
Interactive Plan Hints for Query Optimization

Nicolas Bruno
Microsoft Research

nicolasb@microsoft.com

Surajit Chaudhuri
Microsoft Research

surajitc@microsoft.com

Ravi Ramamurthy
Microsoft Research

ravirama@microsoft.com

ABSTRACT
Commercial database systems exposequery hints to fix poor plans
produced by the query optimizer. However, current query hints are
not flexible enough to deal with a variety of non-trivial scenarios,
and can be at times cumbersome for DBAs to interact with. In this
demonstration we present a framework that enables visual specifi-
cation of hints to influence the optimizer to pick better plans. Our
framework goes considerably beyond existing hinting mechanisms
and significantly improves the usability of such functionality.

Categories and Subject Descriptors
H.2.7 [Database Administration]

General Terms
Algorithms, Design

Keywords
Query Hinting, Query Optimization

1. INTRODUCTION
Relational query optimizers are responsible for finding efficient

execution plans to evaluate input SQL queries. For that purpose,
cost-based optimizers search a large space of alternative execution
plans, and choose the one that is expected to be evaluated in the
least amount of time. In doing so, query optimizers rely on a cost
model that estimates the resources that are needed for each alterna-
tive plan under consideration.

Optimizer cost models are usually very complex, and depend on
cardinality estimates, plan properties, and specialized cost formu-
las for each operator in an execution plan. It is well known (e.g.,
see [4]) that currently deployed cost models are inherentlyinaccu-
rate due to several factors. First, cardinality estimates,especially
those on intermediate query expressions, are inferred based on sta-
tistical information on base tables and assume correlationand uni-
formity. Also, cost calibration constants (e.g., the cost of a single
disk I/O) might not be fully accurate or consistent with respect to

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGMOD’09, June 29–July 2, 2009, Providence, USA.
Copyright 2009 ACM$5.00.

the underlying hardware (in general, cost formulas cannot possibly
capture every detail on the execution plan operators). Finally, sev-
eral runtime parameters affect execution costs of queries,but are
not modeled in current optimizers.

As a natural consequence, query optimizers do not always pro-
duce optimal plans, and sometimes might even return poor plans.
In such cases, database administrators need to correct the bad plan
picked by the optimizer. For that purpose, a common mechanism
found in commercial database systems is calledquery hinting [1,
3, 6]. Essentially, query hints instruct the optimizer to constrain its
search space to a certain subset of feasible execution plans1. Con-
sider the query below:

SELECT R.a, S.b
FROM R, S, T
WHERE R.x = S.y AND S.y = T.z

AND R.a = 10 AND S.b = 15 AND T.c = 20

Suppose that the optimizer returns the query plan in Figure 1(a). If
the cardinality ofσR.a=10 is underestimated, and thus the index-
nested-loop join processes many more tuples than what was es-
timated by the optimizer. In this case, the query might perform
too many index seeks onS thus resulting in a bad plan. If such a
situation can be detected, then DBAs can optimize the query us-
ing a special hintOPTION(HASH JOIN) that is concatenated to the
query string. In this special mode, the optimizer is forced to con-
sider only execution plans that use hash-based join alternatives, and
chooses the execution plan of Figure 1(b). However, this alternative
plan uses a different join order, which might make a DBA question
whether the original join order was indeed more efficient. Toan-
swer this question, the DBA would want to execute the plan in Fig-
ure 1(b) and also an alternative plan that shares the same join order
with the plan in Figure 1(a) (but does not use an index-nested-loop
join betweenR andS). This new plan, shown in Figure 1(c) can
be obtained by using the expanded hintOPTION(HASH JOIN, FORCE

ORDER), which only considers plans whose join order is compatible
with the order of tables in theSQL query string. After actually exe-
cuting all these alternatives, the DBA chooses the most appropriate
plan and uses the corresponding hint in a production environment.

As illustrated by this example, the process of tuning a poorly per-
forming query is usually exploratory and interactive. DBAsmight
try some hints, observe the resulting plan picked by the optimizer,
optionally execute it, and keep modifying plans using hintsuntil
they obtain one that is better than what the optimizer originally
produced. We believe that this trial and error process is inherent to
the tuning of a poorly optimized query. Hints enable DBAs to en-
hance the optimizer’s search strategy by using knowledge beyond
its cost model.

1Existing query hints can additionally affect some aspects of query execu-
tion. Such hints, though important, are outside the scope ofthis work.

��� ��������	
���
�� ����	
���

���� ��������	
���
�� ���� ��������� ���� !" ����� ���� �"���� ��������� ���� #" $%&' ()*+,+-./ 01%+234 ,+-./ 01%+204$%&' ()*+,+-./ 01%+254
(a) Original Plan. (b) UsingOPTION(HASH JOIN). (c) UsingOPTION(HASH JOIN, FORCE ORDER).

Figure 1: Using query hints to fix bad plans.

Current hints are usually not flexible enough for many scenar-
ios. In most systems, forcing the first join in Figure 1(a) to be
hash-based would also result in either a fixed join order (e.g., by
using local join hints), or the hash-join algorithm being used for
all joins in the query block (e.g., by using theHASH JOIN hint dis-
cussed above). Hints are also not flexible enough to express certain
constraints of the structure of the execution plan, such as trying to
force an early pre-aggregation below a join.

In this demonstration, we presentPhints, a visual framework for
constraining the search space of current optimizers, whichgoes be-
yond what is currently offered in commercial DBMSs. Our frame-
work, which is implemented on top of an instrumented version
of Microsoft SQL Server, provides a visual interface that allows
DBAs to graphically see and compare alternative execution plans,
and specify desired characteristics of resulting query plans. We
believe that this framework considerably simplifies the interactive
process of debugging poorly performing queries.

6789:;<=>?=? @A<BCBD=E:FGHIG<BJ>KBLIGHBDG<BJ> MA=NBOBNG<BJ>PQRSTU VWXYZ[X\]^]Y]_X`abYVWXYcb_\aY^
Figure 2: The Phints Framework.

2. USING PHINTS AS A DBA TOOL
A session in thePhints framework is typically initiated when a

DBA decides to tune the execution plan of a problematic query. At
this point, the client calls the query optimizer and generates a rep-
resentation of the search space (denotedPlanSpace) for the given
query. Then, the DBA interacts in thePhints framework as follows
(see Figure 2):

Specification: The DBA, based on knowledge about the applica-
tion and the current execution plan, decides to modify the
search space of the optimizer by specifying constraints using
a domain-specific language (see Section 3 for some exam-
ples). A full description of the language can be found in [2].
Additionally, the visual framework further extends the lan-
guage in [2] to incorporate certain commonly used opera-
tions (e.g., cardinality hints).

Evaluation: Once a specification is in place, we produce the best
execution plan that satisfies the constraints. Note that in the
context of interactive sessions, we would be interested in
real-time response to constraint evaluation. To enable such
functionality, we cache thePlanSpace at the client, and thus
we do not require a round-trip to the server at each itera-
tion [2]. The resulting execution plan (or sub execution plans
thereof) can optionally be sent to the server and executed to

obtain feedback on cost and cardinality, which can be used
to further refine the constraints.

Visualization: The resulting plan (with optional feedback from
actual execution) is displayed graphically. Multiple execu-
tion trees resulting from previousPhints expressions can be
compared, and the execution trees themselves can be used to
specify additional constraints easily.

This process continues until the DBA is satisfied with an execu-
tion plan for the problematic query. At that point, the framework
generates a description of such plan to be passed to the optimizer
in a production system using a suitableplan forcing interface [5].

3. THE DEMONSTRATION
In this demonstration, we showcase the visual framework for

query hinting. Our prototype consists of a C++ client application
that talks to a modified version of Microsoft SQL Server. In the
demonstration we will present scenarios that highlight thesalient
features of our solution. The following examples are representative
of tuning sessions that will be shown during the demonstration, and
are based on the followingTPC-H query:

SELECT TOP 10 L_ORDERKEY, O_ORDERDATE,O_SHIPPRIORITY,
SUM(l_extendedprice*(1-l_discount)) AS REVENUE

FROM CUSTOMER, ORDERS, LINEITEM
WHERE C_MKTSEGMENT = ’MACHINERY’
AND C_CUSTKEY = O_CUSTKEY
AND L_ORDERKEY = O_ORDERKEY
AND O_ORDERDATE < ’1995-03-26’
AND L_SHIPDATE > ’1995-03-26’

GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY
ORDER BY REVENUE, O_ORDERDATE

When launching a session in our framework with the query above,
we are presented with the user interface of Figure 3. To the left
of the figure there is a visual representation of the plan picked by
the optimizer. To the right there are different options thatallow

Figure 3: Original plan for the input query.

DBAs to specify constraints. For instance, the highlightedoption
in the figure enables the direct specification ofPhints expressions.
The framework also exposes some commonly used tuning tasks as
macros (e.g., forcing the choice of an algorithm).

Runtime Feedback and Partial Execution. DBAs can choose to
execute either the full plan or any execution sub-plan by simply
clicking at the appropriate root node. Figure 4 illustratesthe result
of executing the entire plan of Figure 3. Each node in the planis
annotated with cardinality information (both actual and estimated).
Additionally, we color-code the plan to help DBA identify nodes
with small (green) and large (red) cardinality errors. In the figure,
theMergeJoin operator has a large error in cardinality. We can fix
this problem by providing a cardinality hint for this specific opera-
tor, and forcing the right number of tuples to be estimated atsuch
node (see Figure 4). Once the cardinality hint has been incorpo-
rated, the resulting plan is shown in Figure 5. We can see thatthe
cardinality hint resulted in the outer-most join being reversed (and
a different join algorithm picked).

Figure 4: Partial execution and cardinality feedback.

Constraints on Join Ordering. Suppose that we want to spec-
ify that both tablesOrders andCustomer in Figure 5 join together
(without giving a specific order or join implementation). Wecan do
that by visually selecting such nodes (shown in Figure 5), which au-
tomatically generates an appropriatePhints expression. Addition-
ally, DBAs can directly edit the generatedPhints expressions. Al-
though the example in the figure is very simple,Phints expressions
can model rich constraints. For instance, the expression*[Cus-

tomer, Orders, Lineitem] enforces a specific order of tables in
the final plan (e.g.,Customer ⊲⊳ (Orders ⊲⊳ Lineitem) and(Cus-
tomer ⊲⊳ Orders) ⊲⊳ Lineitem satisfy the constraint). The ex-
pressionJoin(StreamAgg(lineitem), orders)) forces the result-

Figure 5: SpecifyingPhints expressions.

ing plan to have a pre-aggregate on tablelineitem. Finally, the
expression*(lineitem, ?, ?) specifies a “prefix” constraint, in
which tablelineitem is the first table referenced in the plan (with-
out specifying the order of the remaining tables). For more details
and examples, refer to [2]. After specifying that bothlineitem and
orders be joined together, the system returns the plan in Figure 5
(note that all previously specified constraints are still satisfied).

Figure 6: Forcing the choice of an algorithm.

Constraints on Implementation Algorithms. The resulting plan
in Figure 6 uses two hash joins. Suppose that we want to try an al-
ternative plan that uses an index-nested loop join betweencustomer

andorders. We can do that by using the “macro”force algorithm
shown in Figure 6. The possible alternative implementationalgo-
rithms for each operator are automatically displayed in themenu.

4. CONCLUSIONS
Optimizer hinting mechanisms for forcing plans are a valuable

tool for experienced DBAs to influence the optimizer’s choice of
execution plans. Unfortunately, existing mechanisms available in
commercial DBMS are an ad-hoc collection of hinting options. Ad-
ditionally, there is no support for visually specifying query hints,
which imposes a higher bar on the usability of hints. In this demon-
stration, we proposedPhints, a visual and unifying framework to
express an important class of optimizer hints. Additionally, our
framework offers DBAs the ability to express a much richer class
of constraints beyond what traditional hinting mechanismsoffer.

5. REFERENCES
[1] Giving optimization hints to DB2, IBM, 2003. Available at

http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/-

index.jsp?topic=/com.ibm.db2.doc.admin/p9li375.htm.
[2] N. Bruno, S. Chaudhuri, and R. Ramamurthy. Power hints for

query optimization. InProceedings of the International
Conference on Data Engineering (ICDE), 2009.

[3] I. Chan. Oracle(R) Database Performance Tuning Guide 10g
Release 2 (10.2), Oracle, 2008. Available at
http://download.oracle.com/docs/cd/B19306_01-

/server.102/b14211/hintsref.htm.
[4] S. Christodoulakis. Implications of certain assumptions in

database performance evauation.ACM TODS, 9(2), 1984.
[5] B. A. Patel. Forcing query plans, Microsoft Corp., 2005.

Available athttp://www.microsoft.com/technet/prodtechnol/-
sql/2005/frcqupln.mspx.

[6] SQLServer Books Online. Query hint (transact-sql), Microsoft
Corp., 2007. Available at
http://technet.microsoft.com/en-us/library/ms181714.aspx.

