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Abstract

We introduce a class of Paxos algorithms called Vertical Paxos, in which reconfiguration can
occur in the middle of reaching agreement on an individual state-machine command. Vertical
Paxos algorithms use an auxiliary configuration master that facilitates agreement on reconfig-
uration. A special case of these algorithms leads to traditional primary-backup protocols. We
show how primary-backup systems in current use can be viewed, and shown to be correct, as
instances of Vertical Paxos algorithms.
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1 Introduction

Large-scale distributed storage systems built over failure-prone commodity components are in-
creasingly popular. Failures are the norm in those systems, and replication is often the solution
to data reliability. We might expect these systems to adopt well-studied consensus algorithms and
the replicated state-machine approach that they enable. While some consensus algorithms, such
as Paxos [5], have started to find their way into those systems, their uses are limited mostly to
the maintenance of the global configuration information in the system, not for the actual data
replication. A clear gap remains between the well-known consensus algorithms and the practical
replication protocols in real systems.

The gap is not accidental; the abstract models for defining the classic consensus algorithms do
not fully capture the requirements from those distributed systems. The classic consensus problem
is defined on a single fixed set of n processes as a replica group with each process as a replica, where
at most f of the n processes can fail. In practice, a distributed system consists of a large number of
overlapping replica groups, each responsible for maintaining a subset of the system’s data. When
replicas fail, the system must replace the failed replicas with new ones through reconfiguration,
before more replica failures lead to permanent data loss. For practical replication protocols, the
global resilience, the system throughput, and the cost of reconfiguration tend to be more important
than the fault-tolerance of a single replica group or the number of message rounds.

The gap between consensus algorithms and practical replication protocols is not fundamental.
Here, we bridge it by viewing Paxos not as a particular algorithm, but as a family of algorithms
based on a particular way of achieving consensus. We focus on primary-backup replication, a class
of replication protocols that has been widely used in practical distributed systems. We develop two
new algorithms, in a family of Paxos algorithms called Vertical Paxos, that capture the essence
of primary-backup replication. (The only previous algorithm in this family that we know of is an
unpublished version of Cheap Paxos [6].) A primary-backup replication protocol becomes a simple
instance of our second algorithm, which we call Vertical Paxos II.

Vertical Paxos not only provides a solid theoretical foundation for existing primary-backup
replication protocols, but also offers a new way to look at primary-backup replication, leading to
further improvements that address issues arising in practical systems. For example, when new
processes are to replace failed replicas to restore the desirable level of fault tolerance, state transfer
to the new processes is necessary before the reconfiguration can take place. In a distributed storage
system, state transfer usually involves copying data across machines—an often costly operation.
The system therefore faces the difficult decision of either allowing the replica group to continue with
a reduced level of resilience or disrupting the service during state transfer. Our first algorithm,
Vertical Paxos 1 addresses this issue by allowing a replica group to operate with the restored
resilience, while enabling state transfer concurrently.

Vertical Paxos is also significant from a theoretical perspective. Its value goes beyond the special
case of primary-backup replication, offering a different way of reconfiguring state machines from the
one described in the original Paxos paper. In Vertical Paxos, reconfiguration relies on an external
master, itself implemented as a replicated state machine. This corresponds to an attractive system
architecture in which the external master manages the global system state, participates in the
reconfiguration of any replica group in the system, and helps achieve the global optimal resilience.



2 Overview of Vertical Paxos

Paxos implements a state machine by executing a sequence of logically separate instances of the
Paxos consensus algorithm, instance i choosing the i*" state machine command. The consensus
algorithm is executed by four conceptually separate but not necessarily disjoint sets of processes:
clients, leaders, acceptors, and learners. Leaders propose commands that have been requested by
clients, acceptors choose a single proposed command, and learners learn what command has been
chosen.

Vertical Paxos is very much like traditional Paxos, except for two key differences that stem from

experiences with real systems that implement state-machine replication.

Read/Write quorums: Practical protocols use primary-backup structure for better system-wide
resilience. Vertical Paxos achieves this structure by distinguishing between read and write
quorums. It has been observed before that Paxos can be generalized by utilizing these two
kinds of quorums [7], but this offered little practical benefit in earlier versions of Paxos.

Auxiliary configuration master: Although it is possible to let the state machine reconfigure itself,
in practical settings, a separate configuration master often makes reconfigurations decisions.
Vertical Paxos makes use of an auxiliary master to allow the set of acceptors to change
within each individual consensus instance. The master determines the set of acceptors and
the leader for every configuration. The use of a configuration master allows a more efficient
implementation of the individual state machines. In particular, a master allows a state-
machine implementation to tolerate k& failures using only k + 1 processors instead of the
2k + 1 processors required without it [2].

The configuration master need be called upon by the processors executing an individual state
machine only for reconfiguration—that is, for changing the set of processors that are executing
the state machine. Since reconfiguration is infrequent—usually in response to a processor
failure—executing the master requires little processing power. It is therefore practical to
implement a very reliable master by using a sufficient number of different processors that
spend most of their time doing other things.

Vertical Paxos integrates these two key ingredients by changing the configuration of acceptors within
individual consensus instances. A Paxos consensus algorithm performs a sequence of numbered
ballots, each with a unique leader. (In normal operation, only a single ballot is performed in
each consensus instance until that ballot’s leader fails and a new leader is chosen.) Think of the
ballots as arranged in a two-dimensional array, each vertical column consisting of all the ballots
within a single instance arranged according to their number. In standard “horizontal” Paxos
algorithms, configurations can change only as we move horizontally; they are unchanged when we
move vertically (within a single instance). In Vertical Paxos, configurations change when we move
vertically, but remain the same as we move horizontally from a ballot in one instance to the ballot
with the same number in any other instance.

When a new ballot and its leader is chosen in Paxos, the leader must communicate with acceptors
from lower-numbered ballots. Since different ballot numbers have different configurations, a leader
in Vertical Paxos must communicate with acceptors from past configurations. The two variants of
Vertical Paxos address this differently.



e Algorithm Vertical Paxos I uses the following procedure to eliminate the dependence on
acceptors from lower-numbered ballots. When a configuration changes in Vertical Paxos, the
new configuration becomes active right away. The previous configuration remains active only
for storing old information, the new one also accepts new commands. When the state of the
previous configuration has been transferred to the new configuration, the new leader informs
the master that this has happened. The master will then tell all future leaders that they need
not access that old configuration.

e Suppose a new ballot b 4+ 1 is begun, but its leader fails before the state transfer from the
ballot b configuration is complete. A new ballot b + 2 then begins, but its leader could
also fail before any state transfer occurs. This could continue happening until ballot b + 42
begins, and its leader must communicate with acceptors from ballots b through b + 42.
Algorithm Vertical Paxos II avoids the dependence on so many configurations by having
a new configuration initially inactive. The new leader notifies the master when the state
transfer from the previous configuration is complete, and the master then activates the new
configuration. The leader communicates only with acceptors from the new configuration and
the previous active configuration. However, a number of new ballots could be started, but
remain forever inactive because their leaders failed, before a new configuration becomes active
and starts accepting new commands. Vertical Paxos II is especially useful for primary-backup
replication.

3 The Primary Backup Case

In a Vertical Paxos consensus algorithm, a ballot leader must access a write quorum of its own
ballot and read quorums of one or more lower-numbered ballots. Because a reconfiguration is
usually performed in response to a failure, processes participating in lower-numbered ballots are
more likely to have failed. We therefore want to keep read quorums small. Read and write quorums
must intersect, so there is a tradeoff: making read quorums smaller requires making write quorums
larger.

We obtain what is probably the most interesting case of Vertical Paxos by letting read quorums
be as small as possible—mnamely, making any single acceptor a read quorum, so the only write
quorum is the set of all acceptors. These are the quorums that allow k-fault tolerance with only
k41 acceptors. Suppose that in Vertical Paxos II we also always make the leader one of the acceptors
and, upon reconfiguration, always choose the new leader from among the current acceptors. The
new leader by itself is a read quorum for the previous ballot. Hence, it can perform the state
transfer all by itself, with no messages. (It will still have to interact with the master and may have
to exchange messages with acceptors in the new configuration.) If we call the leader the primary
and all other acceptors backups, then we have a traditional primary-backup system.

The optimizations that are possible with traditional primary-backup systems all seem to have
corresponding optimizations in Vertical Paxos. One example is the way efficient local reads can be
done from the primary while maintaining linearizability. The primary obtains a lease that gives it
permission to reply directly to reads from its local state. A new primary cannot be chosen until
the lease expires. In a similar way, a Vertical Paxos leader can use a lease to reply immediately to
commands that do not change the state. A new leader cannot be chosen until the previous leader’s
lease has expired.



Boxwood employs this local reading protocol for Replicated Logical Devices [8]. Boxwood also
uses another optimization that applies as well to Vertical Paxos. A Boxwood configuration consists
of a primary and a single backup. When either of them fails, the other takes over and continues in a
solo configuration. It may start processing new client requests immediately upon the reconfiguration
decree by the configuration master. This applies to Vertical Paxos because the solo process is both
the leader and a write quorum of the new configuration, as well as a read quorum of the previous
(two-acceptor) configuration.

Most primary-backup protocols maintain a single active configuration, as captured by Vertical
Paxos II. While having a single active configuration might seem like a simple and natural choice, the
master activates a new configuration only after the state transfer from the previous configuration
is complete. In practical systems, the state transfer tends to involve copying a large amount of
data and is therefore costly. By allowing multiple active configurations, Vertical Paxos I decouples
state transfer from reconfiguration: a new configuration can be activated to accept new requests,
while the state is transferred from the old configuration. This simple variation of the existing
primary-backup protocols is practically significant.

4 Vertical Paxos

Paxos is an instance of the state-machine approach, in which a sequence of commands is chosen
by executing a separate instance of a consensus algorithm to choose the i*" command, for each i.
What makes Paxos efficient is that part of the consensus algorithm is performed simultaneously
for all the different instances. However, correctness depends only on correctness of the consensus
algorithm. We therefore concentrate on the consensus algorithm.

4.1 Paxos Preliminaries

A consensus algorithm must solve the following problem. There is a set of client processes, each
of which can propose a value from some set PValues of proposable values. The algorithm must
choose a unique value that was proposed by some client.

A Paxos consensus algorithm uses a sequence of ballots, with numbers belonging to an infinite
set Ballots sequentially ordered by < and having minimal element 0. In Vertical Paxos I, Ballots
is the set Nat of natural numbers. In Vertical Paxos II, the numbers of ballots that are started but
never activated are not considered to be in Ballots, so Ballots is a subset of Nat. For any non-zero
b in Ballots, let Prev(b) be the next lower element of Ballots, and let Prev(0) be a value less than
0 that is not a ballot number.

For each ballot number b, there are two sets of processes: the sets RQuorums(b) and WQuorums(b)
of read and write b-quorums. They satisfy the property that every write b-quorum has a non-empty
intersection with every read b-quorum and every write b-quorum. An acceptor is a process that is
in a read or write b-quorum, for some ballot number b.

In the original (horizontal) Paxos consensus algorithm, Ballots is the set of natural numbers,
the sets of read and write b-quorums are the same, and the sets of b-acceptors and b-quorums
are independent of b. In Vertical Paxos, the master computes the read and write b-quorums in
reaction to changes in the system; and in Vertical Paxos II it dynamically adds elements to Ballots.
The master may wait to choose if b is in Ballots and what the b-quorums are until it needs to
know, but once made its choice is fixed. For simplicity, we assume that Ballots and the read and



write quorums are constant, fixed in advance by an oracle that predicts what the master will do.
(Formally, the oracle is a prophecy variable [1].)

Each acceptor a maintains a value vote[a][b] for each ballot number b. Its value is initially equal
to a non-proposable value None and can be set by the acceptor to a proposable value v in an action
that we call a voting for v in ballot b. An acceptor cannot change its vote. In an implementation,
acceptor a does not need to remember the value vote[a][b] for all ballot numbers b, but it is easiest
to explain the algorithm in terms of the complete array votelal.

A proposable value v is chosen in ballot b iff all acceptors in a write b-quorum have voted for
v in ballot b; and v is chosen iff it is chosen in some ballot. We now explain how Paxos ensures
that at most one proposable value is chosen.

Acceptor a also maintains a ballot number mazBallot[a], initially 0, that never decreases. The
acceptor will not vote in a ballot whose number is less than mazBallot[a]. We say that a value v
is choosable in ballot b iff v is chosen in b or could become chosen in b by some acceptors (with
mazBallot[a] < b) voting for v in ballot b. We define a proposable value v to be safe at ballot
number b iff no proposable value other than v is choosable in any ballot numbered less than b.
(Thus, all values are safe at 0.) The fundamental invariant maintained by a Paxos consensus
algorithm is that an acceptor votes in any ballot b only for a proposable value safe at b. It can be
shown that this implies that two different values cannot be chosen.

To get a value v chosen, we just have to choose a ballot number b and get a write b-quorum
Q of acceptors to vote for v in ballot b. We can do this by choosing @ so that vote[a][b] = None
and b > MazBallot[a] for every a in (). However, we must choose v so it is safe at b. We now
show how such a v is chosen. First we observe that because read and write b-quorums have non-
empty intersection, no value is choosable in a ballot b if there is a read b-quorum () such that
mazBallot[a] > b and vote[a][b] = None for every acceptor a in (. Vertical Paxos maintains the
invariant that different acceptors cannot vote for different values in the same ballot. We can then
use algorithm FindSafe of Figure 1 to compute a value safe at ballot number b.

Algorithm FindSafe is written in the PlusCal algorithm language [4], except that the grain of
atomicity is not shown. The algorithm is designed to be as general as possible, rather than to be
efficient, so it can be implemented in situations where complete information about the values of
variables may not be known. The PlusCal statement with (z € S){ body } is executed by waiting
until the set S is not empty and executing the body with z a nondeterministically chosen element
of S. The statement await P waits until P is true. The either/or statement nondeterministically
chooses to execute one of its two clauses; however, the choice is deferred until it is determined
which of the clauses are executable, so deadlock cannot be caused by making the wrong choice.

The result is computed in the variable safeVal, which upon termination is left equal either
to a proposable value safe at b or the special (non-proposable) value AllSafe indicating that all
proposable values are safe at b. It is not hard to show that algorithm FindSafe is correct if the
entire computation is performed atomically, while the variables vote and mazBallot do not change.
Because acceptors vote at most once in any ballot and mazBallot[a] does not decrease, the algorithm
remains correct even if executed nonatomically, with the waiting conditions evaluated repeatedly,
as long as: (i) the read of wvote[acc][c] in the with body is atomic, and (ii) for each individual
acceptor a and ballot number ¢, the values of maxzBallot[a] and vote[a][c] are both read in a single
atomic step when evaluating the await condition.

Algorithm FindSafe is used in ordinary (horizontal) Paxos. However, it may require knowing
the votes of acceptors in c-quorums for every ¢ < b. This is unacceptable in Vertical Paxos,



safeVal := AllSafe ;
¢ := Prev(b) ;
while ( (safeVal = AllSafe) N (¢ >0)) {
either with (acc € {a € Acceptors : vote[a][c] # None}) {
safeVal : = vote|acc][c] }

or await 3 Q € RQuorums(c): Va € Q :
(mazxBallot[a] > ¢) A (vote[a][c] = None);

¢ := Prev(c) }

Figure 1: Algorithm FindSafe for computing a value safe at ballot b.

where acceptors that participated in lower-numbered ballots may have been reconfigured out of the
system. To solve this problem, we first define ballot b to be complete if a value has been chosen in
b or all values are safe at b. We can modify algorithm FindSafe so it stops at a complete ballot
rather than at ballot 0. That is, if ballot number d is complete, we can replace the condition ¢ > 0
by ¢ > d in the while test. We call the modified algorithm VFindSafe.

4.2 Vertical Paxos 1

We describe our algorithms using PlusCal. The PlusCal code describes what actions processes are
allowed to perform. It says nothing about when they should or should not perform those actions,
which affects only liveness. The liveness property satisfied by a Vertical Paxos algorithm is similar to
that of ordinary Paxos algorithms, except with the added complication caused by reconfiguration—
a complication that arises in any algorithm employing reconfiguration. A discussion of liveness is
beyond the scope of this paper.

In Paxos, the invariant that two different acceptors do not vote for different values in the same
ballot is maintained by letting each ballot have a unique leader process that tells acceptors what
value they can vote for in that ballot. The same physical processor can execute the leader process
for infinitely many ballots.

In ordinary Paxos, the leader of a ballot decides for itself when to begin execution. Our Vertical
Paxos algorithms assume a reliable service that does this. We represent the service as a single
Master process. The master will actually be implemented by a network of processors running a
reliable state-machine implementation, such as (horizontal) Paxos.

The ballot b leader process first waits until it receives a newBallot message msg (one with
msg.type equal to the string “newBallot”) with msg.bal = b, which is sent by the master. (The
master will send this message in response to some request that does not concern us.) The value of
msg.completeBal is the largest ballot number that the master knows to be complete.

As in ordinary Paxos, a ballot proceeds in two phases. In phase 1, the leader executes algorithm
VFindSafe by sending a 1a message to acceptors and receiving 1b messages in reply. In phase 2,
it directs acceptors to choose a value by sending a 2a message; it learns that the value has been
chosen from the 2b messages with which they reply. Recall that VFindSafe either returns a single
proposable value v safe at b or else returns AllSafe indicating that all values are safe at b. In
the first case, the leader executes phase 2 and waits until v has been chosen. In either case, the
leader then sends a complete message informing the master that ballot b is complete. If VFindSafe



returned AllSafe, the leader waits to receive a client proposal in a clientReq message and then
begins phase 2 to get that value chosen. In this case, it terminates without waiting to receive the
2b messages.

The code that the leader and acceptors execute in the two phases is derived from the following
meanings of a message m of each type:

la Request each acceptor a to set mazBallot[a] to m.bal and report the value of vote[a][m.prevBal].
(Acceptor a ignores the message if m.bal < mazBallot|a).)

1b Asserts that maxzBallot[m.acc] > m.bal and vote[m.acc][m.voteBal] = m.val.

2a Requests each acceptor a to set wvote[a|[m.bal] to m.val. (Acceptor a ignores the message if
m.bal < mazBallot[a].)

2b Reports that acceptor m.acc has voted for m.val in ballot m.bal.

The code of the leader processes is in Figure 2 and that of the other processes is in Figure 3. In
PlusCal, an atomic step is an execution from one label to the next, and the identifier self is the
name of the current process. The leader of ballot number b has process name b. The elements of
Acceptors are the names of the acceptors, and we assume a set Clients of client process names.

In PlusCal, [f1 — v1,...,fn — v,] is a record r whose f; field r.f; equals v,. We represent
message passing by a Send operation that simply broadcasts a message, which can be received
by any process interested in receiving it. For any record r, we let MsgsRcud With(r) be the set
of messages received by a process that have their corresponding fields equal to the fields of the
record 7.

4.3 Vertical Paxos 11

By having the master keep track of the largest complete ballot number, Vertical Paxos I limits
the number of different ballots whose acceptors a leader must query to choose a safe value. In
Vertical Paxos II, a leader has to query only acceptors from a single previous ballot. It does this
by letting Ballots be a subset of the set of natural numbers. The master adds a number b to the
set of ballot numbers, a procedure we call activating ballot b, when doing so makes b a complete
ballot. (Remember that we are assuming that the oracle predicted that the master would add b to
the set of ballot numbers, so b is already an element of the constant set Ballots.) Ballot numbers
are activated in increasing order.

In this algorithm, the master’s newBallot message m for ballot b has m.prevBal equal to the
largest currently activated ballot number (which is less than b). As in Vertical Paxos I, the ballot
b leader performs phase 1 and, if VFindSafe returns a single value, it performs phase 2; and it then
sends its complete message. It does all this assuming that b is the next ballot to be activated. If
the master has not activated any ballot since sending its newBallot message to b, then it activates
b and sends an activated message to the leader. Upon receipt of this message, the leader performs
phase 2 if it has not already done so. If ballot b is not activated, then the actions performed have
no effect because b is not a ballot number (so it doesn’t matter what the value vote[a][b] is for
a process a). The leaders’ code is in Figure 4 and the master’s code is in Figure 5. For coding
convenience, ballot 0 is not performed. Note that the leader’s while loop in Vertical Paxos I has
been eliminated, since the leader assumes that prevBal is the next lower ballot number.



process (BallotLeader € Nat)
variables completeBal, prevBal, safeVal = AllSafe ; {

bl:  with (msg € MsgsRcvd With( [type — “newBallot”, bal — self])) {
completeBal : = msg.completeBal; }
prevBal := self — 1;

b2:  while ((safeVal = AllSafe) A (prevBal > completeBal)) {
b3: Send( [type — “1a”, bal — self , prevBal — prevBal]) ;
either with (msg € {m € MsgsRcvd With([type — “1b”,
voteBal — prevBal]) :
m.val # None}){
safeVal : = msg.val }
or await 3 Q € RQuorums(prevBal) : Ya € Q :
MsgsRcvd With([type — “1b”,
bal — self,
voteBal — prevBal,
val — None,

acc — al) # {};

prevBal := prevBal — 1; };
bd:  if (safeVal # AllSafe) {

Send( [type — “2a”, bal — self , val — safeVal]);
b5: await 3 @ € WQuorums(self) :

VaceQ:
MsgsRcvd With([type — “2b” | acc — a, bal — self])
7 b

b6:  Send( [type — “complete”, bal — self]);
b7 if (safeVal = AllSafe) {

with (msg € MsgsRcod With( [type — “clientReq”])) {

Send( [type — “2a”, bal — self, val — msg.val]); } } }

Figure 2: The leader processes of Vertical Paxos I.



process (MasterProc = Master)
variable completeBallot = 0, nextBallot = 0; {

ml:  while (TRUE) {
either {Send( [type — “newBallot”, bal — nextBallot,
completeBal — completeBallot]) };
nextBallot : = nextBallot + 1; }

or with (msg € MsgsRcvdWith( [type — “complete”])) {
if (msg.bal > completeBallot) {
completeBallot : = msg.bal; } } } }

process (Acceptor € Acceptors)
variables vote = [b € Ballots — None|; mazBallot =0; {
al:  while (TRUE) {

either with (msg € MsgsRcvd With([type — “13”])) {
if (msg.bal > mazxBallot) {
mazxBallot : = msg.bal ;

Send( [type — “1b”, acc — self,
bal — msg.bal, val — vote[msg.prevBal],
voteBal — msg.prevBal]) } }

or with (msg € MsgsRcvd With( [type — “2a”])) {
if (msg.bal > mazBallot) {
mazxBallot : = msg.bal ;
vote[msg.bal] : = msg.val;

Send( [type — “2b”, acc — self,
bal — mazBallot, val — msg.val]) } } } }

process (Client € Clients) {

cl:  with (v € PValues) {
Send( [type — “clientReq”, val — v]) } } }

Figure 3: The master process and the acceptor and client processes of Vertical Paxos 1.



process (BallotLeader € Nat \ {0})
variables prevBal, safeVal; {

bl:  with (msg € MsgsRcvd With( [type — “newBallot”, bal — self])) {
prevBal : = msg.prevBal ;
Send( [type — “1a”, bal — self , prevBal — prevBal]); }

b2:  either with (msg € {m € MsgsRcod With([type — “1b”,
voteBal — prevBal)) :
m.val # None}){
safeVal := msg.val }
or await 3 @ € RQuorums(prevBal) : Ya € Q :
MsgsRcvd With([type — “1b”,
bal — self,
voteBal — prevBal,
val — None,

acc — al) # {};

b3:  if (safeVal # AllSafe) {

Send( [type — “2a”, bal — self , val — safeVal]);
b4: await 3 Q € WQuorums(self) :

Vae @ :
MsgsRcvd With([type — “2b”, acc — a, bal — self])
#{}: b

b5: Send( [type — “complete”, bal — self, prevBal — prevBal]);
b6:  await HasRcvd( [type — “activated”, bal — self]);
b7 if (safeVal = AllSafe) {

with (msg € MsgsRcvd With( [type — “clientReq”])) {

Send( [type — “2a”, bal — self, val — msg.val]); } } }

Figure 4: The leader processes of Vertical Paxos II.
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process (MasterProc = Master)
variable curBallot = 0, nextBallot =1; {

ml:  while (TRUE) {

either {Send( [type — “newBallot”, bal — msg.bal,;
prevBal — curBallot] ) ;
nextBallot : = nextBallot + 1; }

or with (msg € MsgsRcvd With( [type — “complete”])) {
if (msg.prevBal = curBallot) {
Send( [type — “activated”, bal — msg.bal] );
curBallot : = msg.bal; } } } }

Figure 5: The master process of Vertical Paxos II.

5 Vertical Paxos and Other Primary-Backup Protocols

Primary-backup replication protocols are common in practical distributed systems. Niobe [9],
Chain Replication [10], and the Google File System [3] are three examples of such protocols that
have been deployed in systems with hundreds or thousands of machines. While these protocols are
seemingly unrelated, the first two can be viewed as Vertical Paxos algorithms. The Google File
System does not provide consistency, so it is not an instance of Vertical Paxos; but it could be
made consistent by using Vertical Paxos.

Niobe follows the Vertical Paxos II protocol closely. Each replica forms a read quorum, while the
entire replica set constitutes a write quorum. Reconfiguration uses a global-state manager, with the
configuration numbers corresponding to the ballot numbers in Vertical Paxos II. Niobe incorporates
certain simple optimizations of Vertical Paxos. For example, when the primary removes a faulty
backup from the configuration, no change of configuration number or state transfer is needed. This
is because in Vertical Paxos with a single write b-quorum, the master can at any time remove
acceptors from that b-quorum. Niobe also allows the primary to handle query operations locally,
as described in Section 3.

Chain Replication imposes an additional chain structure on a replica group. An update arrives
at the head of the chain and propagates down the chain to the tail. An update message carries
both the phase 2a message and phase 2b messages along the chain. When it arrives at the tail, it
contains the phase 2b messages telling the tail that its vote makes the update chosen. This allows
Chain Replication to use the tail, instead of just the head, to process queries locally. The chain
structure also makes it easy to perform reconfigurations that add a replica to the tail or remove
the head or tail. Like Niobe, Chain Replication uses an external master for reconfiguration and
follows the Vertical Paxos II protocol, maintaining one active configuration.

The Google File System (GFS) implements the abstraction of reliable distributed files and is
optimized for append operations. A file consists of a sequence of chunks, each replicated on a
(possibly different) set of servers. A master tracks the composition of each file and the locations
of its chunks. GFS superficially resembles Vertical Paxos I in having multiple configurations active
concurrently, each operating on a different chunk. However, GF'S does not guarantee state-machine
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consistency—even for operations that involve only a single chunk. GFS can be made consistent,
mainly by changing how operations to an individual chunk are implemented. This can be done by
making each chunk a separate state machine implemented with Vertical Paxos. While we do not
know the precise algorithm used by GFS, we expect that this change would not seriously degrade
its performance.

There are quite a few different primary-backup protocols. We believe that each one that guar-

antees state-machine consistency can be described, and its correctness demonstrated, by viewing
it as an instance of Vertical Paxos. Vertical Paxos may also lead to interesting new algorithms,
including ones that do not use a single write quorum for each ballot and are thus not traditional
primary-backup protocols.
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