Interactive Plan Hints for Query Optimization

Nicolas Bruno
_ Microsoft Research
nicolasb@microsoft.com

ABSTRACT

Commercial database systems expgary hints to fix poor plans
produced by the query optimizer. However, current queryshane
not flexible enough to deal with a variety of non-trivial saéos,
and can be at times cumbersome for DBAs to interact with. i1 th
demonstration we present a framework that enables visealfsp
cation of hints to influence the optimizer to pick better gla®ur
framework goes considerably beyond existing hinting meismas
and significantly improves the usability of such functiatyal

Categories and Subject Descriptors
H.2.7 [Database Administration]

General Terms
Algorithms, Design

Keywords
Query Hinting, Query Optimization

1. INTRODUCTION

Relational query optimizers are responsible for findingcifit
execution plans to evaluate input SQL queries. For thatqaap
cost-based optimizers search a large space of alternaeegion
plans, and choose the one that is expected to be evaluatéé in t
least amount of time. In doing so, query optimizers rely omst ¢
model that estimates the resources that are needed for karctaa
tive plan under consideration.

Optimizer cost models are usually very complex, and depend o
cardinality estimates, plan properties, and specialized formu-
las for each operator in an execution plan. It is well knowwg.(e
see [4]) that currently deployed cost models are inherénégcu-
rate due to several factors. First, cardinality estimagspecially
those on intermediate query expressions, are inferreditmassta-
tistical information on base tables and assume correlatohuni-
formity. Also, cost calibration constants (e.g., the cdsa gingle
disk 1/0) might not be fully accurate or consistent with respto

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyoofherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

S GMOD’ 09, June 29-July 2, 2009, Providence, USA.

Copyright 2009 ACM $5.00.

Surajit Chaudhuri

Microsoft Research
surajitc@microsoft.com

Ravi Ramamurthy
_ Microsoft Research
ravirama@microsoft.com

the underlying hardware (in general, cost formulas canossibly
capture every detail on the execution plan operators).lliirsev-
eral runtime parameters affect execution costs of quebigsare
not modeled in current optimizers.

As a natural consequence, query optimizers do not always pro
duce optimal plans, and sometimes might even return poaspla
In such cases, database administrators need to correcadh@dn
picked by the optimizer. For that purpose, a common mechanis
found in commercial database systems is catjeety hinting [1,

3, 6]. Essentially, query hints instruct the optimizer tmsain its
search space to a certain subset of feasible execution'pl@ns-
sider the query below:

SELECT R.a, S.b
FROM R, S, T
WHERE R.x = S.y AND S.y = T.z

AND R.a = 10 AND S.b = 15 AND T.c = 20

Suppose that the optimizer returns the query plan in Fig(ag If
the cardinality ofor..=10 iS underestimated, and thus the index-
nested-loop join processes many more tuples than what was es
timated by the optimizer. In this case, the query might penfo
too many index seeks afi thus resulting in a bad plan. If such a
situation can be detected, then DBAs can optimize the query u
ing a special hinbPTION(HASH JOIN) that is concatenated to the
query string. In this special mode, the optimizer is foroeddn-
sider only execution plans that use hash-based join atteesaand
chooses the execution plan of Figure 1(b). However, thismditive
plan uses a different join order, which might make a DBA gioest
whether the original join order was indeed more efficient.afie
swer this question, the DBA would want to execute the plariga F
ure 1(b) and also an alternative plan that shares the samerjibér
with the plan in Figure 1(a) (but does not use an index-nelsteyl
join betweenR and S). This new plan, shown in Figure 1(c) can
be obtained by using the expanded tupitION (HASH JOIN, FORCE
ORDER), which only considers plans whose join order is compatible
with the order of tables in theqL query string. After actually exe-
cuting all these alternatives, the DBA chooses the mostgpiaite
plan and uses the corresponding hint in a production envieon.

As illustrated by this example, the process of tuning a pooet-
forming query is usually exploratory and interactive. DBAgght
try some hints, observe the resulting plan picked by thentpér,
optionally execute it, and keep modifying plans using himtsil
they obtain one that is better than what the optimizer oaidyn
produced. We believe that this trial and error process isrigtt to
the tuning of a poorly optimized query. Hints enable DBAste e
hance the optimizer’s search strategy by using knowledgerte
its cost model.

1Existing query hints can additionally affect some aspettuery execu-
tion. Such hints, though important, are outside the scopleigfvork.

INL Join

INL Join) qndex Seek(T))

Qndex Scan(R)) @ash .Join)

Q—iash Join) Qndex Scan(T))

Index Scan(R) Index Seek(S)

(a) Original Plan.

(b) UsingpTI0N (HASH JOIN).

Index Scan(R) Index Scan(S)

(c) UsingoPTION (HASH JOIN, FORCE ORDER).

Figure 1: Using query hints to fix bad plans.

Current hints are usually not flexible enough for many scenar
ios. In most systems, forcing the first join in Figure 1(a) ® b
hash-based would also result in either a fixed join order.,(by
using local join hints), or the hash-join algorithm beingddor
all joins in the query block (e.g., by using thesH JoIn hint dis-
cussed above). Hints are also not flexible enough to expestsit
constraints of the structure of the execution plan, suchyasgtto
force an early pre-aggregation below a join.

In this demonstration, we presdpitints, a visual framework for
constraining the search space of current optimizers, wiiels be-
yond what is currently offered in commercial DBMSs. Our feam
work, which is implemented on top of an instrumented version
of Microsoft SQL Server, provides a visual interface thabvas
DBAs to graphically see and compare alternative executiansp
and specify desired characteristics of resulting quermglawe
believe that this framework considerably simplifies theiattive
process of debugging poorly performing queries.

Plan
P - T
Extended Optimizer
Specification "1;;;;1;2
Phints gene,;’ﬁon DBMS

Figure 2: The Phints Framework.

2. USINGPHINTSAS A DBA TOOL

A session in théPhints framework is typically initiated when a
DBA decides to tune the execution plan of a problematic quiry
this point, the client calls the query optimizer and geresat rep-
resentation of the search space (denetedspace) for the given
query. Then, the DBA interacts in tihints framework as follows
(see Figure 2):

Specification: The DBA, based on knowledge about the applica-
tion and the current execution plan, decides to modify the
search space of the optimizer by specifying constraintsgusi
a domain-specific language (see Section 3 for some exam-
ples). A full description of the language can be found in [2].
Additionally, the visual framework further extends the-an
guage in [2] to incorporate certain commonly used opera-
tions (e.g., cardinality hints).

Evaluation: Once a specification is in place, we produce the best
execution plan that satisfies the constraints. Note thaten t
context of interactive sessions, we would be interested in
real-time response to constraint evaluation. To enabll suc
functionality, we cache thelanSpace at the client, and thus
we do not require a round-trip to the server at each itera-
tion [2]. The resulting execution plan (or sub executiompla
thereof) can optionally be sent to the server and executed to

obtain feedback on cost and cardinality, which can be used
to further refine the constraints.

Visualization: The resulting plan (with optional feedback from
actual execution) is displayed graphically. Multiple exec
tion trees resulting from previoughints expressions can be
compared, and the execution trees themselves can be used to
specify additional constraints easily.

This process continues until the DBA is satisfied with an exec
tion plan for the problematic query. At that point, the framoek
generates a description of such plan to be passed to theipgtim
in a production system using a suitaplan forcing interface [5].

3. THE DEMONSTRATION

In this demonstration, we showcase the visual framework for
query hinting. Our prototype consists of a C++ client apgiiion
that talks to a modified version of Microsoft SQL Server. le th
demonstration we will present scenarios that highlightshkent
features of our solution. The following examples are repméstive
of tuning sessions that will be shown during the demonstnatnd
are based on the followintpc-H query:

SELECT TOP 10 L_ORDERKEY, O_ORDERDATE,O0_SHIPPRIORITY,
SUM(1_extendedprice*(1-1_discount)) AS REVENUE

FROM CUSTOMER, ORDERS, LINEITEM
WHERE C_MKTSEGMENT = ’MACHINERY’

AND C_CUSTKEY 0_CUSTKEY

AND L_ORDERKEY 0_ORDERKEY

AND O_ORDERDATE < ’1995-03-26’

AND L_SHIPDATE > ’1995-03-26’
GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY
ORDER BY REVENUE, O_ORDERDATE

When launching a session in our framework with the query epov
we are presented with the user interface of Figure 3. To tfte le
of the figure there is a visual representation of the planquidky
the optimizer. To the right there are different options thdw

PHints on tpch0 1g (D:\dta\workloads'tpch-3.5ql)

_Ioxi
Load query tpch01g &

Tune Indexes
Foree Cardinzlity
Foroe lgorithm
Disable Algoiithm
Force Index
Disable Index

Constrant Scope |

HashJoin

'Get' customer MergeJoin

StreamGbAgg

'Get' orders

Evecule Subplan | Refiesh | Generate Hirt |

"Get' lineitem =

[Constraints [ActCost | OptCost |

Figure 3: Original plan for the input query.

DBAs to specify constraints. For instance, the highlighogtion
in the figure enables the direct specificatiorPbfnts expressions.

ing plan to have a pre-aggregate on tablgeiten. Finally, the
expressionk(lineitem, 7, ?) specifies a “prefix” constraint, in

The framework also exposes some commonly used tuning tasks a which tablelineiten is the first table referenced in the plan (with-

macros (e.g., forcing the choice of an algorithm).

Runtime Feedback and Partial Execution DBAs can choose to
execute either the full plan or any execution sub-plan bypgim
clicking at the appropriate root node. Figure 4 illustrdtesresult
of executing the entire plan of Figure 3. Each node in the an
annotated with cardinality information (both actual antireated).
Additionally, we color-code the plan to help DBA identify aes
with small (green) and large (red) cardinality errors. la figure,
theMergeJoin operator has a large error in cardinality. We can fix
this problem by providing a cardinality hint for this specifipera-
tor, and forcing the right number of tuples to be estimatesuah
node (see Figure 4). Once the cardinality hint has been poeor
rated, the resulting plan is shown in Figure 5. We can seetlieat
cardinality hint resulted in the outer-most join being me&l (and
a different join algorithm picked).

PHints on tpch01g (D: dta'workloads' tpch-3.5q1) i ~(olx
Load query tpchTg)
[Force Cardinaity |

I Full Scope

Add Constraint

| Canstraint

HashJoin Remave Conerairt |

[Zcope |

‘Get' customer Merge.Join

——— | PyOp_Mergeloin [66.4]
Rowis: 71555.5 (ActRows: 5697), Cost: 12,11, localCost: 0.45
'Get' orders

StreamGbAgg

'Get lineitem

EvecuieSubslen | Fisfiesh | Genmate Hin: |

Opt Cost
14.378

Plan Constrairts | Act Cost
Pland 0 2,509

Figure 4: Partial execution and cardinality feedback.

Constraints on Join Ordering. Suppose that we want to spec-
ify that both table®rders andcustomer in Figure 5 join together
(without giving a specific order or join implementation). \b&n do
that by visually selecting such nodes (shown in Figure 5)¢ivau-
tomatically generates an appropri&teints expression. Addition-
ally, DBAs can directly edit the generat&thints expressions. Al-
though the example in the figure is very simghbjnts expressions
can model rich constraints. For instance, the expressions-
tomer, Orders, Lineitem] enforces a specific order of tables in
the final plan (e.gGustomer > (Orders < Lineitem) and(Cus-
tomer < Orders) X Lineitem Satisfy the constraint). The ex-
pressionjoin(StreamAgg(lineitem), orders)) forces the result-

[PHints on tpch01q {D:\dta}workloads' tpch-3.sql) " —|of x|
Loadquery | [tpohOTg -
[Prints Evpression =]

|*(Drder§, customer)

Add Canstraint

Constraint [Scope_ |
Force Cardnally (6637 0000] el

Remave Constrait. |

MergeJoin

StreamGbAgg

‘Get' lineitem Executs Subplan | Refiesh | Gensrate Hirt |

[Plan__ | Constraints [AciCost | OpiCost |

Figure 5: SpecifyingPhints expressions.

out specifying the order of the remaining tables). For matits

and examples, refer to [2]. After specifying that botheitem and
orders be joined together, the system returns the plan in Figure 5
(note that all previously specified constraints are stiis§iad).

PHints on tpch01g (D:\dta\workloads' tpch-3.sql)

_lal x|
Loadquery | [teeniia -

[Force Algorihm

™ FulScape

-]
==

Add Canstraint

Constraint
Force Cardinaliy [5637.0000)
“forders, custome] Sef

HashJoin

StreamGbAgg

‘Get' lineitem

'Get' customer 'Get' orders

Eveoule Subplan | Refosh | Genarste Hint |

Plan__ | Constraints | ActCost | OptCost |

Figure 6: Forcing the choice of an algorithm.

Constraints on Implementation Algorithms. The resulting plan

in Figure 6 uses two hash joins. Suppose that we want to try-an a
ternative plan that uses an index-nested loop join betwegimer
andorders. We can do that by using the “macrédrce algorithm
shown in Figure 6. The possible alternative implementasilgo-
rithms for each operator are automatically displayed imtieau.

4. CONCLUSIONS

Optimizer hinting mechanisms for forcing plans are a vdeiab
tool for experienced DBAs to influence the optimizer’s cleoaf
execution plans. Unfortunately, existing mechanismslalks in
commercial DBMS are an ad-hoc collection of hinting optiofd-
ditionally, there is no support for visually specifying guenints,
which imposes a higher bar on the usability of hints. In tkisxdn-
stration, we proposefhints, a visual and unifying framework to
express an important class of optimizer hints. Additionatiur
framework offers DBAs the ability to express a much richerssl
of constraints beyond what traditional hinting mechanisfiisr.

5. REFERENCES

[1] Giving optimization hints to DB2, IBM, 2003. Available a

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/-

index. jsp?topic=/com.ibm.db2.doc.admin/p91i375.htm.

N. Bruno, S. Chaudhuri, and R. Ramamurthy. Power hints fo

query optimization. IrProceedings of the International

Conference on Data Engineering (ICDE), 2009.

I. Chan. Oracle(R) Database Performance Tuning Guide 10

Release 2 (10.2), Oracle, 2008. Available at

http://download.oracle.com/docs/cd/B19306_01-

/server.102/b14211/hintsref .htm.

[4] S. Christodoulakis. Implications of certain assumpsidan

database performance evauatid@M TODS 9(2), 1984.

B. A. Patel. Forcing query plans, Microsoft Corp., 2005.

Available athttp://www.microsoft.com/technet/prodtechnol/-

sq1/2005/frcqupln.mspx.

[6] SQLServer Books Online. Query hint (transact-sql), Maoft
Corp., 2007. Available at
http://technet.microsoft.com/en-us/library/ms181714.aspx.

(2]

(3]

(5]

