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Abstract. Automatic delineation of the myocardium in real-time 3D
echocardiography may be used to aid the diagnosis of heart problems
such as ischaemia, by enabling quantification of wall thickening and
wall motion abnormalities. Distinguishing between myocardial and non-
myocardial tissue is, however, difficult due to low signal-to-noise ratio as
well as the efficiency constraints imposed on any algorithmic solution by
the large size of the data under consideration. In this paper, we take a
machine learning approach treating this problem as a two-class 3D patch
classification task. We demonstrate that solving such task using random
forests, which are the discriminative classifiers developed recently in the
machine learning community, allows to obtain accurate delineations in a
matter of seconds (on a CPU) or even in real-time (on a GPU) for the
entire 3D volume.

1 Introduction

Fast and accurate automatic delineation of the myocardium in echocardiograms
can be a valuable aid in the assessment of heart-related diseases and abnormal-
ities. Such a visual aid is particularly important in 3D echocardiography, where
the visualization and comprehension of the data can be especially hard. 3D
cardiography is however a challenging modality to work with due to low signal-
to-noise ratio, unpredictable speckle patterns, and large variability in shape and
appearance between different subjects. A large number of tissues that have sim-
ilar appearance to the myocardium such as adjacent muscles or bright vessel
walls complicate the discrimination even more. Finally, the sheer amount of the
data contained in a 3D echocardiography study should ideally be processed in
a matter of a few seconds (ideally in real-time), in order for an algorithm to be
useful in clinical practice. Most (if not all) methods (such as [1]) in the published
literature fail to meet this criterion.

Automatic delineation of the myocardium in 3D echocardiograms can be re-
garded as a binary classification problem, where each voxel should be assigned to
either myocardium or non-myocardium. In the paper, we investigate a discrimina-
tive approach to this classification task. Thus, our classifier is trained to model the
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posterior probability of the class given the data directly, without explicit modeling
of either the statistics of the shape of the heart or the physics of the imaging pro-
cess. Furthermore, the non-parametric nature of the classifier we use means that
no restrictive assumptions are made about the form of the posterior. Our system
is thus much simpler than many of the competing approaches. Importantly, as the
output of our method is “soft” (posterior probability for each voxel), it could be
used as an input for a more complex algorithm which can incorporate richer geo-
metric information, such as deformable templates, level sets, or graph cuts.

The particular discriminative classifier that we use is the Random Forest
classifier [2,3]. Our choice is motivated by the computational efficiency that
random forests exhibit at both runtime and training time, as well as their growing
popularity for similar segmentation tasks in computer vision (see e.g. [4,5,6]).
Capitalizing on the efficiency of random forests, the current CPU implementation
of our system is able to accomplish delineation of the full 3D volume in a few
seconds. A GPU implementation along the lines of [7] is highly likely to achieve
real-time speed for the full 3D volume.

In terms of accuracy, Random Forests have an excellent track record for vari-
ous machine learning problems on a par or even better than boosting method or
max-margin classifiers like SVMs [8]. Towards this end, our approach achieves a
considerable delineation accuracy (92%true positive rate at 8% false positive rate).

2 Related Work

Traditional segmentation methods have been applied to cardiac chambers [9],
including level sets [10] and active contours [11]. However, the literature on
segmentation of the myocardium is limited. Myocardial segmentation has been
performed [12] by first finding the endocardium in 2D+T echocardiographic
slices, then locating the epicardium by searching outward along normals to the
endocardium, using PCA shape and motion models. Others used level sets [1] in
2D MRI slices to find two coupled contours, one for the endocardium and one
for the epicardium. Coupled evolving contours were also employed in [13], on
3D+T echocardiography data, using an incompressibility constraint. Compared
to our proposed method, these segmentation algorithms are far from real-time.

A useful feature when segmentating myocardium from blood pool in echocar-
diography is tissue characterization, by fitting a distribution to the histogram of
a given signal, which may be either the RF (radio frequency) signal or the inten-
sity in the B-mode image. The results of fitting to several different distributions
have been compared, for the RF signal [14], and for B-mode images [15].

Many researchers have investigated the delineation of tissues in ultrasound us-
ing discriminative classifiers, typically SVMs or neural networks [16,17]. These
machine learning techniques have an inherent limitation for the tissue classifica-
tion tasks, as each patch has to be described by low- to moderate-dimensional
descriptor. This means that a preliminary, typically hand-crafted, feature selec-
tion step leading to the loss of information has to be performed. Furthermore,
these methods tend to use features that are too expensive to compute for 3D
images (e.g. Gabor filters).
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Recently, a number of machine learning approaches have been developed,
which are able to work with very high-dimensional representations by unify-
ing the feature selection and supervised learning tasks. The most widely known
learning framework of this kind is boosting [18], and several papers on ultrasound
image segmentation have considered this learning framework (e.g. [19,20]). In
this paper, we focus on another framework called random forests [3], and inves-
tigate the use of this framework for tissue classification in 3D echocardiograms.
Compared to boosting, random forests have been demonstrated to achieve a com-
parable accuracy, while being faster [8]. Random forests also proved to be more
robust to significant overlaps between classes and noise in the training labels [3],
which is a scenario that is highly relevant to ultrasound classification. Finally,
random forests can be effortlessly applied to multi-class classification, whereas
boosting methods typicaly resort to binary classification reductions (such as
training several one-vs-all binary classifiers). Although we do not investigate
multi-class feature classification in this work, this may be useful when several
types of cardiac tissues are considered.

Random forests [2,3] have been used for a large number of classification as well
as regression tasks. A typical random forest consists of a set of binary decision
trees [21]. During training, each non-leaf node in each tree is assigned a binary
test that is applicable to any data sample. Depending on the result of the test,
a sample can go to one of the two children of a given non-leaf node. This way,
a sample can be passed through each of the trees, starting from its root and
ending up in one of its leaves.

Random forests are trained in a supervised way. Training involves tree con-
struction as well as assigning to each leaf node the information about the training
samples reaching this leaf node, e.g. the class distribution in the case of clas-
sification tasks. At runtime, a test sample is passed down all the trees of the
forest, and the output is computed by averaging the distributions recorded at
the reached leaf nodes.

It has been shown [2,3,8] that assembling (bagging) together several trees
trained in a randomized way achieves superior generalization and stability com-
pared to a single deterministic decision tree. The randomization is achieved,
firstly, by training each tree on a random subset of the training data, and, sec-
ondly, by considering a random subset of possible binary tests at each non-leaf
node. Among this random subset, the training procedure picks the binary test
that splits the training samples in the optimal way.

To the best of our knowledge, random forests have seen a very limited use in
medical imaging so far [22,23,24]. However, in the computer vision community,
several groups of authors [5,6,4] have recently proposed to use random forests for
semantic segmentation of photographs, and our method has a lot of similarities
with those approaches.

3 Delineation Using Random Forests

Problem setting. We formalize our problem as a binary classification of voxel
samples. Each voxel sample V is thus described by the voxel coordinates
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x = (x1, x2, x3) in the 3D echocardiogram I it is drawn from. At runtime, each
voxel sample is classified into myocardium or non-myocardium based on the ap-
pearance of the fixed-size 3D neighborhood around it as well as its position in the
image. Incorporation of the position information is important (as demonstrated
in the experiments below) as a cardiologist positions the heart with respect to the
echo-volume roughly in the same way. In our approach, the meaning of “roughly
in the same way” is to be learned from training data. The position information
only acts very weakly as a shape model. Note that a sophisticated shape model
derived from healthy heart will not necessarily represent the shape of a diseased
heart. We are also bound to learn the inter-dependencies between the position
and the appearance, as the typical appearance of myocardial tissue tends to
change with the position in an echocardiogram.

As we learn to classify voxels in a supervised setting, we assume that in the
training step we are given a collection of labeled voxels {V i = (Ii,xi, ci)}, where
Ii is one of the training echocardiograms, xi is the position of the i-th training
voxel, whereas ci is its class label provided by an expert, which can be either
1 (if the voxel is annotated as myocardium) or 0 (if the voxel is annotated as
non-myocardium).

At test time, the position x and the appearance of the echocardiogram I
around the voxel are observed, and our goal is to infer the class label c. In this
way, given an echocardiogram, we can assign a label c to each voxel according to
the prediction of our classifier. As the classifier we use has a probabilistic nature,
the labels assigned at run-time would span the interval [0; 1] rather than being
binary. Such “soft” labeling conveys the information uncertainty when used to
highlight the myocardium during visualization. The uncertainty information is
also likely to boost the performance if labeling is used as an input to some fur-
ther geometric integration step (e.g. level sets, graph cuts, deformable template
fitting, etc.). However, if the “hard” binary labeling is required straight away,
the voxel labels can be thresholded at some fixed value (e.g. 0.5).

Trees construction. Our random forests consist of a collection of randomized
binary trees and below we discuss how these trees are constructed. The con-
struction proceeds in a top-down fashion, starting from the root. At each node,
a training collection of labeled voxels received from its parent is considered (the
root node receives a randomly drawn subset of the size Ntrain of our full training
set). A binary test is then chosen to minimize the uncertainty of the class labels
in the subsets, it splits the training collection into (the exact choice method is
discussed below). Once the binary test is chosen, the training collection of vox-
els is split in the two subsets according to this binary test. The two children
nodes are then created and the two subsets are passed to them as their training
collections, so that the recursion proceeds.

The recursive tree construction stops either when a certain maximal tree depth
Dmax is reached or when all voxels in the training collection have the same label.
At this point, the node is declared a leaf. Once the tree is constructed (based
on the drawn subset of the labeled voxels), we take all available labeled voxels
and pass each of them through the tree. For each leaf node, we then record
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the average class label of the labeled voxels that have reached this node. This
average class label can be interpreted as the posterior probability of a voxel being
myocardium, given the fact that this voxel falls into the leaf.

Binary tests. Let us now discuss the way the binary tests are chosen. As the
voxel description has two components, namely, the position in the volume and
the neighborhood appearance, we consider two types of tests. The appearance
tests are defined as:

ta1,a2,a3,τa
appearance(x, I) =

⎧
⎪⎨

⎪⎩

0, if
x1+a1∑

p1=x1−a1

x2+a2∑

p2=x2−a2

x3+a3∑

p3=x3−a3

I(p1, p2, p3) > τa

1, otherwise.
(1)

An appearance test thus compares a sum of the intensities over an axis-aligned
box of the size (2a1+1) × (2a2+1) × (2a3+1) centered at the voxels with some
threshold τa, where the parameter values a1, a2, a3, τa are chosen in a randomized
fashion as discussed below. Note that such box sums can be evaluated extremely
efficiently using just 7 additions and subtractions irrespective of the size of the
box using the integral image technique [25].

The second type of the tests is the position test defined as:

t
i,τp

position(x) =

{
0, if xi > τp

1, otherwise.
(2)

This test, thus, simply compares the ith coordinate of the voxel with a threshold
τp, where i, τp are chosen randomly as discussed below.

Given a collection of labeled voxels C = {V i, ci}, we define the uncertainty of
its labels as:

U(C) = |C|·Entropy
({ci}) = |C| (c̄· log c̄ + (1 − c̄)· log(1 − c̄)

)
(3)

where c̄ denotes the average class label over collection. Thus, the uncertainty is
maximal for the collections where all voxels are from the same class and maximal
(for a given size) for the collections where class labels are split into equal halves.

When choosing a split for a training collection C, we generate Ntests random
tests. We choose two thirds of our tests to be the appearance tests and one
third to be the position tests. When generating an appearance test, we sample
a1, a2, a3 independently and uniformly from the interval [0;R] from zero to the
neighborhood radius R. We then pick the threshold τa by averaging the respec-
tive box sums from (1) for the two randomly chosen samples from the training
collection. When generating a position test, we pick one of the three dimen-
sions with equal probability and we pick the threshold τp equal to the respective
coordinate of a randomly chosen sample from the training collection.

For each of the generated tests, we consider the two subsets, it splits the
training collection into. We then pick a test, which has the smallest sum of the
uncertainties (3) for these subsets. Such a choice ensures that the uncertainty in
labels decreases quickly towards the leaves of the tree.
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There are two properties worth noting. Firstly, despite the extreme simplicity
of the position tests the superposition of such tests at different depths of the tree
allows to learn a non-trivial shape prior. Secondly, as the position and appearance
tests are interleaved within a tree, we are able to learn the inter-dependencies
between the shape and appearance.

Annotating a voxel using a random forest. Given a random forest, i.e.
several trees that were independently trained as discussed above, we can classify
a new voxel V located at the position x in a previously unseen echocardiogram
I. To do that we simply pass the voxel V = (x, I) through every tree. Given a
set of leaves the voxel ends up in different trees, we simply average the class
probabilities recorded in these leaves.

4 Experiments

Experimental protocol. We have evaluated the developed method on several
3D echocardiograms (Figure 1). Towards this end, we have obtained 14 3D+T
echocardiograms from different healthy subjects with the myocardium for left
and right ventricles delineated by an expert. The echocardiograms were recorded
at the Oxford John Radcliffe Hospital, using a Philips iE33 ultrasound system.
The echocardiograms had a spatial resolution of 0.93 mm × 0.94 mm × 0.85 mm
or 0.82 mm × 0.84 mm × 0.76 mm, depending on the settings of the ultrasound
system. We chose to use the end-systolic frame out of each sequence. In these
3D echocardiograms, every fifth short-axis slice was annotated, using a Wacom
Cintiq interactive pen display and a Matlab script to record an endocardial and
an epicardial contour in each slice. Papillary muscle was regarded as belong-
ing to the blood pool. In places where wall data appeared to be missing due
to attenuation or being parallel to the beam, the expert used their knowledge
of the shape of the myocardium to construct the contours. The expert could
view orthogonal long-axis slices simultaneously to judge the manual segmenta-
tion in those views. As the echocardiograms contained significant variations in
brightness, we performed a histogram equalization step, so that histograms of
all echocardiograms were approximately matched to the histogram of one of the
examples. This pre-processing step was beneficial for our method, as the appear-
ance tests (1) employed in our implementation are not invariant to brightness
changes.

There are four major parameters in our method that have to be adjusted: the
number of training samples for each tree Ntrain, the maximal tree depth Dmax,
the number of random binary tests generated for each node Ntests, and the radius
of the neighborhood R. Therefore, we singled out the three last echocardiograms
and used them for validation, while the first eleven echocardiograms were used
for training. As a result of the validation step, the values of parameters were set
as follows: Ntrain = 100000, Dmax = 16, Ntests = 30, R = 32.

After the parameter tuning, we have evaluated our method on the first eleven
echocardiograms. We tested the method on each of the eleven echocardiograms,
training a random forest containing 20 trees on the remaining ten datasets (so
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sample short-axis slices expert annotations random forest results

Fig. 1. Qualitative results. For the examples of short-axis slices, the random forest
predicts “soft” delineations that closely match the delineations performed by an expert.
As the bottom row demonstrates, our classifier still “fires” on the bright vessel walls,
yet the response is relatively weak.

that training and test data are not mixed). Using the trained forests, we ob-
tained a “soft” segmentation for every voxel in each of the eleven datasets. We
then evaluated the accuracy of the hard segmentation obtained with a sequence
of thresholds. For each value of threshold, we summed up the number of true
positives (voxels correctly labeled as myocardium) and the number of all pos-
itives (voxels labeled as myocardium). In Figure 2, we present the results of
our method in the form of a recall-precision and ROC-curves [26], generated by
varying the probability threshold.

As a baseline, we provide the recall-precision curve for thresholding the raw
values of the intensity (note, that this simple approach is likely to benefit a
lot from the histogram equalization pre-processing). Although the muscular my-
ocardial tissue has a tendency to be brighter than the surrounding tissues, it can
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be clearly seen that brightness is not a powerful enough cue in this case (one
may wonder if a simple intensity thresholding would benefit from prefiltering the
image with a low-pass filter, but in our experiments such prefiltering only wors-
ened the performance of thresholding). We have also tried thresholding of the
shifted Rayleigh parametric image obtained by estimating the σ2 parameter in
the shifted Rayleigh distribution, which was used previously [13] to characterize
the blood pool and myocardium in B-mode images. We estimated the parameter
in a neighborhood of 53 voxels around each voxel. The thresholding of the shifted
Rayleigh parameter performed slightly better than raw intensity thresholding.

Fig. 2. Quantitative results. Recall-precision (left) and ROC (right) curves demon-
strate the significant advantage of our method over the thresholding of raw intensity
and of the shifted Rayleigh parameter. As an aside, removing the position tests (Ran-
dom Forest-A curve) deteriorates the performance of our method much more than
reducing the number of trees.

Variations of our method. Figure 2 also demonstrates the recall-precision
curves for the variation of our method, where only appearance tests (1) were
allowed, while position tests (2) were not considered. As can be seen (Random
Forest-A curve), the performance of our method degraded considerably, suggest-
ing that the rough knowledge about the positioning of the myocardium in the
echo-volume was picked up and utilized by the training algorithm. It can be
observed at the same time that even without the position tests, random forest
based classification performs significantly better than thresholding, which sug-
gests that a sophisticated model of appearance can be learned using random
forests.

Finally, we demonstrate a performance of our method using a different number
of trees smaller than 20. As can be seen, while the performance of a single tree
is considerably worse than that of the whole forest, this performance quickly
saturates as the number of trees is increased, achieving the comparable accuracy
already for 3 trees.
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Computational performance. The 3D echocardiograms in our experiments
had the size 218 × 202 × 272; around 45% of voxels were inside the echo-cone
and, hence, classified with the random forest. For a modern CPU (2.4 GHz), the
time required to delineate the entire echocardiogram was around 2.1 seconds for
a forest with 3 trees and around 22 seconds for a forest with 20 trees. The GPU
implementation as described in [7] is highly likely to run at several frames per
second ([7] reported hundred-fold acceleration). The training procedure was also
remarkably fast taking around 15 seconds per one tree on a CPU.

5 Conclusions and Future Work

We have evaluated random forests, which are one of the most accurate and
computationally efficient discriminative classifiers, on the problem of automatic
myocardial tissue delineation in 3D echocardiograms. A significant boost in ac-
curacy compared to thresholding of raw intensities or Rayleigh parameters has
been demonstrated on a dataset of real data. Importantly, the developed method
is fast (potentially real-time), which distinguishes it from most (if not all) other
methods published for this problem.

The future work would include a more thorough evaluation on a larger amount
of data as well as assessing the clinical applicability of the algorithm as an aid
for myocardium volume estimation and, potentially, regional wall thickening and
motion abnormalities detection. We also plan to investigate the use of the output
labelings within more sophisticated, higher-level algorithms, such as deformable
template fitting, graph cuts, or level sets. However, a care should be taken that
the acceptable speed is maintained.
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