroupBy-Aggregate analysis, where each record is assured
to participate in at most one aggregation. This extends to
an even richer class of algorithms, on which we expand later.
Theorem 4 presents the bounds for parallel composition.

2.4.1 Sequential Composition

Any sequence of computations that each provide differen-
tial privacy in isolation also provide differential privacy in se-
quence. Importantly, this is true not only when they are run
independently, but even when subsequent computations can
incorporate the outcomes of the preceding computations.

Notationally, we explicitly index each computation by the
preceding outcomes, allowing them to vary arbitrarily as a
function of these values. We still require each computation
satisfy differential privacy with respect to their input data.

THEOREM 3. Let M; each provide €;-differential privacy.
The sequence of M;(X) provides (3, €;)-differential privacy.

PROOF. For any sequence r of outcomes r; € Range(M;)
we write M, for mechanism M, supplied with r1,...,7,_1.
The probability of output r from the sequence of M; (A) is

Pr[M(A)=r] = HPI‘[M;(A) =r].

Applying the definition of differential privacy for each M,
[[Pripi(A) =7

< HPr[M[(B) =] x Hexp(ei X |A® B|) .

Reconstituting the first product into Pr[M(B) = r] gives
O

the definition of (>, €;)-differential privacy.

Sequential composition is crucial for any privacy platform
that expects to process more than one query. Privacy def-
initions that are not robust to sequential composition, and
there are several, should be viewed with some skepticism.

REMARK. Theorem 3 has been previously observed for
indistinguishability in [14], and our proof here is identical.

2.4.2 Parallel Composition

While general sequences of queries accumulate privacy
costs additively, when the queries are applied to disjoint sub-
sets of the data we can improve the bound. Specifically, if
the domain of input records is partitioned into disjoint sets,
independent of the actual data, and the restrictions of the
input data to each part are subjected to differentially-private
analysis, the ultimate privacy guarantee depends only on the
worst of the guarantees of each analysis, not the sum.

THEOREM 4. Let M, each provide e-differential privacy.
Let D; be arbitrary disjoint subsets of the input domain D.
The sequence of M;(X N D;) provides e-differential privacy.

Proor. For A and B, let A1 = AﬂDl and B; = BN Di,
and write M, for mechanism M; supplied with r1,...,7;—1.
The probability of output r from the sequence of M; (A) is

Pr[M(A)=r] = HPr[M[(Ai):n].

Applying the definition of differential privacy for each M,

IA

HPr[Mf(Bz‘) =ri] X l_v[exp(6 X |Ai ® Bi)

IN

HPr[Mf(Bi) =] x exp(e X |[A® B) .

Reassembly gives the definition of e-differential privacy. [

Whereas sequential composition is critical for any func-
tional privacy platform, parallel composition is required to
extract good performance from a privacy platform. Realis-
tic analyses require aggregates and computation on different
subpopulations. Although such operations can be analysed
as sequential composition, the privacy guarantee would scale
with the number of subpopulations analysed. Leveraging
parallel composition, the privacy costs are fixed, indepen-
dent of the number of total queries, and thus permitting
relatively thorough information at a modest privacy cost.

REMARK. Theorem 4 has been previously observed for
the addition of noise to disjoint subpopulation counts in [1].
However, the privacy definition used (indistinguishability)
introduces a factor of two in the analogous theorem, and
the factors compound with each invocation of the reasoning.
Our slightly altered privacy definition allows us to apply the
theorem arbitrarily without increase in the bound.

2.5 A Privacy Calculus

The theorems of this section enable a rich privacy calculus,
allowing us to bound the privacy implications of arbitrary
sequences of arbitrary queries composed of permitted trans-
formations and aggregations. Importantly, we can do this
reasoning in an on-line fashion. Queries which arrive in se-
quence have their epsilon values accumulate; queries applied
in parallel require us to track only the maximum.

This simplicity allows us to avoid burdening the analyst
with the responsibility of correctly or completely describ-
ing the mathematical features of their query. Even for re-
searchers familiar with the mathematics (e.g. the author)
the reasoning process can be quite subtle and error-prone.
Fortunately, it can be automated, the subject of Section 3.

3. PINQ IMPLEMENTATION

PINQ is built atop C#’s Language Integrated Queries.
LINQ is a recent language extension to the .NET framework
for integrating declarative access to data streams (using a
language very much like SQL) into arbitrary C# programs.
Central to LINQ is the IQueryable<T> type, a generic se-
quence of records of type T. An IQueryable admits transfor-
mations such as Where, Select, GroupBy, Join, and more,
returning new IQueryable objects over possibly new types.

PINQ’s implementation centers on a PINQueryable<T>
generic type, wrapped around an underlying IQueryable<T>.
This type supports the same methods as an IQueryable, but
with implementations ensuring that the appropriate privacy
calculations are conducted before any execution is invoked.
We stress that PINQ does not supply the execution engine.
Instead, a PINQueryable renders all of its operations to
LINQ statements executed by the underlying IQueryable,
allowing substantial flexibility in deployment.

3.1 Data Types and Control Flow

The central type in PINQ is the PINQueryable<T>, a pro-
tected list of objects of type T. The type T can be arbitrary.
Each PINQueryable is comprised of an unprotected data set
(an IQueryable), and a second new data type, a PINQAgent,
responsible for accepting or rejecting increments to epsilon.
A PINQueryable supports aggregations and transformations.
Aggregations test the associated PINQAgent to confirm that
the increment to epsilon is acceptable before they execute.
Transformations result in new PINQueryable objects with a
transformed data source and a new PINQAgent, containing
transformation-appropriate logic to forward epsilon requests
to the agents of its source PINQueryable data sets.

> o

policy

policy

Figure 3: PINQ control/data flow. An analyst ini-
tiates a request to a PINQ object, whose agent
(A) confirms, recursively, differentially-private ac-
cess. Once approved by the providers’ agents, data
(D) flows back through trusted code ensuring the
appropriate level of differential privacy.

The PINQAgent interface has one method, Alert (epsilon)
invoked before executing any differentially-private aggrega-
tion with the appropriate vale of epsilon, to confirm access.
For PINQueryable objects wrapped around raw data sets,
the PINQAgent is implemented by the data provider based
on its privacy requirements, either from scratch or using one
of several defaults (e.g. decrementing a per-analyst budget).
For objects resulting from transformations of other PIN-
Queryable data sets, PINQ constructs a PINQAgent which
queries the PINQAgent objects of the transformation’s inputs
with transformation-appropriate scaled values of epsilon.
These queries are be forwarded recursively, with appropriate
values of epsilon, until all source data have been consulted.
The process is sketched in Figure 3.

3.2 Differential Privacy Policies

Data providers dictate privacy requirements in PINQ by
supplying objects that implement the PINQAgent interface,
containing arbitrary code to mediate access to their data.
Before any aggregation is performed using protected data,
PINQ will invoke the Alert method of the associated PINQA-
gent objects with the pending privacy decrement, epsilon.
Each PINQAgent is expected to respond with a boolean value,
either accepting or rejecting the request.

PINQ’s main role is as a privacy enforcement mechanism;
it’s role is not to decide who should have access to what type
of data, but to enforce these decisions once they are made.
Our intent is that the provider should be able to determine
how much access any individual should have to a data set
before they need to construct a PINQueryable protecting it.
After the provider identifies the analyst and determines their
level of access, they can then construct a simple PINQAgent
to enforce these limits.

As examples, a privacy policy may call for different levels
of access for different roles: external analysts may have a
fixed budget to draw against, while internal analysts have
unfettered, but logged, access. Or, if the analyst requests
a less sensitive view, perhaps with certain columns stripped
or groupings applied, the policy may permit finer detail and
more access, in the form of more lenient PINQAgent objects.
The decision of which constraints to apply can and should
be made before the PINQueryable is first constructed, using
a PINQAgent only to enforce these decisions.

Example 2 shows code to manage a fixed privacy budget.

Example 2 Implementing a fixed budget in a PINQAgent.

public class PINQAgentBudget : PINQAgent
{
private double budget;
public override bool Alert(double epsilon)
{
if (budget < epsilon)
return false;
budget = budget - epsilon;
return true;
¥
public PINQAgentBudget(double b) { budget = b; }
}

Several other PINQAgent implementations exist in PINQ),
ranging from enforcing a budget as above, to rate limiting
information extraction by introducing artificial time delays,
to simply calculating and logging the depletions of privacy.
Providers are free to implement custom agents as needed,
but are encouraged to perform as much privacy reasoning as
possible before constructing the agent.

PINQ’s use of differential privacy as a common currency
provides unambiguous semantics to all of the participants,
but restricts the richness of the information the PINQAgent
has available to it at run time. This restriction is intentional.
PINQ intends to be a lightweight capability-based system,
and its implementation is simplified by narrowing its focus.
Moreover, several operations (e.g. Sections 3.5 and 3.6) are
based on the assumption that differential privacy is fungible:
once an amount of differentially-private access is authorized,
that access can be used arbitrarily, as the analyst sees fit.

3.3 Aggregation Operators

Each aggregation in PINQ takes epsilon as a parameter
and provides e-differential privacy with respect to its imme-
diate data source. The privacy implications may be far worse
for the underlying data sets from which this data set derives.
Before execution, each aggregation invokes the Alert method
of their associated PINQAgent with this epsilon, conducting
the aggregation only if the eventual response is positive.

NoisyCount is implemented as per Theorem 1, returning
the accurate Count of the underlying data plus Laplace noise
whose magnitude is specified by the analyst, if large enough.
Example 3 depicts the implementation of NoisyCount.

Example 3 [Abbreviated] Implementation of NoisyCount.

double NoisyCount(double epsilon)

{
if (myagent.Alert(epsilon))
return mysource.Count() + Laplace(1.0/epsilon);
else
throw new Exception("Access is denied");
}

PINQ includes other aggregations — including NoisySum,
NoisyAvg, and NoisyMed among others — each of which takes
epsilon and a function converting each record to a double.
To provide differential privacy, the resulting values are first
clamped to the interval [—1, +1] before they are aggregated.
This is important to ensure that a single record has only a
limited impact on the aggregate, allowing a relatively small
perturbation to provide differential privacy.

The implementations of these methods and the proofs of
their privacy guarantees are largely prior work. NoisySum,
like NoisyCount, is implemented via the addition of Laplace
noise and is discussed in [1]. NoisyMed and NoisyAvg are
implemented using the exponential mechanism of [15], and
output values in the range [—1, +1] with probabilities

Pr[NoisyMed(A) = z] « merd?%))(zexp(fe x |A@® B|/2)

Pr[NoisyAvg(A) = x] « max

exp(—e X |A® B|/2
x| p(| 1/2)

Each downweights the probability of 2 by the fewest modifi-
cations to the input A needed to make z the correct answer.

The accuracy of NoisyAvg is roughly 2/e divided by the
number of records in the data set. NoisyMed results in a
value that partitions the input records into two sets whose
sizes differ by roughly an additive 2/¢; it need not be nu-
merically close to the actual median.

3.3.1 Extensibility

PINQ is intended to be an extensible platform, and per-
mits extension via subtyping: other privacy experts can sub-
type the PINQueryable class adding differentially-private ag-
gregations of their own, relying on PINQ’s infrastructure to
confirm differentially-private access. An aggregation should
first query the associated PINQAgent, as in Example 3 above,
and may then aggregate the raw data. We have implemented
a restriction of the exponential mechanism [15] in this way.

At the same time, PINQ’s aim is to allow analysts to write
effective analyses using its tools, rather than write analyses
from scratch and incorporate them as trusted methods. The
PINQueryable is only as secure as its weakest aggregation,
and new functionality should be added carefully.

3.4 Transformation Operators

PINQ’s flexibility derives from its transformation opera-
tors, each of which results in a new PINQueryable wrapped
around an updated data source. The data are not modified
in LINQ, instead a new query plan is produced. The as-
sociated PINQAgent is wired to forward requests on to the
participating source data sets before accepting, scaling ep-
silon by the transformation’s stability constant.

Our implementations of many transformations are mostly
a matter of constructing new PINQueryable and PINQAgent
objects, wired with the appropriate parameters. Some care
is taken to restrict computations, as discussed in Section 3.7.
Example 4 depicts the implementation of PINQ’s GroupBy.
Most transformations require similarly simple privacy logic.

Example 4 [Abbreviated] Implementation of GroupBy.

PINQueryable<IGrouping<K,T>>

GroupBy<T,K> (Expression<Func<T,K>> keyFunc)

{
// Section 3.7 explains this, and why it is needed
keyFunc = Purify(keyFunc) as Expression<Func<T,K>>;

// new agent with appropriate ancestor and stability
var newagent = new PINQAgentUnary(this.agent, 2.0);

// new data source reflecting the operation
var newsource = this.source.GroupBy(keyFunc);

// construct and return a new source and agent pair
return new PINQueryable<IGrouping<K,T>>(newsource,
newagent) ;

The Join transformation is our main deviation from LINQ,
whose implementation pre-groups each of its input data sets
by the join key before applying the unrestricted LINQ Join.
This involves a new signature, as the reduction method takes
pairs of groups of records rather than simply pairs of records,
and means that LINQ programs using Join will need to be
(slightly) rewritten to take advantage of this functionality.
PINQ admits an implementation with the LINQ signatures
(with pair reductions rather than pair-of-group reductions)
which releases only the reduction of the first matched pair
from each group. We avoided this approach to avoid the im-
plication that such a method respects the LINQ semantics,
and to force the analyst to acknowledge the departure.

3.4.1 Extensibility

As with aggregations, PINQ permits the careful extension
of its transformations through subtyping. There are several
natural methods with bounded stability that are not found
in LINQ, but are nonetheless valuable. One simple example
is a multi-way join, where more than two tables are joined
using common keys. If implemented through repeated use of
PINQ’s binary Join, the resulting query would have stability
scaling by powers of two for each application, whereas the
true stability is only two for each data set. Several other
similar operations exist, and subtyping allows their inclusion
without requiring updates to the core PINQ libraries.

We have also subtyped the default PINQueryable for per-
formance enhancements on top of the DryadLINQ cluster-
based LINQ provider, in which awareness of data placement
and scale permit more efficient implementations.

3.5 The Partition Operator

As indicated in Section 2.3.1, and seen again in the type
signature of Example 4, the GroupBy operation groups the
input by keys, but keeps the groups as protected records be-
hind the privacy curtain. For many analyses, we would pre-
fer to shatter the protected data set into multiple protected
sets, along lines drawn by some user-defined key function.

Theorem 4 tells us that structurally disjoint queries cost
only the maximum privacy differential, and we would like
to expose this functionality to the analyst. To that end, we
introduce a Partition operation, like GroupBy, but in which
the analyst must explicitly provide a set of candidate keys.
The analyst is rewarded with a set of PINQueryable objects,
one for each candidate key, containing the (possibly empty)
subset of records that map to the each of the associated keys.
It is important that PINQ not reveal the set of keys present
in the actual data, as this would violate differential privacy.
For this reason, the analyst must specify the keys of interest,
and PINQ must not correct them. Some subsets may be
empty, and some records may not be reflected in any subset.

The PINQAgent objects of these new PINQueryable objects
all reference the same source PINQAgent, of the source data,
but following Theorem 4 will alert the agent only to changes
in the maximum value of epsilon. The agents share a vector
of their accumulated epsilon values since construction, and
consult this vector with each update to see if the maximum
has increased. If so, they forward the change in maximum.
If the maximum has not increased, they accept the request.

The difference between the uses of GroupBy and Parti-
tion in PINQ can be seen in the following two queries:

Q1. How many ZIP codes contain at least 10 patients?
Q2. For each ZIP code, how many patients live there?

For Q1, a GroupBy by ZIP, a Where on the number of pa-
tients, and a NoisyCount gives an approximate answer to
the exact number of ZIP codes with at least 10 patients.
For Q2, a Partition by ZIP, followed by a NoisyCount on
each part returns an approximate count for each ZIP code.
As the measurements can be noisy, neither query necessarily
provides a good estimate for the other. However, both are
at times important questions, and PINQ is able to answer
either accurately depending on how the question is posed.
The Partition operator can be followed not only by ag-
gregation but by further differentially-private computation
on each of the parts. It enables a powerful recursive descent
programming paradigm demonstrated in Section 4.

3.6 Privacy Budgeting

An analyst using PINQ is uncertain whether any request
will be accepted or rejected, and must simply hope that the
underlying PINQAgents accept all of their access requests.
Instead, we provide a method that attempts to “allocate” a
requested privacy budget, requesting access using the input
budget, and returning a new PINQueryable with this budget
hardwired into its agent (as in Example 2) if it succeeds.
When the agent is destroyed, it releases any unused budget.

This budgeting operation is also useful in support of sub-
routines and third party code. While an analyst may pass a
PINQueryable to any subroutine, they run the risk that the
subroutine may consume all their remaining privacy budget.
By pre-allocating an object with a limited privacy allotment,
the analyst can ensure the appropriate insulation.

3.7 Security Issues in Implementation

Although the stability mathematics, composition prop-
erties, and definition of differential privacy provide math-
ematical guarantees, they do so only when PINQ is used
by analysts as intended (i.e. the honest-but-curious model).
There are numerous implementation details that must be
handled properly in order to prevent mischievous analysts
from opening unintended channels for information leakage.
Each lends support to the argument for a concerted imple-
mentation of a well tested platform as opposed to repeated
re-implementation of privacy techniques from scratch.

Many of the following issues are specific to C#, but similar
issues are likely to apply to any sufficiently rich language.

3.7.1 Non-Functional Code

Methods as arguments in LINQ), such as the predicates in
Where, functions in Select, and key selectors in GroupBy and
Join are represented as expression trees. These data objects
encode computations, which, though largely side-effect free,
can invoke arbitrary C# code. Several functions are also
invoked indirectly, such as GetHashCode and Equals, and
can be overloaded to emit data through insecure channels.
Additionally, exceptions and non-termination are another
way for input methods to report on the underlying records.

Fortunately, the expression trees are relatively clear about
when and where they directly invoke methods. We restrict
methods to those we know [or believe] to be side-effect free,
including a substantial amount of useful library code. As
most C# code is not exception-free, we wrap each compu-
tation in a try-catch block that returns a default value if an
exception occurs. Indirect method calls are harder to iden-
tify, but can be controlled by restricting the types permitted
in the system to either base types, or anonymous types built
from them. Constructors must be called explicitly, and we
simply prohibit the construction of user-defined types.

A PINQueryable implements this checking by applying its
Purify function to all input methods (as in Example 4).
Our implementation attempts to rewrite all input methods
in a believed-safe subset of the language, excepting if it fails.
The method can be overridden by providers. For example,
deeper code inspection could allow much more flexibility for
user-defined code, but is well beyond the scope of this note.

3.7.2 Trojan IQueryables

One of the design goals of LINQ is to allow data providers
to supply custom implementations of the LINQ operations
on their data sets. This allows substantial flexibility in de-
ployment, and is something PINQ would like to preserve.
However, a malicious analyst could introduce an IQueryable
whose implementation of binary operations (e.g. Join) are
implemented (by the analyst) to just read the contents of the
second IQueryable and write them out an insecure channel.
Clearly, we must avoid placing trust in the implementation
of any IQueryable, or at least delegate responsibility for this
trust to the affected data providers.

To that end, binary transformations require a “handshake”
between the two data sets, where the first calls the second
with a request to re-invoke the initial transformation using
its unprotected data source. The second can then assess the
type of the caller, and the handle of the method to invoke.
If trust is established — PINQ’s default is to test if the types
of the IQueryables are identical — the second object invokes
the method with its raw data, and computation continues.

4. APPLICATIONS AND EVALUATION

In this section we present data analyses written with PINQ.
Clearly not all analysis tasks can be implemented in PINQ
(indeed, this is the point), but we aim to convince the reader
that the set is sufficiently large as to be broadly useful.

Our main example application is a data visualization based
on search logs that contain IP information and query text.
The application demonstrates many features of PINQ largely
absent from other privacy-preserving data analysis platforms.
These include direct access to unmodified data, user-supplied
record-to-record transformations, operations such as GroupBy
and Join on “sensitive” attributes, multiple independent data
sets, and unfettered integration into higher-level programs.

Many other non-trivial analyses can be expressed in PINQ),
including k-means clustering, perceptron classification, con-
tingency table measurement, and association rule mining.
Most are relatively direct, following previous research [3, 4].

For our experiments we use the DryadLINQ [16] provider.
DryadLINQ is a research LINQ provider implemented on top
of the Dryad [17] middleware for data parallel computation,
and currently scales to at least thousands of compute nodes.
Our test data sets are of limited size, roughly 100GB, and do
not fully exercise the scalability of the Dryad LINQ provider.
We do not report on execution times, as PINQ’s reasoning
is an insignificant contribution, but rather the amount and
nature of information we can extract from the data privately.

For clarity, we present examples written as if the data
analyst is also the data provider, charged with assembling
the source PINQueryable objects. In a real deployment, this
assembly should be done on separate trusted infrastructure.

4.1 Data Analysis: Stage 1 of 3

We start with a simple application of PINQ, approximat-
ing the number of distinct search users who have searched for
a specified query term. Our approach is just as in LINQ: we
first transform the search records (comma-delimited strings)
into tuples (string arrays) whose fields have known meaning,
then restrict the data to records with the input search query,
then group by the supplied IP address to get distinct users,
then count the remaining records (groups of string arrays).
The full program is reproduced in Example 5.

Example 5 Measuring query frequencies in PINQ.

// prepare data with privacy budget
var agent = new PINQAgentBudget(1.0);
var data new PINQueryable<string>(rawdata, agent);

// break out fields, filter by query, group by IP

var users = data.Select(line => line.Split(’,’))
.Where(fields => fields[20] == args[0])
.GroupBy (fields => fields[0]);

// output the count to the screen, or anywhere else
Console.WriteLine(args[0] + ": " + users.NoisyCount(0.1));

This relatively simple example demonstrates several im-
portant features of PINQ. The input data are text strings;
we happen to know a priori that they are comma delimited,
but this information plays no role in the privacy guarantees.
The filtering is done against an anaylst-supplied query term,
and may be frequent or infrequent, sensitive or insensitive.
To get the set of distinct users we group using the logged IP
address, clearly highly sensitive information.

4.2 Data Analysis: Stage 2 of 3

Our program as written gives the count for a single query,
and if the analyst wants additional counts they must run the
program again. This incurs additional privacy cost, and will
be unsuitable for extracting large numbers of query counts.

Instead, we can rewrite the previous program to use the
Partition operator to permit an arbitrary number of counts
at fixed privacy cost. Rather than filter records with Where,
we use the same key selection function and an input set of
query strings to Partition the records. Having done so,
we iterate through each of the queries and associated parts,
grouping the records in each by IP address. To further enrich
the example, we then partition each of these data sets by
the number of times each has IP issued the query, before
producing a noisy count. (see Example 6).

Example 6 Measuring many query frequencies in PINQ.

// prepare data with privacy budget
var agent = new PINQAgentBudget(1.0);
var data = new PINQueryable<string>(rawdata, agent);

// break out fields, but partition rather than filter
var parts = data.Select(line => line.Split(’,’));
.Partition(args, fields => fields[20]);

foreach (var query in args)

{
// use the searches for query, grouped by IP address
var users = parts[queryl.GroupBy(fields => fields[0]);

// further partition by the frequency of searches
var freqs = users.Partition(new int[] {1,2,3,4,5},
group => group.Count());

// output the counts to the screen, or anywhere else

Console.WriteLine(query + ":");

foreach (var count in new int[] {1,2,3,4,5})
Console.WriteLine(fregs[count].NoisyCount(0.1));

Because we use Partition rather than multiple Where
calls, the privacy cost associated with the program can be
seen by PINQ to be only the maximum of the privacy costs
of each of the loops, exactly the same cost as in Example 5.

Freq 1 | Freq 2 | Freq 3 | Freq 4 | Freq 5
google 356743 | 108336 | 45363 | 25092 | 14347
yahoo 140966 | 42379 | 17624 9671 5707
baidu 300 79 29 26 9
amazon | 16798 3376 808 378 132

ebay 100338 | 26205 9564 4065 2604
cnn 25442 7492 2899 1658 919
msnbc 7828 2496 849 565 283

Table 1: Numbers of users searching for various
terms, broken out by number of times they searched.

Table 1 reports measurements of a few queries on our in-
put set. Each reported measurement is the exact count plus
Laplace noise with parameter 10, corresponding to standard
deviation 10v/2. For some measurements this error is rela-
tively insignificant. For other measurements it is significant,
but nonetheless reveals that the original value is quite small.

4.3 Data Analysis: Stage 3 of 3

We now expand out our example program from simple
reporting (a not uncommon task) to a richer analysis appli-
cation. Our goal is to visualize the distribution of locations
of searches for various search queries. At a high level, we
will transform the IP addresses into latitude-longitude pairs,
by joining with a second proprietary data set, and then send
the coordinates to a visualization algorithm borrowed from
the work of [18]. Although we will describe the visualiza-
tion algorithm at a high level, it is fundamental that PINQ
provides privacy guarantees without the knowledge of what
the algorithm plans to do with the data.

Starting from the prior examples, in which we have par-
titioned the data sets by query and grouped the results by
IP address, we now demonstrate a fragment that will let us
transform IP addresses into latitude-longitude coordinates.
We use a second data set iplatlon whose entries are IP
addresses and corresponding latitude-longitude coordinates.
We join these two data sets, using the IP addresses in each
as keys, resulting in a lat-lon coordinate pair in place of each
group of searches. Example 7 contains the code for this Join
transformation, but may take some explaining.

Example 7 Transforming IP addresses to coordinates.

// ... within the per-query loop, from before ...

// use the searches for query, group by IP address
var users = parts[query].GroupBy(fields => fields[0]);

// extract IP address from each group, and match
var coords = users.Join(iplatlon,
group => group.Key,
entry => entry[0],
(glist,elist) => elist.First());

The Join transformation in LINQ takes four parameters:
the second data set, the first key selector function, the sec-
ond key selector function, and finally a reduction function to
apply to pairs of records. The syntax in PINQ is equivalent,
except for the reduction function, which reduces a pair of
groups of records. Our reduction function outputs the first
lat-lon record in the second group, one per IP address.

As we can see, PINQ supports the natural and fairly com-
mon use of Join to transform data sets using primary keys.
In such a case, we expect the groups to be singletons, and
the Join applies as would be expected in the non-PINQ case.
If we used the implementation of Join with LINQ’s syntax
we would also get the intended behavior, and in this case
the PINQ and LINQ code would be literally identical.

REMARK. Our second data set raises an interesting
point about alternate applications of differential privacy.
While the operation we perform, mapping IP addresses to
latitude-longitude, is essentially just a complicated Select,
the data set describing the mapping is proprietary. Each
record in the data set required some investment of effort to
produce, from which the owners presumably hope to extract
value. Using this data through PINQ prevents the dissemi-
nation of individual records, preserving the value of the data
set while still permitting its use. This use of proprietary data
seems to have many similarities to the use of personal data.
Data curation is another setting where one wants to permit
access to data, but preclude dissemination of the data itself.

onsole - Windows Internet Expl.. (= =) [mcus]

Studio Codename Or | 43| x |[virvel cath gk R

& cu\ RTHAMERICA\D: Codename

COE

do o @ch\u;m\mnemo x [1ob App Status [

NORTHAMERIC,

B v B v @ v [Page v G Took v

2 Nortir America

g V-

Pacific Atlantic

Sptithy America

Ocean Ocean

Indian Ocean

3000 miles.

irosoft”
Virtual Earth™

& it

/M Computer | Protected Mode: Off ®100% -

Figure 4: Example output, displaying a represen-
tative distribution of the latitude-longitude coordi-
nates of users searching for “cricket”. The computa-
tion has differential privacy not because of proper-
ties of the output itself, a quite complicated artifact,
but because of the manner in which it was produced.

Finally, our algorithm takes the list of lat-lon coordinates
of the IPs searching for the input search query, and invokes a
Visualization subroutine which uses an algorithm of [18].
At a high level, this subroutine partitions the input data
(geo-spatial coordinates) at increasingly fine granularities,
measuring noisy counts of each region, at each granularity.
From these counts, it is able to synthesize a representative
distribution of data points that roughly match those trends
observed in the counts; dense subregions contain many rep-
resentative data points, spare regions contain relatively few.
An example for the query “cricket” can be seen in Figure 4.

Readers who are not entirely sure how or why this routine
works, and perhaps do not have access to [18], are in roughly
the same situation as most data providers. We have almost
no intuition as to why the computation should be preserve
privacy, nor is any forthcoming. Nonetheless, as the routine
is only provided access to the data through a PINQueryable,
we are assured of differential privacy guarantees even with-
out understanding the algorithm’s intent or implementation.
As all uses of a PINQueryable guarantee differential privacy,
the data provider doesn’t need to understand (or ever know)
what the analyst plans to do with the data to be sure that
differential privacy will be enforced.

Support for “modular design” of privacy algorithms is an
important enabler for research and development, removing
the need for end-to-end understanding of the computation.
This is especially important for exploratory data analysis,
where even the analysts themselves may not know the ques-
tions they will need answered until they start asking them.
Removing the requirement of whole-program understanding
also enables proprietary data analyses, in which an analyst
may not want to divulge the analysis they intend to conduct.
While the execution platform clearly must be instructed in
the computations the analyst requires, the data provider
does not need to be informed of their specifics.

5. CONCLUSIONS

We have presented “Privacy Integrated Queries” (PINQ),
a trustworthy platform for privacy-preserving data analysis.
PINQ provides private access to arbitrarily sensitive data,
without requiring privacy expertise of analysts or providers.
The interface and behavior are very much like that of Lan-
guage Intergrated Queries (LINQ), and the privacy guaran-
tees are the unconditional guarantees of differential privacy.

PINQ presents an opportunity to establish a more formal
and transparent basis for privacy technology and research.
PINQ’s contribution is not only that one can write private
programs, but that one can write only private programs.
Algorithms built out of trusted components inherit privacy
properties structurally, and do not require expert analysis
and understanding to safely deploy. This expands the set of
capable users of sensitive data, increases the portability of
privacy-preserving algorithms across data sets and domains,
and broadens the scope of the analysis of sensitive data.

5.1 Further Research Directions

The guarantees of differential privacy are rather strong,
but can come at the expense of accuracy. Other weaker def-
initions with solid mathematical foundations do exist, but
notably approzimate differential privacy [14] also bases pri-
vacy on the differential notion of bounding change in be-
havior as a function of change in the input. The definition
admits transformation and composition logic, and much of
the PINQ infrastructure can support this definition as well.

PINQ is implemented using LINQ and inherits several of
its features, including language integration, strong typing,
flexible execution and optimization, and easy extensibility.
The transformation stability mathematics can easily be ap-
plied to other data analysis languages, for example SQL.
Other data analysis languages exist (e.g. scientific and sta-
tistical packages) and understanding the extent to which we
can design trusted private implementations for them is open.

We have seen several example programs written in PINQ,
and it is open research to consider what other analyses can
be written in PINQ, and how efficiently they can use their
privacy resources. Reinvestigating algorithm design with an
eye towards privacy costs has the potential to inform and
improve private data analysis, and new iterations of PINQ.

PINQ’s extensible design allows other privacy researchers
to leverage its infrastructure to support new functionality.
We have seen a few examples of transformations and aggre-
gations that are not included in PINQ, and which do not
appear to be reproducible with its primitives. Expanding
the set of supported operations is a natural research direc-
tion, ideally with an eye towards factoring more complex
operations into commonly used primitives, minimizing the
trusted base and maximizing the potential for reuse.

Acknowledgments

The author gratefully acknowledges the contributions of sev-
eral collaborators. Ilya Mironov, Kobbi Nissim, and Adam
Smith have each expressed substantial interest in and sup-
port for privacy tools and technology usable by non-experts.
Yuan Yu, Dennis Fetterly, Ulfar Erlingsson, and Mihai Budiu
helped tremendously in educating the author about LINQ),
and have informed the design and implementation of PINQ.
Many readers and reviewers have provided comments that
have substantially improved the presentation of the paper.

6. REFERENCES

[1] C. Dwork, F. McSherry, K. Nissim, and A. Smith,
“Calibrating noise to sensitivity in private data
analysis,” in TCC, 2006, pp. 265—284.

[2] C. Dwork, “Differential privacy,” in ICALP, 2006, pp.
1-12.

[3] A. Blum, C. Dwork, F. McSherry, and K. Nissim,
“Practical privacy: The SuLQ framework,” in PODS,
2005, pp. 128-138.

[4] B. Barak, K. Chaudhuri, C. Dwork, S. Kale,

F. McSherry, and K. Talwar, “Privacy, accuracy, and
consistency too: a holistic solution to contingency
table release,” in PODS, 2007, pp. 273-282.

[5] N. R. Adam and J. C. Wortmann, “Security-control
methods for statistical databases: A comparative
study,” ACM Comput. Surv., vol. 21, no. 4, pp.
515-556, 1989.

[6] J. Mirkovic, “Privacy-safe nework trace sharing via
secure queries,” in NDA, 2008.

[7] P. Samarati and L. Sweeney, “Generalizing data to
provide anonymity when disclosing information
(abstract),” in PODS. ACM Press, 1998, p. 188.

[8] A. Machanavajjhala, J. Gehrke, D. Kifer, and
M. Venkitasubramaniam, “I-diversity: Privacy beyond
k-anonymity,” in ICDE, 2006, p. 24.

[9] X. Xiao and Y. Tao, “M-invariance: towards privacy
preserving re-publication of dynamic datasets,” in
SIGMOD Conference, 2007, pp. 689-700.

[10] Y. Lindell and B. Pinkas, “Privacy preserving data
mining,” in CRYPTO, 2000, pp. 36-54.

[11] D. E. Denning, Cryptography and Data Security.
Addison-Wesley, 1982.

[12] M. Barbaro and T. Zeller Jr., “A face is exposed for
AOL searcher no. 4417749,” The New York Times,
August 9, 2006.

[13] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith,
“Composition attacks and auxiliary information in
data privacy,” in KDD, 2008, pp. 265—-273.

[14] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov,
and M. Naor, “Our data, ourselves: Privacy via
distributed noise generation,” in EUROCRYPT, 2006,
pp- 486-503.

[15] F. McSherry and K. Talwar, “Mechanism design via
differential privacy,” in FOCS, 2007, pp. 94-103.

[16] Y. Yu, M. Isard, D. Fetterly, M. Budiu, Ulfar
Erlingsson, P. K. Gunda, and J. Currey, “Dryad LINQ:
A system for general-purpose distributed data-parallel
computing using a high-level language,” in OSDI,
2008.

[17] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly,
“Dryad: distributed data-parallel programs from
sequential building blocks,” in EuroSys. ACM, 2007,
pp. 59-72.

[18] F. McSherry and K. Talwar, “Synthetic data via
differential privacy,” Manuscript.

