

Automated Testing of Environment-Dependent Programs −
A case study of modeling the File System for Pex

Soonho Kong, Nikolai Tillmann, Jonathan de Halleux

Microsoft Research, Redmond WA 98052, USA

Abstract
Programs that interact with the file system are a

classical challenge for automated software testing. A
common approach to handling this problem is to insert an
abstraction layer between the application and the file
system. However, even with a well-defined abstraction
layer, the burden on the software developer or tester is
still high: they have to understand the subtleties of the file
system to craft a meaningful set of test cases. The file
system is accessed through a complex API, which often
causes developers to overlook obscure yet possible corner
cases.

In this paper, we present a parameterized model of the
file system that can be used in conjunction with Pex, an
automated test generation tool, to test code that depends
on the file system.

Keywords: Automated Testing, Unit Testing, Test
Generation, Environment Modeling, Dynamic Symbolic
Execution

1. Introduction

Programs that interact with the environment are a
classical challenge to automated software testing. Testing
code that interacts with the file system is a very common
instance of this problem. By directly using the operating-
system level file system APIs, the code becomes less
testable, since it introduces an unconditional dependency
on the state of the physical file system at the time tests are
executed.

A classic symptomatic example is a test that passes the
first time it is run, and then fails on subsequent runs. The
first run generated files which broke subsequent runs.

To deal with these issues, programmers usually
introduce a level of abstraction between the environment,
e.g. the file system, and the code.

In this article, we study an abstraction of the file
system for .NET programs that was defined in the
CodePlex Client project [2].

However, even with a clear abstraction layer, the
burden on the developer is still high. They have to
understand the subtleties of the file system in order to
craft a relevant and comprehensive set of test cases. The
file system is a complex system, which often causes

programmers to overlook obscure yet possible corner
cases. Moreover, expressing each scenario in code usually
involves significant work to mock [3] the behavior of the
file system. (In traditional unit testing, mocking a
dependency involves the creation of a lightweight
alternative implementation, which validates inputs and
provides hardcoded outputs.)

To address these issues, we will show how Pex can be
used to define a parameterized model [10,11,12] of the
file system. Pex is an automated white box testing tool for
.NET [1,7]. Using the model, the developer can write test
cases for any initial file system state rather than for a
particular state. Then automated test generation tools can
be employed to explore possible behaviors of the file
system in combination with the code under test. As a
result, the work performed by the developer is
dramatically decreased.

We will illustrate the parameterized model by
implementing a CopyFiles method that copies files from
one directory to another. We will describe how the model
can be implemented as a non-deterministic program,
whose parameters can be explored by automated test
generation tools. We will give an overview of our model
implementation, and compare it to related work.

In the following, all code examples are expressed in
C#. Visibility annotation might be omitted for brevity.

2. Example: Untestable CopyFiles method

Copying files from one folder to another is a
representative example of a non-trivial interaction with
the file system. In .NET, a developer can use the
Directory, File and Path classes provided by the
runtime to implement such functionality:

// simulating “copy sourcePath* targetPath”
static void CopyFiles(string sourcePath,

string targetPath) {
var sources = Directory.GetFiles(sourcePath);
foreach (var source in sources) {
 string target = Path.Combine(
 targetPath,
 Path.GetFileName(source));
 // copy and do not overwrite
 File.Copy(source, target, false);
}

}

2009 Sixth International Conference on Information Technology: New Generations

978-0-7695-3596-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ITNG.2009.80

758

2009 Sixth International Conference on Information Technology: New Generations

978-0-7695-3596-8/09 $25.00 © 2009 IEEE

DOI 10.1109/ITNG.2009.80

758

Authorized licensed use limited to: MICROSOFT. Downloaded on June 10, 2009 at 22:23 from IEEE Xplore. Restrictions apply.

 This implementation is problematic for testing because
it relies on the file system API of the .NET base class
library which simply calls the Win32 file system API. As
consequence, the code depends directly on the state of the
file system.

3. File System Abstraction Layer

In order to make the CopyFiles method testable, we
need to create an abstraction layer of the file system. We
use an already existing abstraction of the file system from
the CodePlex Client project [2], where they published an
interface, IFileSystem, that represents most of the
operations that are commonly performed on a file system.
The project also provides an implementation that accesses
the physical file system, called FileSystem.

Using the IFileSystem interface, the CopyFiles
method can be refactored as follows:

static void CopyFiles(IFileSystem fs,
 string sourcePath,
 string targetPath) {
 var sources = fs.GetFiles(sourcePath);
 foreach (var source in sources) {
 string target = fs.CombinePath(targetPath,

 fs.GetFileName(source));
 fs.CopyFile(source, target);

 }
}

4. Traditional Mock-based Testing

After this refactoring, the developer can provide
specialized implementations of IFileSystem that will
cause the program under test to exhibit different
behaviors. For example, in traditional unit testing with so-
called mock objects, the developer might write the
following code to test a “happy” successful scenario with
a hand-written mock file system holding a single file:

class NoSourceFileSystem : IFileSystem {
 string[] GetFiles(string path) {
 return new string[] { “file.txt” };
 }
 string CopyTarget;
 void CopyFile(string source, string target) {
 this.CopyTarget = target; // record value
 }
 …
}

[TestMethod]
void SourcePathDoesNotExist() {
 var fs = new NoSourceFileSystem();

 CopyFiles(fs, “source”, “target”);

 Assert.AreEqual(
 fs.CopyTarget, “target\file.txt”);
}

This scenario covers only one out of many possible
behaviors of the file system. Although Mock Frameworks
such as Moq [5], Rhino Mocks [4], and NMock [6],
provide convenient APIs to define particular behaviors of
the mocks in a compact way, none of them actually solve
the problem of covering all the relevant scenarios.

5. Parameterized Unit Testing with Pex

Pex is an automated white box testing tool for .NET.
From a hand-written parameterized unit test, Pex
generates test inputs that exercise many statements in the
code, using a technique called dynamic symbolic
execution, a combination of dynamic and static analysis
[8]. Pex saves the results as a unit test suite, which the
user can later execute and debug without Pex. The
following example shows a parameterized unit test,
designated as such with the [PexMethod] attribute. It adds
an element to a dictionary and ensures that the element
was properly stored in the dictionary.

[PexMethod] // hand-written
void AddItem(int key, object value) {
 var dic = new Dictionary();
 dic[key] = value;
 Assert.AreEqual(value, key[value]);
}

From this parameterized unit tests, Pex generates multiple
closed unit tests with relevant values to cover the
statements of the Dictionary implementation. Each unit
test is tagged with the [TestMethod] attribute.

[TestMethod] // automatically generated
void AddItem01() {
 this.AddItem(0, null);
}
[TestMethod]
void AddItem02() {
 this.AddItem(1, null);
}
...

6. Choices

In the example above, the inputs of the test were supplies
by parameters of the AddItem method. Pex also provides a
class, PexChoose, to provide new inputs on demand along
the execution of the test [11]. By performing multiple
queries, PexChoose can be used to build non-deterministic
models. For example, the ReadAllText method of
IFileSystem, which reads the entire content of a file,
could be trivially implemented as follows:

string ReadAllText(string path) {
 // ask Pex to choose a string value
 return PexChoose.ChooseResult<string>();
}

759759

Authorized licensed use limited to: MICROSOFT. Downloaded on June 10, 2009 at 22:23 from IEEE Xplore. Restrictions apply.

When ReadAllFiles is called, Pex will create a string
value, and Pex static and dynamic analysis will track it as
if it was just another input of the test. As a result, Pex will
generate different string values when necessary to cover
more statements of the code under test.

6. From Choices to Parameterized Models

In the context of unit testing, developers often make
the (implicit) assumption that the file system is not
modified concurrently by other processes. Under that
assumption, the simple implementation of ReadAllText
above is too simplistic since Pex might decide to return a
different value on each call to ReadAllText, even for the
same file name. Unless the file is explicitly modified by
the test, the developer would expect ReadAllText to
return the same value. These kinds of relaxed-robustness
constraints are not captured by the simplistic
implementation, which is only restricted by the type
system so far.

One may argue that such implicit assumptions are wrong,
and that thorough testing should include all possible
concurrent scenarios. And doing so is easily possible with
a permissive model and Pex. However, in practice, testing
is foremost focused on realistic common scenarios. Even
without taking into account concurrent file system
modifications, there are many surprising yet realistic
scenarios, as we will see in the following.

In order to model a stateful file system, we enhanced the
implementation of PFileSystem by adding state that
remembers the initial choices and all subsequent
modifications. In that sense, we wrote a Parameterized
Model[10]: parameterized in the sense that it uses
external inputs to provide the initial state, model in the
sense that it has a mutable state and different possible
transitions based on the current state.

Based on how the code under test uses the interface, Pex
will generate different initial file system states.

7. Writing Tests with Parameterized Models

Using the parameterized model, a developer can write test
cases that should hold for any state of a file system.

[PexMethod]
void CopyFilesModel() {
 var fs = new PFileSystem();
 string sourcePath = @"\src";
 string targetPath = @"\tar";

 // CopyFiles
 CopyFiles(fs, sourcePath, targetPath);

 // Assert
 var sources = fs.GetFiles(sourcePath);

 foreach (var source in sources) {
 string target = fs.CombinePath(

 targetPath,
 fs.GetFileName(source));
 // files in sourcePath
 // should exist in targetPath
 Assert.IsTrue(fs.FileExists(target));

 // each copy has the same contents
 // as original.
 byte[] scontent = fs.ReadAllBytes(source);
 byte[] tcontent = fs.ReadAllBytes(target);
 Assert.AreElementsEqual(
 scontent,
 tcontent,
 (b1, b2) => b1 == b2);
 }

}

It is important to notice that, contrary to mock-based
testing, this test does not require any initialization of the
file system mocks. The newly created PFileSystem
instance represents any possible initial state of the file
system, and thus our CopyFiles implementation should
be able to deal with it. The developer does not need to be
an expert in file systems and can rely on the model to
explore the many different behaviors.

Moreover the assertions that were written in the test are
more general, as they should hold for any initial state of
the file system.

After exploring the test with Pex, we get 10 passing tests
and 8 failing tests as depicted in the table below. The file
names which Pex comes up with such as “;\0;” or “\$
\$” are valid file names even if it looks strange at first.

Failed tests are categorized into three cases which are not
properly handled by the CopyFiles method.

• 1, 2, 3, 5, 17: source path “\src” or target path
“\tar” does not exist in file system,

760760

Authorized licensed use limited to: MICROSOFT. Downloaded on June 10, 2009 at 22:23 from IEEE Xplore. Restrictions apply.

• 6, 19: under the target path, there is a directory
whose name is the same as the file we attempt to
copy.

• 15: The file to be copied already exists in target
path.

Note that with mock-based testing, the developer would
have had to implemented a specialized implementation of
IFileSystem and encode the scenario for each of those
cases, knowing exactly what the corner cases of the file
system are.

Based on this feedback, we can modify CopyFiles to
handle such exceptional cases.

static void CopyFiles(IFileSystem fs,
 string sourcePath,

string targetPath) {
 if(fs.DirectoryExists(sourcePath) throw ...;
 if(fs.DirectoryExists(targetPath) throw ...;
 var sources = fs.GetFiles(sourcePath);

foreach (var source in sources) {
 string target = fs.CombinePath(
 targetPath,
 fs.GetFileName(source));
 if (fs.FileExists(target)) throw ...;
 if (fs.DirectoryExists(target)) throw ...;
 fs.CopyFile(source, target);
}

}

Exploring the same test CopyFilesModel, Pex generates
16 passing tests for the corrected implementation, shown
in the following table.

8. Model Implementation

Our model is available in source code as part of the Pex
distribution [1]. The file system interface consists of 34
methods, which allow the inspection and modification of
directories, files, their contents, and path names. Our
model implementation consists of 2529 lines of C# code,

spread over five classes. We wrote and let Pex explore 33
parameterized unit tests which describe high-level
properties of the file system, e.g. when Open(fileName)
succeeds, then FileExists(fileName) must succeed as
well.

9. Related Work

The idea of writing models to simulate the environment is
not new. Dynamic symbolic execution can be seen as an
instance of model checking, where this problem has been
studied for more than a decade. A recent practical
approach tries to address this problem for compositional
model checking of Java programs by semi-automatically
generating environments [9], combining high-level user
supplied environment models with automatically inferred
environment properties. The automatic inference performs
a static analysis of the code that implements the
environment behavior. This approach does not apply for
the file system, as the .NET file system implementation is
merely a shallow wrapper of Win32 APIs. In the case
study presented in this paper, we wrote the environment
model by hand. The size of our model seems reasonable
(about 2500 lines of C# code).

10. Conclusion and Future Work

In this article, we have studied the implementation of a
parameterized model for the file system on top of an
automated white box testing tool, Pex. Parameterized
models are reusable across all tests and solve the
shortcomings of today’s mock infrastructure; instead of
relying on the developer to define scenarios, the model
can be explored by Pex to generate all meaningful
scenarios.
In future work, we will model other environment facing
APIs such as database accesses, possibly leveraging
higher level models, and automatic environment
inference. Also, we will investigate how initial model
states can be translated into corresponding states of the
physical environment, which will allow the validation of
the behavior defined by the model, and it will allow the
transformation of unit tests into integration tests.

References

[1] Microsoft Research Redmond, “Pex”,
http://research.microsoft.com/pex
[2] C. C. Team, “Codeplex Client 2007”,
http://www.codeplex.com/CodePlexClient
[3] Wikipedia, “Mock Object”,
http://en.wikipedia.org/wiki/Mock_Object
[4] Ayende Rahiem, “Rhino Mocks”,
http://ayende.com/projects/rhino-mocks.aspx.
[5] “Moq”, http://code.google.com/p/moq/
[6] “NMock”, http://nmock.org

761761

Authorized licensed use limited to: MICROSOFT. Downloaded on June 10, 2009 at 22:23 from IEEE Xplore. Restrictions apply.

[7] Nikolai Tillmann, Jonathan de Halleux, “Pex – White Box
Test Generation for .NET”, Proc. of TAP 2008, LNCS, vol.
4966, pages 134-153, April 2008
[8] Patrice Godefroid, Nils Klarlund, Koushik Sen, “DART:
directed automated random testing”, SIGPLAN Notices, Vol.
40-6, pages 213-223, 2005
[9] Oksana Tkachuk, Matthew B. Dwyer, “Automated
environment generation for software model checking”, In
Proceedings of the 18th International Conference on Automated
Software Engineering, pages 116-129, 2003
[10] Patrice Godefroid, Model Checking for programming
languages using VeriSoft, Proceedings of the 24th ACM
Symposium on Principles of Programming Languages, pages
174-186, 1997.
[11] Nikolai Tillmann, Wolfram Schulte, Mock-object
generation with behavior, Proceedings of the 21st IEEE/ACM
International Conference on Automated Software Engineering,
IEEE Computer Society, pages 365-368, September 2006.
[12] Christopher Colby, Patrice Godefroid, Lalita Jategaonkar
Jagadeesan, Automatically Closing Open Reactive Programs,
Proceedings on Programming Language Design and
Implementation (PLDI}, pages 345-357, 1998.

762762

Authorized licensed use limited to: MICROSOFT. Downloaded on June 10, 2009 at 22:23 from IEEE Xplore. Restrictions apply.

