
Differential Privacy and Robust Statistics

Cynthia Dwork
Microsoft Research

dwork@microsoft.com

Jing Lei∗
Department of Statistics

University of California, Berkeley
jinglei@stat.berkeley.edu

ABSTRACT
We show by means of several examples that robust statis-
tical estimators present an excellent starting point for dif-
ferentially private estimators. Our algorithms use a new
paradigm for differentially private mechanisms, which we
call Propose-Test-Release (PTR), and for which we give a
formal definition and general composition theorems.

Categories and Subject Descriptors
H.2.0 [Information Systems]: Database Management—
security, integrity and protection; G.3 [Mathematics of
Computing]: Probability and Statistics—statistical com-
puting

General Terms
Algorithms, Security and Theory

1. INTRODUCTION AND BACKGROUND
Over the last few years a new approach to privacy-preserving

data analysis, based on differential privacy [6, 4], has born
fruit [7, 1, 6, 14, 13, 2]. Intuitively, this notion says that any
possible outcome of an analysis should be “almost” equally
likely, independent of whether any individual opts in to, or
opts out of, the data set. In consequence, the specific data
of any one individual can never greatly affect the outcome
of the analysis. General techniques for ensuring differential
privacy have been developed; in particular [6] show that for
an analysis f : D → Rk it is sufficient to add Laplacian noise
to each of the k outputs that is calibrated to the sensitiv-
ity of f , roughly, the worst-case over all D of the amount
by which the data of any single individual can change the
output of f . Many analyses can be formulated as insensi-
tive functions, permitting high-quality differentially private
results. However, the design of insensitive algorithms can
require considerable re-thinking of existing algorithms.

∗Much of this work was done while this author was sup-
ported by Microsoft Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’09,May 31–June 2, 2009, Bethesda, Maryland, USA.
Copyright 2009 ACM 978-1-60558-506-2/09/05 ...$5.00.

In this work we turn to a field in which considerable care
has already been given to ensuring some kind of probabilis-
tic insensitivity: robust statistics. We focus on parameter
estimation, a branch of statistics that assumes data come
from a parameterized family of probability distributions and
makes inferences about the parameters of the distribution.
Most well-known elementary statistical methods are para-
metric. For example, given data samples x1, . . . , xn drawn
from a normal distribution F ∈ F = {N (θ, 1)}θ∈R, the goal
is to estimate θ and a simple method averages the samples.
Robust statistics is concerned with resilience against out-
liers and small errors in data measurement. A more robust
method for estimating θ is to compute the sample median.
More generally, robust statistics recognizes that real life does
not match ideal conditions, and even the “best” distribution
in F is only an approximation to the distribution underlying
real data. We show by means of several examples that ro-
bust statistical estimators present an excellent starting point
for differentially private estimators.

1.1 Robust Estimators and The Influence
Function

Let T be a statistical estimator for θ; very roughly, this is
a procedure that maps data samples to a real number, or a
vector of real numbers, that approximates θ. Given n data
points D = {x1, . . . , xn}, the statistical estimator T can be
viewed as a function on the set of data points: T (x1, . . . , xn),
which is apparently random. However, most (reasonable)
statistical estimators will converge to a non-random quantity
as the sample size n tends to infinity. This limiting quantity
depends only on the distribution F , and is denoted T (F). As
a result, a statistical estimator can be viewed as a functional
mapping the space of distribution functions to Euclidean
space [9]. For example, suppose X ∈ R1 and Formally,
robustness is captured via the influence function IF(x, T ; F),
an asymptotic notion describing how the estimator T applied
to a distribution F changes if we introduce an infinitesimal
contamination at x:

IF(x, T ; F) = lim
t→0

T ((1− t)F + tδx)− T (F)

t
.

Typically, a robust estimator has bounded influence func-
tion [11, 9].

1.2 From Statistical Robustness to Privacy
Always: Propose-Test-Release

Theorems about robustness typcially assume that there
exists an underlying distribution that is “close to” the distri-
bution from which the data are drawn, that is, that the real

life distribution is a contamination of a “nice” underlying
distribution. The resulting claims of insensitivity are there-
fore probabilistic in nature. On the other hand, to ensure
privacy always, we must cope with worst-case sensitivity.
We address this by including explicit, differentially private,
tests of the sensitivity of our computations on the given data
set. A little more precisely, the algorithm proposes a bound
on sensitivity, either working with a default proposal guided
by the proof of robustness or obtaining the proposal by en-
gaging in preliminary differentially private computations; it
then tests the adequacy of the proposed bound, again in a
privacy-preserving fashion. If the response indicates high
sensitivity, the algorithm outputs “⊥” and halts1. Since this
decision is made based on the outcome of a differentially
private test, no information is leaked by the decision itself.
If the response indicates the proposed bound is adequate,
then the quantity is computed and noise is added accord-
ing to a Laplace distribution with parameter depending on
the proposal. We call this the Propose-Test-Release (PTR)
paradigm.

Because our algorithms may halt, we need to show that
in the statistical setting the algorithms not only produce
answers, but in fact produce very accurate answers. For
this, we again rely on the robustness of the estimators. The
intuition for high accuracy is as follows. The robust esti-
mators have the property that, for any given distribution
F satisfying certain mild assumptions, with overwhelming
probability over the choice of the database drawn from F n,
the local sensitivity – how much the value of the estimator
can change if a single datum is modified – is a random vari-

able g(n) such that ng(n)
d→ f , where f is random and its

distribution depends only on the unknown underlying dis-
tribution F , independent of n.

1.3 Additional Related Work
Nissim, Raskhodnikova, and Smith exploit low local sen-

sitivity to improve accuracy of differentially private analyses
in favorable cases [14]. They employ an insensitive method
of upper bounding the local sensitivity and then add noise
calibrated to the computed bound. Their algorithms al-
ways yield a response. However, their techniques can be
surprisingly non-robust, yielding large noise even in some
ideal cases. For example, in releasing the median a single
exponentially far outlier may cause noise exponential in n,
even in databases with 0 local sensitivity.

We have recently learned of the slightly older work of
Heitzig, which uses a procedure inspired by the Quenouille-
Tukey Jackknife technique to estimate local sensitivity, and
then publishes either a correspondingly large range of val-
ues containing the true answer or a random perturbation
scaled to this quantity [10]. No formal privacy guarantees
are provided and composition is not addressed.

In parallel with our efforts, Smith [16] showed that for
well-behaved parametric probability models one can con-
struct an efficient (in the statistical sense) and unbiased esti-
mator whose distribution converges to that of the maximum
likelihood estimator.

The approach to robustness based on influence functions
is due to Huber [11]; see also [9].

1High sensitivity of an estimator for a given data set may be
an indication that the statistic in question is not informative
for the given data set, and there is no point in insisting on
an outcome.

2. DEFINITIONS
A database is a set of rows. We say databases D and D′

are adjacent, or are neighbors, if their Hamming distance
is 1.

Definition 1. [5] A randomized function K gives (ε, δ)-
differential privacy if for all pairs of adjacent databases D
and D′, and all S ⊆ Range(K),

Pr[K(D) ∈ S] ≤ exp(ε)× Pr[K(D′) ∈ S] + δ

The probabilities are over the coin tosses of K.

In this work we always have δ = δn ∈ ν(n), that is, δn

grows more slowly than the inverse of any polynomial in
the database size. Following common parlance, we say that
δ is negligible. In the special case that δ = 0 we say the
algorithm has ε-differential privacy.

Definition 2. For f : D → Rd, the L1-sensitivity of f
is ∆f = maxD,D′ ‖f(D) − f(D′)‖1, where D and D′ are
neighbors.

The Laplacian distribution with parameter b, denoted Lap(b),
has probability density function p(x) = exp(−|x|/b)/2b and
cumulative distribution function D(x) = (1/2)(1+sgn(x)(1−
exp(|x|/b))).

Theorem 3 ([6]). Let D denote the universe of databases.
For f : D → Rk, the mechanism Kf that on input a database
DB computes f(DB) and then adds independently generated
noise with distribution Lap(∆f/ε) to each of the k output
terms and outputs these k sums, enjoys ε-differential pri-
vacy.

Additional Notation.
We use the following notation and terms.

C (also C′): some general measurable space containing the
range of the query function.2 Usually we can think of C as
Rd for some integer d, e.g., in our examples of scale, median,
regression, etc. The notation C (C′) may refer to different
spaces in different expressions.
D and D′: a pair of adjacent databases.
D: the space of all databases.
F : a cumulative distribution function.
n: the size of database D, assumed to be publicly known.
“Change a data point” means modifying the value of a data
point, keeping n fixed.
The notation ||x|| denotes the L2 norm of the vector x.

In our results there are two sources of randomness, the coin
flips made by the algorithms, and randomness in the gener-
ation of the database. In the privacy arguments we always
treat the databases as non-random. We use the convention
P (·) to denote the probability of a certain random event
in the algorithm when the input database is D, while P ′(·)
refers to the probability when the input database is D′. Sim-
ilarly p(X = x) (p′(X = x)) denotes the probability density
of random variable X at x, with the input database D (D′);
for example, we might have X = T (D). Here, again, the
randomness is provided by the algorithm and the database
is considered to be fixed. Note that sometimes the random

2We do not worry about measurability. That is, for the
sets considered in this paper we always assume they are
measurable in the corresponding probability space.

variable has both a continuous part and a discrete part; then
p(X = x) denotes the density if x is in the continuous part
and the probability mass if x is in the discrete part. In par-
ticular, when T : D → R ∪ {⊥}, p(T (D) = 3.14159) is an
example of the continuous part, and p(T (D) = ⊥) is an ex-
ample of the discrete part. In the first case the expression
denotes density, in the second it denotes probability mass.
Our statements about privacy will be in terms of P (·) and
P ′(·).

The second source of randomness is the randomness in creat-
ing the database. We use PF (·) to denote the probability of
an event over samples from F . We also use EF (·) to denote
expectation taken over choice of a database consisting of in-
dependent random samples from an underlying distribution
F . P̃ (·) refers to the probability considering both sources of
randomness. Our statements about utility will be in terms
of P̃ (·).

Let an be a (random) sequence. We say an = OP (1) if for
any ε > 0, there exists M , such that P (|an| > M) < ε for
all n. In addition, if an, bn are two random sequences we
say an = OP (bn) if an/bn = OP (1).

3. THE SCALE
Our algorithm for data scale (dispersion) is the funda-

mental building block on which all our algorithms rest, and
its analysis yielded the seeds of the Propose-Test-Release
framework.

The interquartile range (IQR) [8] is a well-known robust
estimate for the scale of the data. Consider the following
rough intuition. Suppose the data are i.i.d. samples drawn
from a distribution F . Then IQR(F), defined as F−1(3/4)−
F−1(1/4), is a constant, depending only on F . It might be
very large, or very tiny, but either way, if the density of F
is sufficiently high at the two quartiles, then given enough
samples from F the sample interquartile distance should be
close to IQR(F).

At a high level, the algorithm first tests how many points
need to be changed to obtain a data set with a “sufficiently
different” interquartile distance. Only if the (noisy) reply is
“sufficiently large” will the algorithm release an approxima-
tion to the interquartile range of the dataset. The definition
of “sufficiently different” is multiplicative as an additive no-
tion for difference of scale makes no sense – what would
be the right scale for the additive amount? The algorithm
therefore works with the logarithm of the scale. This leads
to a multiplicative noise on the IQR. However, the accu-
racy can be improved, as we will see later, since any quan-
tile (which therefore includes the IQR) can be released with
small additive noise after this coarse IQR estimate. For the
base of the logarithm we choose 1 + 1/ ln n, as we now ex-
plain. Let IQR(D) denote the sample interquartile range
when the the data set is D. If the data are drawn i.i.d.
from a distribution F , then the deviation of the sample in-
terquartile range IQR(D) from IQR(F) is OPF (1√

n
), and

also ln(IQR(D)) − ln(IQR(F)) = OPF (1√
n
).3 In order to

achieve differential privacy, the proposed magnitude of the
additive noise for the logarithm of sample interquartile range
must be large enough to dominate 1√

n
, the deviation term

3Consider ln(x) as a function of x. Its derivative is 1/x.
Then for y close to x we have, ln(y) − ln(x) = (y − x)/x +
o(y − x). Now take x = IQR(F) and y = IQR(D).

ln(IQR(D))− ln(IQR(F)). On the other hand, for the sake
of good utility the noise should be small. From this perspec-
tive 1

ln n
> 1√

n
seems a good choice. We use ln(1 + 1/ ln n),

which is close to 1/ ln n but which makes the calculation
easier.4

To test whether the magnitude of noise is sufficient for dif-
ferential privacy, we discretize R into disjoint bins {[kwn, (k+
1)wn)}k∈Z, where the interval length wn = ln(1 + 1/ ln n).
Note that looking at ln(IQR(D)) on the scale of wn is equiv-
alent to looking at log1+ 1

ln n
(IQR(D)) on the scale of 1, and

here the scaled bins are just intervals whose endpoints are

a pair of adjacent integers: B
(1)
k = [k, k + 1), k ∈ Z. Let

Hn(D) = log1+ 1
ln n

(IQR(D)). Then we can find k1 such

that Hn(D) ∈ [k1, k1 + 1). Consider the following testing
query:

Q0 : How many data points need to change in order to get

a new database D̂ such that Hn(D̂) /∈ B
(1)
k1

?

Let A0(D) be the true answer to Q0. If A0(D) ≥ 2, then
neighbors D′ of D satisfy |Hn(D′) − Hn(D)| ≤ 1; that is,
they are close to each other; however they may not be in the
same interval in the discretization, for example, if Hn(D)
lies close to one of the endpoints of the interval [k1, k1 + 1).
Letting R0 = A0(D) + Lap(1/ε), a small R0 might indicate
high sensitivity of the interquartile range. To cope with
the case that a small R0 is encountered only because of the
boundary problem just described, we consider second dis-

cretization {B(2)
k = [k − 0.5, k + 0.5)}k∈Z. We denote the

two discretizations by B(1) and B(2) respectively.
Algorithm S(D, n, ε):
1. For the jth discretization (j = 1, 2):
a. Compute R0(D) = A0(D) + z0, where z0 ∈R Lap(1/ε).5

b. If R0 ≤ ln2 n + 1, let s(j) = ⊥. Otherwise let s(j) =

IQR(D)× (1 + 1
ln n

)z
(j)
s , where z

(j)
s ∼ Lap(1/ε).

2. If s(1) 6= ⊥, return s(1); Otherwise return s(2).
The algorithm can be optimized by only computing s(2)

if s(1) = ⊥. The algorithm has a special form, which we
call a cascade (several computations are performed and the
output is the first non-⊥ result). We discuss this further in
Section 5.

Theorem 4. (a) Algorithm S is (3ε, n−ε ln n)-differentially
private. (b) Assuming the data are sorted Algorithm S runs

in O(n) time. (c) If D = (X1, ..., Xn), where Xi
iid∼ F and

F is differentiable with positive derivatives at both the lower
and upper quartiles, then P̃ (S(D) = ⊥) = O(n−ε ln n), and

S(D) − IQR(F)
P̃→ 0. (d) Under the same conditions as in

(c), for any α > 0,

P
(
S(D) ∈ [n−αIQR(D), nαIQR(D)]

)
≥ 1−O(n−αε ln n)

whence
P̃
(
S(D) ∈

[
1
2
n−αIQR(F), 2nαIQR(F)

])
≥ 1−O(n−αε ln n).

4Actually Ω(n−1/2+γ) with some small γ > 0 would work,
here we just explain the feasibility but not focus on the op-
timality of the magnitude of noise. This is also true for our
median and regression algorithms.
5IQR(D) = 0 is fine, since one can define log 0 = −∞,
b−∞c = −∞, and let [−∞,−∞) = {−∞}.

Proof. (Sketch.) (a): Privacy. There are two inter-
esting parts to the proof of privacy. First, letting s be
shorthand for the result obtained with a single discretiza-
tion, and defining D0 = {D : A0(D) ≥ 2}, we show that
for all C ⊆ R+ and D ∈ D0, P (s ∈ C) ≤ e2εP ′(s ∈
C). It follows that if D ∈ D0, then ∀s0 ∈ R+ P (s ∈
ds0) ≤ e2εP ′(s ∈ ds0). The algorithm tests that D is
“deep” inside D0, so the threat to privacy is an erroneously
large R0 = A0(D) + Lap(1/ε), which occurs with proba-
bility at most δ = 1

2
n−ε ln n. Thus, we get (2ε, δ) privacy

for each discretization. A general composition result for
(ε, δ)-differential privacy (Theorem 16) immediately yields
(4ε, 2δ) privacy; however, the special form of Algorithm S
as a cascade can be exploited to yield the smaller bound
(Theorem 17).

(c): Good Behavior in Statistical Settings. Let q1 and
q2 be the lower and upper quartiles of F , respectively. Let
lj = qj −n−1/3, rj = qj +n−1/3, l′j = qj − 2n−1/3, r′j = qj +

2n−1/3, for j = 1, 2. Since F is differentiable with positive
derivatives at the two quartiles one can find constant ξ > 0
which depends only on F , such that for large enough n (1)

r′1 < l′2; (2) F ′(x) > ξ, for all x ∈ [l′1, r
′
1]∪[l′2, r

′
2]; (3) ξn2/3 >

4 ln2 n + 4; and (4)
(

r′2−l′1
l′2−r′1

)4

< 1 + 1
ln n

. Intuitively, (4) is

reasonble because (IQR(F)+4n−1/3)/(IQR(F)−4n−1/3) is
very close to 1; more to the point it ensures that

log1+1/ ln n(IQR(F)+4n−1/3)−log1+1/ ln n(IQR(F)−4n−1/3)

is less than 1/4, whence the two logarithms will lie in the
same bin in at least one of the discretizations.

We consider the following two random (over the draw of D
from F) events, E1 = {q1(D) ∈ (l1, r1), q2(D) ∈ (l2, r2)} and

E2 := {ρ ≥ 1
2
ξn2/3}, where ρ := minj min{|D∩ (l′j , lj)|, |D∩

(rj , r
′
j)|}. We argue that both events occur with all but

negligible in n probability (over n random draws of F); the
argument for E1 uses a well known result about the devia-
tions of the empirical distribution (see [12]), and that for E2

relies on Hoeffding’s inequality.
Now consider Hn(F) and the intervals covering it. We say

that a point is well covered by an interval if it is inside that
interval and at least 1

4
away from both endpoints. There are

two discretizations, so there are two bins covering Hn(F),

one in each discretization, namely B
(1)
k1

and B
(2)
k2

. By our

construction of B(1) and B(2), at least one of B
(1)
k1

and B
(2)
k2

well covers Hn(F).
Suppose Hn(F) is well covered by an interval B. On event

E1 ∩ E2, if one changes at most 1
2
ξn2/3 data points, letting

D̂ be the resulting database we still have qj(D̂) ∈ [l′j , r
′
j].

Therefore on E1 ∩ E2, |Hn(D̂) − Hn(F)| < 1
4

because of
the fourth criterion in our conditions on n. Apparently
|Hn(D)−Hn(F)| < 1

4
on E1 ∩ E2. So we have Hn(D) ∈ B

and Hn(D̂) ∈ B, with probability at least 1− c1e
−c2n1/3

.

Since at least one of B
(1)
k1

and B
(2)
k2

well covers Hn(F), for

at least one discretization, we have A0(D) ≥ 2 ln2 n+2, with

probability at least 1−c1e
−c2n−1/3

. Thus the corresponding

sj is not ⊥ (note that n−ε ln n = ω(e−c2n1/3
) for any constant

c2). Thus we have the desired result: P̃ (S(D) = ⊥) =

P̃ (s1(D) = ⊥ and s2(D) = ⊥) = O(n−ε ln n). The claim

S(D) − IQR(F)
P̃→ 0 follows from consistency of sample

quantiles (i.e., that |IQR(D) − IQR(F)| converges to 0 in

probability), and the fact that (1+ 1
ln n

)z
(j)
s

P→ 1, for j = 1, 2.

(d): Rate of Convergence.

P
(
S(D) ∈ [n−αIQR(D), nαIQR(D)]

)
≥1− P (S(D) = ⊥)− 2P

(1 +
1

ln n

)z
(1)
s

/∈ [n−α, nα]


≥1−O(n−ε ln n)− 2P

(
|z(1)

0 | ln
(

1 +
1

ln n

)
> α ln n

)
≥1−O(n−ε ln n)− 2P

(
|z(1)

0 | > α ln2 n
)

=1−O(n−ε ln n)− 2n−αε ln n ≥ 1−O(n−c1 ln n).

Trimmed Mean and Median.
Let D = (x(1), . . . , x(n)) be an ordered data set, such that

x(i) ∈ R1, x(1) ≤ x(2) ≤ · · · ≤ x(n). For any α ∈ (0, 1), the
α-trimmed mean is defined as

mα(D) =

∑bn(1−α/2)c−1

i=dnα/2e+1 x(i)

bn(1− α/2)c − dnα/2e − 1
.

The differentially private version of the α-trimmed mean
is obtained easily from Algorithm S, modified to find the α
interquantile range. Assuming this has been done, and the
value sα has been returned, the value returned is

mα(D) +
sαnκz

(1− α)n− 2
,

where z is a random draw from Lap(1) and κ ∈ (0, 1) is a
parameter. It follows from the properties Algorithm S that

with probability 1−O(n−cn1/3
) we have sαnκ ≥ IQRα(D).

In the statistical setting, the additive noise in the estimated
α-trimmed mean is of order OPF (n−1+κ).

The median algorithm M has a scale input s which might
be empty. If the scale is empty, then the algorithm computes
a value for s using Algorithm S. If Algorithm S returns ⊥
then we output ⊥. Otherwise, we discretize the line with
bins of width h = sn−1/3 (or h = sn−1/2+γ for some small
γ > 0), and ask how much the database must change in
order to drag the median out of its current bin. If the answer
is less than ln2 n + 2, the algorithm outputs ⊥; otherwise,
noise is added to the median again according to a Laplacian
with parameter corresponding to the width of a bin (now a
function of the scale). For similar reasons to the previous
case, if the first discretization yields ⊥ we repeat the test
for sensitivity of the median using a discretization shifted
by h/2.

Theorem 5. (1) Algorithm M is (6ε, ν(n))-differentially
private. (2) The computation cost for M is O(n) assuming
the data are sorted. (3) Under the conditions in theorem 4
(c), and if F is differentiable with positive derivative at the
median, then

P̃ (M(D) = ⊥) = O(n−ε ln n),

and

M(D)
P̃→ m(F), as n →∞.

This algorithm works for general quantiles including those
needed to compute any interquantile range. Thus, we can
get a better interquartile range by first using Algorithm S to
get a coarse estimate of the data scale, and using the output
to compute the locations of the lower and upper quartiles.

4. LINEAR REGRESSION.
The linear regression model is

Y = XT β + φ

where Y ∈ R1, X, β ∈ Rp, P (||X|| > 0) = 1 , and φ ∈ R1

is independent of X and its distribution is continuous and
symmetric about 0.

The data set D = {(xi, yi)
n
i=1} consists of n i.i.d. sam-

ples from the joint distribution of (X, Y), and the inference
task is to estimate β∗, the true value of the model parameter
β. In this section we first introduce a simple short-cut re-
gression algorithm which fully utilizes the previous scale and
median algorithms, then we describe a differentially private
algorithm based on a particular robust regression estimator.

4.1 A Short-Cut Regression Method
The short-cut regression algorithm, RS , similar to an al-

gorithm proposed by Siegel (see Section 6.4.1 of [9]), is also
reminiscent of the Subsample-and-Aggregate framework of
Nissim et al. [14]. Here, we briefly describe the case in which
the data points are in the plane and we are seeking a line,
specified by 2 parameters β = (β1, β2), that describe the
dataset (the algorithm works in general dimension). As-
sume 2 divides n. The algorithm first randomly partitions
the n inputs into disjoint blocks of 2 data points each. An
approximation to (both coordinates of) β∗ is computed from
each block. E.g., for the block {(x1, y1), (x2, y2)}, the cor-

responding β = X−1Y = β∗ + X−1Φ = β∗ + φ̃, where
X = (x1, x2)

T , Y = (y1, y2)
T , Φ = (φ1, φ2)

T . This gives
n/2 independent approximations to each coordinate of β∗.
For each coordinate β∗i , i = 1, 2, run Algorithm M on a
dataset consisting of the n/2 different approximations for

β∗i , to obtain a single output value β̂i for this coordinate.
The output of Algorithm RS is the vector (β̂1, β̂2).

4.2 A Robust Regression Estimator
In this subsection we follow the Propose-Test-Release frame-

work: starting from a robust regression estimator of β, propos-
ing a scale of additive noise based on the order of magnitude
of an expected deviation, and then testing if that scale is
enough for differential privacy. The robust regression esti-
mator H whose output β̂ is given by

β̂ = arg min
β

fD(β), where fD(β) =

n∑
i=1

|yi − xT
i β|

||xi||
. (1)

The specific output β̂ may depend on the optimization al-
gorithm used.

For ease of exposition we consider the case p = 2; the gen-
eralization to other values of p is straightforward. Suppose
we are given any algorithm which computes β(D) ∈ B(D),
where B(D) is the whole solution set to the optimization
problem (1). Now β ∈ R2, and a discretization in R2 should
be the product of two discretizations in R1 which correspond
to the two coordinates of β. As a result, R2 is discretized
into rectangular cells:

{Ckl = [kh1, (k + 1)h1)× [lh2, (l + 1)h2)}k,l∈Z ,

where hd, d = 1, 2 is the proposed magnitude of additive
noise for each coordinate of β. Similarly, in order to avoid
the “end point problem” (i.e., the situation that β(D) hap-
pens to be on the edge of the cell), one can consider multiple

discretization. Since for each coordinate two different dis-
cretizations B

(1)
k = [kh, (k+1)h) and B

(2)
k = [(k−0.5)h, (k+

0.5)h) would be sufficient, we will need to consider four prod-
uct discretizations (in general p-dimensional problem this

number is 2p). For each discretization C(j), j = 1, . . . , 4,

define C(j)(D) to be the bin in the jth discretization such

that β(D) ∈ C(j)(D). It is generally hard to track β(D)
since it depends on which particular optimization algorithm
is used, but it is easier to consider B(D) which is an intrinsic
property of the optimization problem determined totally by
D. As we will see, in the cases of interest to us B(D) will

typically be small and covered by one of {C(j)(D)}j=1,...,4.
Here the testing query is slightly different from the previous
ones:

Q2 : How many data points do we need to add or delete
in order to get a database D̂ such that B(D̂) is not

covered by C(j)(D)?

Note that we view (h1, h2) as fixed, so we don’t explicitly list

them as inputs to Q2. A
(j)
2 (the true answer) and R

(j)
2 (the

true answer plus noise) are defined similarly as before. Be-
cause changing one data point could be viewed as equivalent
to deleting one original data point and adding one with the

modified value, if A
(j)
2 ≥ 3 for some j, then for all adjacent

databases D′ we have |βd(D′)− βd(D)| ≤ hd for d = 1, 2.
Algorithm RH(D, n, ε).

[1.] Compute β(D).
[2 − 4.] Partition the data into n/2 sets; within each group

compute β as in the short-cut algorithm; define D(d), d = 1, 2
to be the set containing the dth coordinates of the n/2 β’s.

[5.] For 1 ≤ d ≤ 2, Run S on
(
D(d), bn/2c, ε

)
. If any of the

outputs is ⊥, then return ⊥. Otherwise denote the outputs
as sd, 1 ≤ d ≤ 2, and let hd = sd/n1/4. Also, if sd = 0, let

hd = n−1/2.
[6.] For 1 ≤ j ≤ 4, compute R

(j)
2 (D, (h1, h2)).

If R
(j)
2 (D, (h1, h2)) ≤ ln n2 + 2, let β(j) = ⊥. Otherwise

β(j) = β(D) + z(j), where z(j) = (z
(j)
1 , z

(j)
2) and z

(j)
d ∼

Lap(hd/ε) for d = 1, 2.

[7.] Find the smallest j such that β(j) 6= ⊥. If such a j exists,

return RH(D) = β(j), else return RH(D) = ⊥.

Theorem 6. (a) The algorithm RH is (11ε, ν(n))-differe-
ntially private6. (b) RH runs in time T (p, n)+(n/p)T (p, p)+
O(np+1) time, where for all p, n T (p, n) denotes the running
time of the (non-private) optimization algorithm in p di-
mensions on data sets of size n. The interesting part of
this claim is the O(np+1) term. (c) If for all 1 ≤ d ≤
p, φ̃d = X−1Φd has continuous and positive density; and
f(β) = EF |Y − XT β|/||X|| is twice continuously differen-
tiable, and EF XXT /||X|| is positive definite, then

P̃ (RH(D) = ⊥) = O(n−c ln n).

and

RH(D)
P̃→ β∗,

where β∗ is the true value of regression coefficient in the
model.

6The number 11 becomes 2p + 3p + 1 for general value of p.

Remark 7. In the algorithm RH , the magnitude of noise
does not have to be on the order of n−1/4 (for general p

our conservative choice is n−1/2p, although n−1/2+c would
work). As can be seen later in the proof, under the assump-

tions of Theorem 6, one can choose hd = sdn−1/2+ζ , for
some small positive constant ζ. The value n−1/4 is chosen
from a practical perspective that the discretized cell contains
approximately 1/

√
n proportion of the data (the group of β’s

generated by the random partition of D).

Proof of Theorem 6.
Part (a) follows from the general proof in Section 5.
To show part (b) (ease of computation), we need to study

the answer to query Q2. Let us start from another query

Qβ : For a particular β ∈ R2, how many data points need

to be added or deleted in order to get a database D̂,
such that β ∈ B(D̂)?

Let A(D) be the answer to Q2, on database D. Clearly
A(D) = infβ /∈C(D) Aβ(D), where Aβ(D) is the answer to the
query Qβ on database D.

To compute Aβ(D), we need to explore the structure of
function fD(β). A first observation is that fD(β) is con-
vex and piecewise linear. The convexity is trivial since each
term in the sum in (1) is convex. To see piecewise linear-
ity, define `i = {γ ∈ R2 : yi − xT

i γ = 0}. Then the ith
term in (1) is just the distance from β to `i. The space R2

is partitioned into O(n2) convex regions by these n lines,
and the lines themselves are cut by each other into O(n2)
line segments or half lines with O(n2) intersections. In the
discussion below, the terms “region”, “line segment”, “half
line” and “intersection” all refer to those defined by the `i,
i = 1, . . . , n.

Inside each region, fD(β) is a linear function, since for
each i, |yi − xT

i β|/||xi|| is linear inside the region.
The minimum of a convex function can be characterized

by the subgradient :

Definition 8 (Subgradient). A vector γ is called a
subgradient of f at β, if

f(β + ∆) ≥ f(β) + γT ∆, ∀∆.

The set of all subgradients at β is called subdifferential, de-
noted by ∂f(β). Clearly, if f is convex and differentiable at
β, then ∂f(β) = {df/dβ}, a set with a single element.

A result in convex optimization gives the characterization
of the minimum of f in terms of ∂f :

Theorem 9 ([3]). For any convex function f and β ∈
Domain(f), β is a global minimizer of f if and only if 0 ∈
∂f(β).

The next question is how to compute ∂fD(β). For β in
the interior of a region, fD(β) is linear inside that region,
so ∂f(β) has only a single vector df/dβ. When β is on the
line segments, half lines or intersections, fD(β) is not differ-
entiable and ∂fD(β) contains multiple elements. Now such
a β is surrounded by several regions. For example, if β is in
the interior of a line segment or half line, it is surrounded by
two neighboring regions; if β is the intersection of two lines,
there are four surrounding regions. Denote these surround-
ing regions by Rr, r = 1, . . . , r0, and let fr(·) be the linear

function that agrees with fD(·) on Rr. Then we have, on a
small open neighborhood of β,

fD = max {fr, r = 1, . . . , r0} ,

and

fr(β) = fD(β), r = 1, . . . , r0.

Another basic result in convex analysis and optimization
gives the description of ∂f(β):

Theorem 10. If f = maxr=1,...,r0 fr, then

∂f(β) = CH
⋃

r:fr(β)=f(β)

{∂fr(β)} ,

where CH means the convex hull.

Therefore, for any β ∈
⋃n

i=1 `i, i.e., those not in the inte-
rior of a region, denote the derivatives of the linear functions
fr by γr for r = 1, . . . , r0, then ∂fD(β) = CH {γ1, . . . , γr0}.

With these preliminary knowledge about the structure of
fD and its minimum, we have the following lemma:

Lemma 11. Aβ(D) =
⌈
infγ∈∂fD(β) ||γ||

⌉
.

Proof. Suppose β is surrounded by r0 regions7, namely,
Rr, r = 1, . . . , r0. For r = 1, . . . , r0, let γr be the derivative
of fr at β, where fr is the linear function that agrees with fD

on Rr.Then ∂fD(β) = CH(γ1, ..., γr), where CH(·) denotes
the convex hull.

Let D̂ be another database obtained from D by k addi-
tions and deletions, and the corresponding objective func-
tion in (1) is fD̂(β). Note that adding/deleting data points
is equivalent to adding/deleting the lines `i, since each data
point (xi, yi) corresponds to a line `i. A consequence of such
a adding/deleting is that two regions might merge (in case
of deleting), and a region might be cut into smaller regions
(in case of adding). Note also that modifying a data point
is equivalent to deleting it and inserting a new point with
the modified value. As a result, the set of regions that sur-
rounds β, namely {Rr, r = 1, . . . , r0}, might be changed to

{R̂t, t = 1, . . . , t0}. Let gt be the linear function that agrees

with fD̂ on R̂t, and λt be its derivative at β. We have

∂fD̂(β) = CH(λ1, ..., λt0),

and

λt = γrt + ηt, t = 1, ..., t0, rt ∈ {1, ..., r0},

where ηt = ∂gt(β)
∂β

− ∂frt (β)

∂β
is the change of ∂fD (also ∇fD)

at some particular βt ∈ Rrt ∩ R̂t incurred by changing the
data set.

Note that if β minimizes fD̂(·), then 0 ∈ ∂fD̂(β), that

is, there exists µ1, ..., µt0 ≥ 0,
∑t0

t=1 µt = 1, such that 0 =∑t0
t=1 µtλt. Then we have

0 =

t0∑
t=1

µt(γrt + ηt) ⇒
t0∑

t=1

µtγrt = −
t0∑

t=1

µtηt

⇒
r0∑

r=1

µ′rγr = −
t0∑

t=1

µtηt, µ′r ≥ 0,
∑

r

µ′r = 1

⇒

∣∣∣∣∣
∣∣∣∣∣

r0∑
r=1

µ′rγr

∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣

t0∑
t=1

µtηt

∣∣∣∣∣
∣∣∣∣∣ ≤ max

t
||ηt||

7In case that β is in the interior of a region, r0 = 1

⇒max
t
||ηt|| ≥ inf

γ∈∂f(β)
||γ||.

The second implication follows by adding coefficients of the
γri , and the third because for all i, the ith term is bounded
by µi maxt ||ηt||. Note that ηt is the change on the subgra-

dient at a certain point βt ∈ Rrt ∩ R̂t incurred by adding
or deleting k data points in D, and that the magnitude of
change on the subgradient by a single addition or deletion
is at most 1 (because in fD(β) the ith term is normalized
by ||xi||). So one needs to add or delete at least d||ηt||e
data points to induce a change on the subgradient by ηt.
As a result, to make β the solution of (1), one needs to
add or delete at least

⌈
infγ∈∂fD(β) ||γ||

⌉
data points. Thus

Aβ(D) ≥
⌈
infγ∈∂fD(β) ||γ||

⌉
.

On the other hand, let γ0 ∈ ∂fD(β) such that ||γ0|| =
infγ∈∂fD(β) ||γ||. Then one can always add

⌈
infγ∈∂fD(β) ||γ||

⌉
data points such that ∂fD̂(β) = ∂fD(β) − γ0 (a transla-
tion by γ of ∂fD(β) − γ0), making β the solution of (1).
To see this, let k = d||γ0||e. One can always find (x′i, y

′
i),

i = 1, ..., k, such that ||x′i|| = 1,
∑k

i=1 x′i = γ and y′i > x′Ti β.

Then fD̂(β) = fD(β) +
∑k

i=1(y
′
i − x′Ti β). As a result

∂fD̂(β) = ∂fD(β)−
k∑

i=1

x′i = ∂fD(β)− γ,

which implies 0 ∈ ∂fD̂(β).
Thus, Aβ(D) ≤

⌈
infγ∈∂fD(β) ||γ||

⌉
.

To complete the proof of part (b) of Theorem 6, a first
observation is that to compute A2(D), it is enough to find

the infimum of Aβ(D) among all β /∈ C(j)(D), for any given
j. Due to the piecewise linearity of fD, Aβ(D) is the same
for all β’s inside a region, line segment, or half line. As
a result, it is enough to consider all the regions, line seg-
ments, half lines and intersections. One further observation
is that for any β inside a region R, one can always find a
β′ on the boundary of R, i.e., on the line segments, half
lines or intersections. Then by the argument above we have
Aβ′(D) ≤ Aβ(D), since ∂fD(β) ⊆ ∂fD(β′). So it suffices
to focus on all the line segments and intersections. For each
line, a pass through the data set can identify all the line seg-
ments, half lines and intersections on it, by simply comput-
ing its intersection with other lines. This takes O(n) time
in computing all the intersections, and another O(n log n)
time to sort the intersections which gives the line segments
and half lines on it. So it takes O(n2 log n) time to compute
and store all the line segments, half lines and intersections.
For each of them, it takes O(n) time to compute the sub-
differential and hence Aβ(D). Finally, finding the smallest
of them takes O(n2) time. Summing up, all of these can be
done in O(n3) time (O(np+1)for general p).

It remains to show part (c) of Theorem 6 (good behavior
on nice distributions) . The main idea is the same as previ-
ous: use law of large numbers to ensure, with high probabil-
ity, that Aβ(D) are not far from its average over all random
D drawn from F . However, here we have infinitely many β
in the set R2\C(j)(D), which means we need to control the
maximum of a stochastic process instead of finite number of
random variables. To be concrete, one subgradient of fD at
β can be written as:

g(β) =

n∑
i=1

sign(yi − xT
i β)xi/||xi||,

the norm of which, under the condition in part (c) of the-
orem 6, approximates Aβ(D) within a constant of 2. This
is because there are at most two lines crossing β, which in-
dicates diam(∂fD(β)) ≤ 2. To see this, consider a β at the
intersection of two of the lines `i, i = 1 . . . , n. Then fD, the
object function of the optimization problem, is not differen-
tiable at β, and ∂fD(β) is a parallelogram where each edge
is of length 1. So, the diameter of ∂fD(β) is at most 2.

It will therefore suffice to show that minβ /∈C(j)(D) ||g(β)|| �
ln2 n for some j, with high probability. Recall that

f(β) = EF |Y −XT β|/||X||,

then our assumptions of twice differentiablity and positive
definiteness of EF XXT /||X|| ensures that f has a unique
minimum β∗.

Consider the cell L and event E0 defined by:

L =

[
β∗1 −

1

8
h1, β

∗
1 +

1

8
h1

]
×
[
β∗2 −

1

8
h2, β

∗
2 +

1

8
h2

]
.

E0 =

{
sd ∈

[
1

2
n−1/20IQR(φ̃d), 2n1/20IQR(φ̃d)

]
, 1 ≤ d ≤ p

}
,

It follows easily from Theorem 4 that P̃ (E0) ≥ 1−O(n−c1 ln n).
Assuming E0, we have ||h|| → 0, by the assumptions that
f is twice continuously differentiable and EF XXT /||X|| is
positive definite, there exists constant c such that for large
enough n,

||∇f(β)|| ≥ c||h||, for all β ∈ LC . (2)

Intuitively g(β) (and hence Aβ(D)) can be approximated
by ||n∇f(β)||, and L is small enough for large n, hence

well covered by C(j)(D), for some j. So we expect that
||Aβ(D)|| = Ω(nh). Formally, consider the stochastic pro-
cess

g(D; β) =
1

n

n∑
i=1

sign
(
φi −XT

i (β − β∗)
)

Xi/||Xi||.

Note that

ng(D; β) = ∇fD(β), for all β ∈

(
n⋃

i=1

`i

)C

,

and as a result, by Lemma 11,

Aβ(D) ≥ n||g(D; β)|| − 1, for all β ∈

(
n⋃

i=1

`i

)C

. (3)

We will first use the uniform bound on empirical processes
to get a lower bound of infβ∈((

⋃
`i)

⋃
L)C Aβ(D). Then we

will extend the result to all β ∈ LC , using the continuity of
the distribution of φ and X.

Let B be a countable dense subset of LC∩
(⋃n

i=1 `i

)C
. and

for all β and for d = 1, 2, let ∇df(β), respectively gd(D; β)
denote the dth coordinate of∇f(β) and g(D; β). The theory
of empirical processes gives us the following lemma, whose
proof follows largely the argument used in [15, Ch II.3]:

Lemma 12. For d = 1, 2

PF

(
sup
β∈B

|gd(D; β)−∇df(β)| > n−1/3

)
≤ O

(
n2e−c1n1/3

)
.

Let E1 be the event
{

supβ∈B |gd(D; β)−∇df(β)| ≤ n−1/3
}

.

Then PF (E1) ≥ 1−O
(
n2 exp(−c1n

1/3)
)

.

Next we assume E0∩E1, where we have ||h|| = Ω(n−3/10),

so for large enough n, n−1/3 ≤ 1
2
c||h||. Then (2) and (3)

imply

inf
β∈B

Aβ(D) ≥ n||∇f(β)|| − n||∇f(β)− g(D; β)|| − 1

≥ 2−
√

2
2

cn||h|| − 1 = Ω
(
n7/10

)
.

Since B is dense in LC , the same bound holds for all β ∈((⋃n
i=1 `i

)⋃
L
)C

, i.e.,

inf
β∈((

⋃n
i=1 `i)

⋃
L)C

Aβ(D) ≥ Ω
(
n7/10

)
.

Furthermore, for those β ∈ `i ∩LC for some i, since there
are at most two lines crossing β,8 based on the fact that
diam(∂fD(β)) ≤ 2 and that B is dense in LC , we have

Aβ(D) ≥ inf
β∈((

⋃n
i=1 `i)

⋃
L)C

Aβ(D)− 2.

Then we finally have

inf
β∈LC

Aβ(D) ≥ Ω
(
n7/10

)
. (4)

Clearly (4) implies that β(D) ∈ L because Aβ(D)(D) = 0.

Furthermore, by the construction of C(j)(D), j = 1, . . . , 4,
and the definition of L, there exists at least one j, such that

L ⊂ C(j)(D). Then (4) implies A
(j)
2 (D) ≥ Ω

(
n7/10

)
. So for

large enough n, we have A
(j)
2 (D) ≥ 2 ln2 n+2, which implies

P̃ (RH(D) = ⊥|E0∩E1, s 6= ⊥) = O(n−ε ln n). But as shown

in Theorem 4(c), P̃ (s 6= ⊥) ≥ 1 − O(n−c1 ln n) under our
assumptions, as a result, we have the desired inequality for
theorem 6 (c):

P̃ (RH(D) = ⊥) ≤ O(n−c ln n).

5. (ε, δ)-PTR FUNCTIONS
We have seen several examples of (ε, δ)-differentially pri-

vate robust estimators that share the same spirit: first an
insensitive magnitude is proposed, then we test privately
whether this magnitude is big enough such that an additive
Laplacian random noise calibrated to it is enough to pro-
vide the ε-differential privacy. In this section we formally
define Propose-Test-Release algorithms and prove composi-
tion properties for them.

Henceforth we consider (possibly random) functions of the
form T (D, s), where D is a database and s is a second input
used in computing a proposed bound on local sensitivity.
This computation, call it g(D, s), can be independent of D,
as in Algorithm S, where g(D, s) = 1 is the bin width used
in the discretization of R for the logarithm of the interquar-
tile range. Alternatively, it can depend on D, as in Algo-
rithm M, where a scale g(D, s) = S(D) is computed and
then used to obtain the bin width for testing the sensitiv-
ity of the median. From now on we always treat D and an
arbitrary neighboring database D′ as non-random, and the
probability is over the coin flips of the random function T ,

8Because the distribution of φ is continuous, the probability
of having three or more lines intersecting at one point is 0.

which are always independent of everything else. Similarly,
P (·) refers to the probability when the input database is D
and P ′(·) refers to the corresponding probability when the
input database is D′.

Definition 13 ((ε, δ)-PTR function). A function T (D, s) :
D × (C ∪ {⊥}) 7→ C′ ∪ {⊥} is (ε, δ)-PTR if

1. P (T = ⊥|s = ⊥) = 1, for all D.

2. For all s ∈ C, D and D′ adjacent,

P (T = ⊥|s) ≤ eεP ′(T = ⊥|s),
P (T 6= ⊥|s) ≤ eεP ′(T 6= ⊥|s). (5)

3. There exists G(T, D) ⊆ C, such that if s ∈ G(T, D),
then for all D′ adjacent to D and all C′ ⊆ C′

P (T ∈ C′|s) ≤ e2εP ′(T ∈ C′|s), (6)

4. ∀D ∈ D, if s /∈ G(T, D), then P (T 6= ⊥|s) ≤ δ.

We will drop the “(ε, δ)” and just say “PTR.”
It is clear that when s does not depend on D, then a mech-

anism that computes the PTR function is (2ε, δ)-differentially
private. However, in the three examples we have seen, only
the algorithm S falls into this category; in this case s is
the bin width9. In the other algorithms the input s de-
pends on D; indeed the inputs are themselves produced by
a PTR function with D as part of its input. On the other
hand, in some algorithms such as the short-cut regression
algorithm, one needs to deal with multiple dimensions in
parallel from the same database. We therefore need to un-
derstand the composition properties of PTR functions. We
consider several types of composition: cascading, in which
several functions are invoked and the first non-⊥ value is
returned; subroutine calls; parallel PTR operations invoked
on partitions of the database; and parallel PTR operations
invoked on random subsamples drawn without replacement
from the database.

The cascade operation on a sequence of values simply re-
turns the first item in the sequence that is not ⊥, if one
exists.

Definition 14 (Cascade). Let t1, . . . , tJ be a sequence
of elements in C ∪ {⊥}. The cascade function, Cas, applied
to the sequence is CasJ

j=1tj = tj0 , where j0 = min{j ≤ J :
tj 6= ⊥} and if tj = ⊥ for all j, Casj≥1tj = ⊥. We call the
number J the length of the cascade.

We also use the terms “cascade” and “cascade computa-
tion” to refer to a computation whose output is the result
of applying a cascade operator to the outputs of a sequence
of PTR computations. Thus, Algorithm S is an example of
a length 2 cascade, since up to two different discretizations
are used in a computation, and the algorithm outputs the
first non-⊥ value obtained. The input s is the bin width in
the discretizations.

Algorithm M is a length 2 cascade where the elements in
the sequence are the outputs of Algorithm S, itself a length
2 cascade computation. This type of sequential composition
suggests the following hierarchy.

9Recall we assume n is known.

Definition 15 (Level-K (ε, δ)-Cascade). A function
VK(D, s) : D× (C0 ∪ {⊥}) 7→ CK ∪ {⊥} is a level-K cascade
if

VK(D, s) = CasJK
j=1T

(j)
K (D, VK−1(D, s)),

where VK−1 : D×(C0∪{⊥}) 7→ CK−1∪{⊥} is a level-(K−1)

cascade, all T
(j)
K , 1 ≤ j ≤ J : D×(CK−1∪{⊥}) 7→ CK∪{⊥},

are (ε, δ)-PTR functions, conditionally independent given
the inputs, and V0(D, s) = s.

The cascade does not correspond to a tree. A the bottom
level (level 1) cascade produces a single value, which is an
input to all computations at the cascade in the next level,
which in turn produces a single value, and so on. Note
that in VK(D, s), there are

∑K
k=1 Jk (ε, δ)-PTR functions

which are (2ε, δ)-differentially private. Intuitively, VK(D, s)

should be (ε′, δ′)-differentially private, with ε′ = 2
∑K

k=1 Jkε

and δ′ =
∑K

k=1 Jkδ. This is true, by the next theorem:

Theorem 16 (Composition of (ε, δ)-dp Algs). Let
T1 : D 7→ T1(D) be (ε, δ)-d.p., and for all J ≥ 2, TJ :
(D, s1, . . . , sJ−1) 7→ TJ(D, s1, . . . , sJ−1) ∈ CJ be (ε, δ)-d.p.,

for all given (s1, . . . , sJ−1) ∈
⊗J−1

j=1 Cj, where “
⊗

” denotes

direct product of spaces. Then for all neighboring D, D′ and
all S ⊆

⊗J
j=1 Cj

P ((T1, . . . , TJ) ∈ S) ≤ eJεP ′((T1, . . . , TJ) ∈ S) + Jδ.

Note that in Theorem 16, for any j, the space Cj may
contain ⊥. It is not hard to see that the cascade composi-
tion VK(D, s) is a special case of the general composition.
However, the special structure of the cascade composition
enables us to get better ε′ and δ′ for the differential privacy
of (ε, δ)-cascade compositions. Note that in a level-K (ε, δ)-

cascade composition, many T
(j)
k may take value ⊥, and with

such an output, T
(j)
k contributes (ε, 0) rather than (2ε, δ) to

the total bound of probability. A more careful investigation
gives the next theorem:

Theorem 17. A level-K (ε, δ)-cascade is (ε′, δ′)-dp, with

ε′ =
(
K +

∑K
k=1 Jk

)
ε, and δ′ =

(∑K
k=1 Jk

)
δ, where Jk is

the length of the cascade at level k.

Roughly speaking, at each level there are at most Jk PTR
functions, and their corresponding ε’s add up, with all but
one being simply ε and at most one being 2ε (according to
⊥ or not). So the final privacy coefficient ε′ is simply adding
up the ε’s at each level.

In the definition of level-K (ε, δ)-parallel composition, the

first input of T
(j)
l,k (that is, the database, let us call it Dl,k,j)

does not have to be the same for all values of (l, k, j). For ex-
ample, at the beginning of the shortcut algorithm the inputs
are partitioned into n/p disjoint sets of size p, and a com-
putation is performed on each subset independently. This
would look like an ordinary (non-PTR) subroutine call for
each of the n/p database partitions.

Now let us take a close look at random partitions. Sup-
pose |D| = |D′| = n = mp + q, 0 ≤ q ≤ p − 1, and D =
{x1, . . . , xn}. The random partition πp(D, σ) = {πi

p(D, σ)}m
i=1,

where πi
p(D, σ) =

{
xσ((i−1)p+1), . . . , xσ(ip)

}
, and σ = (σ(1),

. . . , σ(n)) is a random permutation of [n] generated inside
the procedure πp.

If D and D′ are adjacent, i.e., they differ at only one
individual, with out loss of generality, suppose D′ = {x1, . . . ,

xn−1, x
′
n}. Clearly, for a given σ, πp(D, σ) and πp(D′, σ) has

the same number of elements and differ at no more than one
element. Note that π1(D, σ) = D for all σ.

Of course, the databases Dl,k,j can be drawn more gen-
erally from the original D, and not only by partitioning.
For example, they may be independent random subsamples
of the original database. In this case, if the subsampling
is done without replacement, then for any fixed sequence
of random coins, corresponding subroutine calls will have
databases differing in at most one element when the original
input is D′ and not D.

In fact, the results of the previous section hold when the

first input of T
(j)
l,k becomes Dl,k,j , provided that Dl,k,j and

D′
l,k,j are adjacent for all (l, k, j).

Definition 18 (Generalized cascade). For a sequ-
ence of databases, D = (D1, . . . , DK), and s ∈ (C0 ∪ {⊥}),
a function GVK(·, ·) : (D, s) 7→ GVK(D, s) ∈ CK ∪ {⊥} is a
level-K generalized (ε, δ)-cascade, if

GVK(D, s) = CasJK
j=1T

(j)
K (DK , GVK−1(D1:K−1, s)) ,

where GVK−1 is a level-(K − 1) generalized (ε, δ)-cascade

and T
(j)
K are (ε, δ)-PTR functions conditionally independent

given the inputs. Here, D1:K−1 denotes the submatrix of D
consisting of columns 1 through (K − 1).

Similarly we can define generalized (ε, δ)-parallel compo-
sition. Let Dl,1:K−1 denotes the submatrix of D consisting
of the lth row and columns 1 through (K − 1).

Definition 19 (Generalized parallel composition).

Let D = (Dl,k)1≤l≤L,1≤k≤K , Dl,k ∈ D and s ∈
⊗L

l=1(C0,l ∪
{⊥}), a function GW (·, ·) : (D, s) 7→ GW (D, s) ∈

⊗L
l=1(CK,l

∪{⊥}) is a level-K generalized L-(ε, δ)-parallel composition
if

GW (D, s) = (Vl,K(Dl,K , Vl,K−1(Dl,1:K−1, sl)))
L
l=1 ,

where Vl,K are level-K generalized (ε, δ)-cascade condition-
ally independent given the inputs.

Corollary 20. Let D = (Dl,k)1≤l≤L,1≤k≤K and D′ =
(D′

l,k)1≤l≤L,1≤k≤K . Suppose (Dl,k, D′
l,k) is adjacent for all

(l, k). If GW (·, ·) is a level-K generalized L-(ε, δ)-parallel

composition, then for any s ∈
⊗L

l=1(C0,1 ∪ {⊥}) and C ⊆⊗L
l=1 (CK,l ∪ {⊥}),

P (GW ∈ C) ≤ e(LK+
∑

l,k Jl,k)εP ′(GW ∈ C) +
∑
l,k

Jl,kδ.

Example 21 (Short-cut regression). In the short-
cut regression algorithm, suppose the random partition is
given by πp(D, σ), where σ is generated by the procedure πp,
independently of everything else. Let βi be the β determined
by the data points in πi

p(D, σ), if any. Then in the short-cut
regression algorithm, we have L = p, K = 2, Jl,k = 2, and
Dl,k = {βi}m

i=1 for all l, k. Conditioning on σ, Dl,k and D′
l,k

are adjacent, so by Corollary 20,

P (RS(D) ∈ C|σ) ≤ e6pεP (RS(D′) ∈ C|σ) + 4pδ.

Summing over all possible σ, we conclude that the short-cut
regression algorithm RS is (6pε, 4pδ)-differentially private.

Here δ = 1
2

(
n
p

)−ε ln
(

n
p

)
∈ ν(n).

For Algorithm RH we need to consider one more level
of complication: the sequential composition of generalized
parallel compositions.

Suppose t = 1, . . . , T , and Ct,k,l are general measurable

spaces. For st ∈
⊗Lt

l=1 (Ct,0,l ∪ {⊥}) and set of databases
Dt,∗,∗ (defined below, with corresponding dimensionality),

GWt(·, ·) : (Dt,∗,∗, s) 7→ GWt(Dt,∗,∗, s) ∈
⊗Lt

l=1 (Ct,K,l ∪ {⊥}),
a level-Kt generalized L-(ε, δ)-parallel composition. Define
(D)t,l,k, with

D = (Dt,l,k)1≤t≤T,1≤l≤Lt,1≤k≤Kt
, and let T

(jt,l,k)

t,l,k (Dt,l,k, ·)
be the jt,l,kth PTR function at kth level in the lth compo-
nent in GWt, and the length of cascade in Vt,l,k is Jt,l,k. Con-
sider the nested subroutine composition of a sequence of gen-
eralized parallel compositions. That is, let GW1, . . . , GWT

be a sequence of generalized Lt-(ε, δ)-parallel compositions,
for 1 ≤ t ≤ T − 1, GWt+1 calls GWt as the second input.

Theorem 22. Assume D = (Dt,l,k)1≤l≤Lt,1≤K≤Kt
and

D′ =
(
D′

t,l,k

)
1≤l≤Lt,1≤K≤Kt

are two sets of data bases. If

Dt,l,k and D′
t,l,k are adjacent for all (t, l, k), then for any

s ∈
⊗L1

l=1(C1,0,l ∪ {⊥}) and

C ⊆
⊗LT

l=1 (CT,KT ,l ∪ {⊥}), P (C|s) ≤ eε′P ′(C|s) + δ′, with

ε′ =
∑

t

(
LtKt +

∑
l,k Jt,l,k

)
ε, and δ′ =

∑
t,l,k Jt,l,kδ.

Example 23 (Robust regression). AlgorithmRH be-
gins with a set of scale estimations, one for each coefficient
in a β computed on a random partition of D. This is a level-
1 generalized p-(ε, δ)-parallel composition, with D1,l,1 =
πp(D, σ), where σ is the random permutation independent
of everything else. This is followed by the test and release
of the regression coefficient, a level-1 (ε, δ)-cascade with C =
(R ∪ {⊥})p and output in Rp ∪ {⊥}, and the length of cas-
cade is 2p. Summing up, we have K1 = 1, L1 = p, j1,l,k = 2,
and K2 = 1, L2 = 1, j2,l,k = 2p. Thus, by Theorem 22, RH

is ((2p + 3p + 1)ε, (2p + 2p)(1/2)(n/p)
−ε ln(n

p
)
)-dp.

6. CONCLUSIONS
We have demonstrated, by means of several examples,

that robust estimators are a useful starting point for con-
structing highly accurate differentially private estimators.
We have also introduced the Propose-Test-Release paradigm
for exploiting local sensitivity.

It would be nice to have a general theorem describing the
conditions under which this approach is fruitful, either in
general or in the context of Propose-Test-Release protocols,
especially since, as we have seen, arguing ease of computa-
tion and good behavior under statistical assumptions can
be quite involved. The general question of the difficulty of
determining distance from high-sensitivity datasets is also
interesting.

Acknowledgement.
Werner Stuetzle suggested a possible connection between ro-
bustness and private data analysis. We warmly thank him
for this contribution.

7. REFERENCES
[1] A. Blum, C. Dwork, F. McSherry, and K. Nissim.

Practical privacy: The SuLQ framework. In
Proceedings of the 24th ACM

SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, June 2005.

[2] A. Blum, K. Ligett, and A. Roth. A learning theory
approach to non-interactive database privacy. In
Proceedings of the 40th ACM SIGACT Symposium on
Thoery of Computing, 2008.

[3] J. M. Borwein and A. S. Lewis. Convex analysis and
nonlinear optimization, theory and examples. Springer,
2006.

[4] C. Dwork. Differential privacy. In Proceedings of the
33rd International Colloquium on Automata,
Languages and Programming (ICALP)(2), pages 1–12,
2006.

[5] C. Dwork, K. Kenthapadi, F. McSherry, I. Mironov,
and M. Naor. Our data, ourselves: privacy via
distributed noise generation. In Advances in
Cryptology: Proceedings of EUROCRYPT, pages
486–503, 2006.

[6] C. Dwork, F. McSherry, K. Nissim, and A. Smith.
Calibrating noise to sensitivity in private data
analysis. In Proceedings of the 3rd Theory of
Cryptography Conference, pages 265–284, 2006.

[7] C. Dwork and K. Nissim. Privacy-preserving
datamining on vertically partitioned databases. In
Proceedings of CRYPTO 2004, volume 3152, pages
528–544, 2004.

[8] D. Freedman and P. Diaconis. On the histogram as a
density estimator: l2 theory. Z.
Wahrscheinlichkeitstheorie verw. Gebiete, 57:453–476,
1981.

[9] F. Hampel, E. Ronchetti, P. Rousseeuw, , and
W. Stahel. Robust Statistics: The Approach Based on
Influence Functions. John Wiley, New York, 1986.

[10] J. Heitzig. The “jackknife” method: Confidentiality
protection for complext statistical analyses. In Joint
UNECE/Eurostat work session on statistical data
confidentiality, 2005.

[11] P. Huber. Robust statistics. John Wiley & Sons, 1981.

[12] J. Kiefer and J. Wolfowitz. On the deviations of the
empiric distribution function of vector chance
variables. Transactions of the American Mathematical
Society, 87:173–186, January 1958.

[13] F. McSherry and K. Talwar. Mechanism design via
differential privacy. In Proceedings of the 48th Annual
Symposium on Foundations of Computer Science,
2007.

[14] K. Nissim, S. Raskhodnikova, and A. Smith. Smooth
sensitivity and sampling in private data analysis. In
Proceedings of the 39th ACM Symposium on Theory of
Computing, pages 75–84, 2007.

[15] D. Pollard. Convergence of Stochastic Processes.
Springer-Verlag, 1984.

[16] A. Smith. Efficient, differentially private point
estimators, 2008.

