Exploiting the Synergy between Automated-Test-Generation and
Programming-by-Contract

Mike Barnett, Manuel Fahndrich, Peli de Halleux, Francesco Logozzo, and Nikolai Tillmann
Microsoft. Research, One Microsoft Way, Redmond, WA, 98052-6399, USA

{mbarnett, maf, jhalleux, logozzo, nikolait}@microsoft.com

Abstract

This demonstration presents two tools, Code Con-
tracts and Pez, that utilize specification constructs for
advanced testing, runtime checking, and static checking
of object-oriented .NET programs.

1. Introduction

Over the last few years we have been working on in-
fluencing the way programmers develop .NET software
through two related projects: Code Contracts and Pex.
Code Contracts provides a specification technique for
expressing method pre- and postconditions as well as
object invariants. These specifications are then used
for runtime checking and static checking. The spec-
ifications are also understood by the advanced unit-
testing tool, Pex. Pex performs a white box code anal-
ysis using a constraint solver to determine relevant test
inputs. Preconditions allow pruning of irrelevant test
inputs, and postconditions guide test generation and
allow detecting bugs; object invariants serve both pur-
poses. Furthermore, Pex enables the concept of Param-
eterized Unit Tests which are essentially parameterized
usage scenarios annotated with specifications to state
assumptions and assertions. The result of Pex’s anal-
ysis is a small unit test suite which often achieves high
code coverage.

Both tools can be invoked through the command-
line, and they integrate with Microsoft Visual Studio
through add-ins.

2. Specification Language

We are targeting the specification language and
tools at the general developer, not the verification en-
thusiast. It is thus important to use a single form of
specifications that meets three simultaneous goals:

1. Specifications serve as documentation. They must
be as readable as possible.

2. Specifications should be executable. This moti-
vates writing specifications for testing and imme-
diate perceived benefit, without consideration of
static verification.

3. Specifications simplify static verification.

Our specification approach is language-agnostic: we
use idiomatic code written in the developer’s source
language to express them. Preconditions and post-

int Increment(int value, string label) {
Contract. Requires(value > 0);
Contract. Requires(label ! = null);
Contract.Ensures(Count ==
Contract.OldValue(Count) + value);
Contract.Ensures(Contract. Result<int>()
== Contract.OldValue(Count));

Figure 1. An Increment specification in C#

conditions are expressed as calls to the static methods
Contract. Requires and Contract.Ensures. Special dummy
methods are used to refer to the method’s return value
as well as referring to the old value of an expression,
meaning the value of the expression on method entry.
The conditions in the example in Figure 1 are written
in C# expression syntax.

A language-agnostic approach has many advantages:

e Developers need not learn a new language for spec-
ifications. Predicates are boolean conditions ex-
pressed in the source language.

e No new front-ends or compilers are required. Stan-
dard compilers directly translate contracts into
NET intermediate language (MSIL). As a ben-
efit, compilers check the syntax and typing of con-
tract conditions, thus avoiding errors in specifica-
tions, such as unresolved names, that would arise
if the specifications were written in comments or
attributes.

e Standard development environments help writing
specifications in the same way they help writing
other code, via highlighting, intellisense, comple-
tion, etc.

e The semantics of contracts is defined by that the
semantics of the generated MSIL. The compiled
code acts as a persisted format of specifications
consumable by a variety of tools.

The language independence extends from the specifica-
tion language to the tools themselves as they consume
the generated MSIL rather than on the source.

3. Runtime Contract Checking

In a post-build step, the compiled binaries contain-
ing the calls to the contract methods are transformed
by having each specification injected at the appropriate
program points. For instance, method postconditions
are moved to the exit points of each method and calls
to Contract.Result are replaced with the return value
of the method. At the beginning of each method, argu-
ments to Contract.OldValue are evaluated and stored
into locals which then replace those method calls within
the postcondition-checking code.

In addition, contracts from supertypes and inter-
faces are inherited by subtypes and interface imple-
mentations. This provides the basis for enforcing be-
havioral subtyping [2], which is required for modular
checking.

4. Static Checking

Our static checker is based on abstract interpreta-
tion rather than SMT solvers traditionally used for pro-
gram verification, in order to automate the generation
of loop invariants and strongest postconditions.

Although we use modular verification which, in prin-
ciple, requires specifications at all method boundaries,
we use techniques to infer pre- and postconditions
whenever possible.

The existing abstract domains provide an analy-
sis that checks for null dereferences, array indexing,
arithmetic overflow, in addition to user-defined general
properties.

5. Test Generation

Pex [5] is an automatic white-box test generation
tool for .NET. Starting from a designated method,
Pex explores the statements of all transitively reach-
able callees using dynamic symbolic execution [1]. Pex
uses a constraint solver to compute test inputs that ex-
ercise particular program paths. Pex employs heuristic
search strategies to select paths that are likely to be

feasible and exhibit different program behaviors. As a
result, Pex often finds relevant test inputs quickly and
fully automatically, while still exercising all feasible ex-
ecution paths eventually.

When trying to determine relevant execution paths,
Pex considers explicit conditional branch statements
as well all operations that can cause exceptional con-
trol flow changes as a side effect. Furthermore, Pex
leverages preconditions, postconditions, and object in-
variants as follows. The compiled binaries are trans-
formed by a post-build step as described earlier, so
that all specifications are injected. This results in addi-
tional conditional program branches which distinguish
the case when the specification holds from the case
where it does not hold. As a result, Pex will try to
exercise both cases during its program analysis. When
test inputs cause a top-level precondition or object in-
variant violation, these test inputs are discarded and
are not shown to the user. In all other cases of specifi-
cation violations, the result is a test case that is flagged
as a failure.

The analysis produces a set of unit tests, saved in
a file as source code. Each test sets up particular test
input, and then calls the entry point method. Pex can
be configured to support the unit test idioms of vari-
ous unit testing frameworks, including NUnit [3] and
MSTest [4].

6. Parameterized Unit Testing

A parameterized unit test (PUT) is simply a method
that takes parameters, states assumptions on the argu-
ments, performs a sequence of method calls that exer-
cise the code-under-test, and asserts properties of the
code’s expected behavior. PUTs are a generalization
of traditional unit tests. While preconditions, postcon-
ditions, and object invariants can only express speci-
fications that must hold at method boundaries, PUTs
allow to express properties that span multiple method
calls.

7. Synergies

We already touched upon how runtime checked con-
tracts improve automated test generation by providing
more assumptions and test outcomes. A drawback of
static checking is the presence of false warnings and
the effort to determine whether a warning is warranted
or not. Pex often helps alleviate this problem by be-
ing able to point out inputs to a method that actu-
ally trigger the violation. Pex reports the issues as
source code that can be debugged immediately by the
developer. Furthermore, Pex can suggest new precon-
ditions at appropriate places to avoid problems it finds,

QuickGraph™ | [EdgeContract.cs | [EdgeSetContract.cs & ContractClassAttr...e [from metadata] @ [EdgeSet.cs & | IGraph.cs &

1l
X

Platform: | Active (Any CPU) -

Application

Configuration: | Active (Debug) 'I
Build
Build Events Runtime Checking

Perform Rurtime Contract Checking | Full -

D Custom Rewrter Methods
Resources Assembly
Services Static Checking
Settings [T Perform Static Cortract Checking
Reference Paths
Signing
Code Analysis

Code Contracts™ [Build a Contract Reference Assembly

Advanced

LibPaths

Altemate mscorib

Custom Options

Figure 2. The Code Contact User Interface

thereby strengthening the specifications and closing the
cycle.

8 Demonstration Description

The demonstration will consist of a tag-team talk
between a member of the code contract team and a
member of the Pex team. During the demonstration,
we will live author code and run the static analysis
tool, which will point out errors. We will use Pex to
find counter examples that exhibit the erroneous be-
havior. To guard against these errors, we will author
more contracts, in particular object invariants. Run-
ning our tools again, will find more places where the
code is either incomplete or wrong and we will author
live fixes. We also show how Pex is used to obtain a
series of unit tests that provide very high-coverage of
the module being developed.

9 Screenshots

Figure 2 shows the contract user interface in Visual
Studio. The UI allows the programmer to enable run-
time checking and/or static checking. The integration

Function Increment(ByVal value As Integer) As Integer
Contract. Requires(value > 0)
Contract. Requires(label IsNot Nothing)
Contract.Ensures(Count
= Contract.OldValue(Count) +
Contract.Ensures(Contract. Result(Of Integer)()
= Contract.OldValue(Count))

value)

Figure 4. An Increment specification in Visual
Basic

in the IDE manages all the extra build steps transpar-
ently.

As an example of the language-agnostic approach,
the same specification as in Figure 1 can be written in
Visual Basic as shown in Figure 4.

Figure 3 shows the output of Pex during test gener-
ation. Test entries in the list on the left marked green
are succeeding tests, while red ones are failing tests.
Test number 4 found an input that violated the invari-
ant of a binary heap.

Figure 5 shows the default contract failure behavior

J/ the parent node i= 'smaller' that it's 2
// heap[parent] < heap[left child]
< heap[right child]

ntractInvariantMethod]
protected void ObjectInvariant() {
ntract.Invariant (
ntract.ForAll {

0,

this.items.Count, i => {

return

1)

{2 # 1 + 1 > this.items.Count
{2 * 1 + 2 > this.items.Count

children

11 &&

this.Less(i, 2 * i + 1))

thisz.Less(i, 2 * 1 + 2)):

4 |

e k

| Pex Exploration Results - stopped - 2 failed, 118 runs

1 exploration: 4

HeapTTest.Add<Int32> (Heap1<!10> target, /0[] va - @

b @ (8- sy | Views -

‘ Review bold issues: Global Events || All Tests |¢=] 2 Failed Tests | All Events “TZ 1 Object Creation \};BE Boundaries

Error Message

TraceAssertionException Invariant failed: Contract.ForAll{0, this.items.Count, i => {return (2

TraceAssertionException Invariant failed: Contract.ForAll(0, this.items.Count, i => {return (2

target values Summary/Exception
@ 2 newHeap{} {0}
@ 3 newHeapl} 10,0}
wj 4 newHeap{} {16777225,-536035326}
@ 5 newHeapl} 10,00}
@ 6 newHeap{} {0,0,0,0000}
w(;‘j' 7 newHeap{} {0,1073741824,0,0,0, ..
j 8 newHeap{} {lLength=30:0,0,0,0,0,0. path bounds exceeded

Figure 3. Screenshot of Pex Output

when runtime checking of contracts is enabled. In this
case, an invariant was violated.

Figure 6 shows the output produced by a run of the

static contract verifier.

References

(1

2l

3]

4]

P. Godefroid, N. Klarlund, and K. Sen. DART: di-
rected automated random testing. SIGPLAN Notices,
40(6):213-223, 2005.

B. H. Liskov and J. M. Wing. A behavioral notion of
subtyping. ACM Trans. Prog. Lang. Syst., 16(6):1811—
1841, Nov. 1994.

Michael C. Two, Charlie Poole, Jamie Cansdale, Gary
Feldman, James W. Newkirk, Alexei A. Vorontsov and
Philip A. Craig. NUnit. http://www.nunit.org/.
Microsoft. Visual Studio Team System, Team
Edition for Testers. http://msdn2.microsoft.com/en-
us/vsts2008/products/bb933754.aspx.

N. Tillmann and J. de Halleux. Pex - white box test
generation for .NET. In Proc. of Tests and Proofs
(TAP’08), volume 4966 of LNCS, pages 134-153, Prato,
Ttaly, April 2008. Springer.

m

Assertion Failed: Abort=Quit, Retry=Debug, Ignore=Continue

fm"_"\.l Invariant failed: this.Denominator > 0
L 4

at _ RewriterMethods.Rewriterlnvariant(Boclean condition, String
message)

at PositiveDenominatorRational Positivellenominatorlnvariant()
CATmp'rat\PositiveDenominatorRational.cs(35)

at PositiveDenominatorRational . Divide(Int32 divisor)
Ch\Tmp'rat\PositiveDenominatorRational .cs(29)

at Samplel.Main(String[] args) C\tmphrat\Program.cs(18)

at AppDomain._nExecutefssembly(Assembly assembly, String[] args)

at HostProc.RunUsersAssembly()

at ExecutionContext.Run(ExecutionContext executionContest,
ContextCallback callback, Object state)

at ThreadHelper. ThreadStart()

Abort

Figure 5. Example of Runtime Contract Failure

Error List
|-a 0 Errorsl |J‘_\,12Warnings| |‘1) 0 Messages

Description

invariant unproven

lecation related to previous warning
invariant unproven

lecation related to previous warning
requires unproven

location related to previous warning
ENSUIES UNProven

location related to previous warning

w0l = o bn e ke

FEqQUIres UNproven
10 location related to previous warning

11 invariant unproven

EEEEEEEBEERERELEBEREEBE

12 location related te previous warning

File
Rational.cs
CodeContracts.Samples.Rati
Rational.cs
CodeContracts.5amples.Rati
Rational.cs
Rational.cs
Rational.cs
Rational.cs

Rational.cs

Line

22

22

14
37
54
60
14

PositiveDenominatorRationz 11

PositiveDenominatorRationz 35

PositiveDenominatorRatione 30

Figure 6. Example of Static Checker Output

Column

7

b =1 bn = n o= =] =]

Project
Rational
Ratienal
Raticnal
Rational
Rational
Rational
Rational
Rational
Ratienal
Raticnal
Rational

Raticnal

