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ABSTRACT 
An understanding of how people allocate their visual 
attention when viewing Web pages is very important for 
Web authors, interface designers, advertisers and others. 
Such knowledge opens the door to a variety of innovations, 
ranging from improved Web page design to the creation of 
compact, yet recognizable, visual representations of long 
pages. We present an eye-tracking study in which 20 users 
viewed 361 Web pages while engaged in information 
foraging and page recognition tasks. From this data, we 
describe general location-based characteristics of visual 
attention for Web pages dependent on different tasks and 
demographics, and generate a model for predicting the 
visual attention that individual page elements may receive. 
Finally, we introduce the concept of fixation impact, a new 
method for mapping gaze data to visual scenes that is 
motivated by findings in vision research. 
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INTRODUCTION 
The World Wide Web has become an information platform 
of tremendous importance. Estimates from 2006 suggest 
that the average U.S.-based user viewed 120 Web pages per 
day [6]. The ability to model what parts of those Web pages 
receive the most visual attention could offer several benefits 
to both end-users and Web page authors.  
From an end-user perspective, there is great value in being 
able to model both what users have already viewed in the 
past and what parts of a page they are likely to view in the 
future. With regards to revisitation, research shows that 
50% [13, 26] to 80% [5] of all Web surfing behavior 
involves pages that users have visited before. Re-finding 

previously viewed websites can be quite challenging, and 
current browser history mechanisms are inadequate for this 
common task [26]. If one knew what regions of a Web page 
people use to recognize previously seen pages, one could 
create compact visual representations of Web pages that 
emphasize or contain only those areas most relevant for 
page recognition, thus assisting re-finding [27]. Similarly, a 
model of what parts of a page are most likely to be looked 
at for a given page could be used to construct compact 
“previews” of pages that could assist a user when triaging 
many as-yet-unexplored Web pages, e.g., during an 
investigational search task. 
Web page authors could also benefit from a model of visual 
attention to improve page layout and design, e.g., arranging 
page elements in such a way that users’ attention is focused 
on the aspects that the author considers most important. 
And, of course, the value to advertisers of knowing how 
users’ direct their attention is quite obvious! 
We conducted an eye-tracking study in which 20 
participants viewed 361 distinct Web pages while 
conducting both information foraging (information search, 
analysis, and synthesis) and page recognition tasks. First, 
we describe the general characteristics of gaze behavior 
across regions of different pages in the context of each task 
(see Figure 1 for an example page for the recognition task). 
We then introduce a methodology for associating eye gaze 

 
Figure 1: Heat map visualization of viewing behavior across 

20 participants during a page recognition task. 
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data with elements from a Web page’s Document Object 
Model (DOM), and use this method to construct a model of 
visual attention based on HTML- and rendering-based 
features of Web pages.  

BACKGROUND & RELATED WORK 
Viewing behavior of arbitrary images is dependent on the 
characteristics of the image itself, one’s expectations about 
where to find information, and one’s current task or 
information need. Web pages can be thought of as specific 
kinds of images. In this section, we first provide some 
background about viewing behavior on arbitrary images 
(e.g., photos), and then consider research specifically 
dealing with eye movements and Web pages. 

Image Viewing Behavior 
Eye movements are generally composed of fixations and 
saccades. A fixation is a time span of at least 80-100 ms, 
during which the eye steadily gazes at one point. A saccade 
is a rapid, ballistic eye movement from one fixation to the 
next. Visual information is generally only perceived during 
fixations, not during saccades (see [25] for more detail). 
Much research has been conducted to shed light on where 
and when we fixate on images. There are three main factors 
that influence the placement of fixations: 1) salience of 
areas in the image; 2) memory and expectations about 
where to find information; and 3) task and information need 
at hand. 
Salience of areas is typically computed based on low-level 
image characteristics, particularly contrast, color, intensity, 
edge density, and edge orientation (see [11]). The first 
fixation is typically placed on the most salient spot, and the 
following fixations are placed such that the information 
gain is maximized [11, 15, 28]. While salience may direct 
the first fixation, memory and expectations (e.g., about 
what is shown in the image and where to find specific 
objects) also play important roles in subsequent fixations 
[11, 22, 23]. 

Web Pages and the DOM 
A Web page rendered and displayed by a browser can be 
thought of as a single complex image. Of course, this image 
is very different from scenic photos. Web pages often serve 
specific functions, i.e., to convey information to the user as 
in product descriptions, news, etc. Over the years, certain 
design patterns have been established and design guidelines 
have been created for Web page layout (see [2]). As a 
consequence, many Web pages contain certain elements at 
specific locations (e.g., logo, navigation bar, banners). 
Thus, users have general expectations about where to find 
certain pieces of information on a Web page [3]. 
Of course, Web pages are not just images displayed by the 
browser, but they are described in HTML. The browser 
reads the HTML code and transforms it internally into a 
formal representation, the document object model (DOM). 
All the different layout elements (e.g., links, images, text 
paragraphs, etc.) are different elements in the DOM. 

Some research has focused on predicting abstract Web page 
characteristics based on the general page design. For 
example, Ivory & Hearst [16] developed measures based on 
the DOM that could be used to automatically predict the 
overall Web page quality. Fogg et al. [9] examined what 
features determine the credibility and trustworthiness of a 
Web page. Both of these studies are based on analyzing 
important features of a Web page based on descriptions of 
how they are perceived by the users. Dontcheva et al. [8] 
use direct interaction from users coupled with analysis of 
the DOM to bootstrap semi-automatic extraction of relevant 
content from Web pages to create browsing summaries. 
These studies suggest that there might be some elements on 
a Web page that most users notice (e.g., a logo) because 
they are indicators of some global page characteristics (such 
as quality and trustworthiness). Such characteristics may 
also be reflected in the eye movements on the page. 

Web Page Viewing Behavior 
Studies from search engine optimization [14] and Web 
usability consultancies [20] describe broad patterns of 
visual attention for a variety of Web pages. However, these 
studies generally do not provide a detailed quantitative 
analysis of how the gaze was distributed across pages, 
instead providing general descriptions such as the “golden 
triangle” (for Web search) or the “F-shaped pattern” for 
general Web content. 
Pan et al. [24] studied the dependency of scan paths (i.e., 
repetitive sequences of fixations and saccades) on gender of 
the subjects, type of Web site (i.e., business, news, search, 
shopping), viewing order of Web pages, and task. They 
found significant differences in all variables except for task, 
which seemed to have no influence on viewing behavior. 
However, they used a weak task differentiation: 
remembering what was on a Web page vs. no specific task 
at all. In later work focused on Web search, they used 
stronger tasks (informational vs. navigational search) but 
again saw little difference in gaze behavior [19]. 
A study by Josephson & Holmes [17] suggested that people 
might follow habitually preferred scan paths over a Web 
page. They also suggested that other influential factors like 
specific features of the Web page or memory might play an 
important role. However, their study focused on only three 
Web pages, making the findings difficult to generalize. 
Furthermore, they only focused on scan paths, not on other 
measures like fixation duration or time to first fixation. 
Goldberg et al. [10] studied eye movements on Web portals 
during search tasks. They found that header bars are 
typically not viewed before focusing the main part of the 
page. As a consequence, they suggest placing navigation 
bars on the left side of a page. 
Beymer et al. [4] focused on a very specific feature on Web 
pages: images that are placed next to text content and how 
they influence eye movements during a reading task. They 
found significant influences, e.g., on fixation placement and 
duration. Those influences were dependent on how the 



image contents related to the text contents (i.e., they 
showed either ads or text-related images). 
A study by Cutrell & Guan [7] focused on viewing behavior 
on search result lists as created by commercial search 
engines, and investigated the effect of task and the 
information density of search results on gaze and search 
behavior. In particular, they focused on the composition of 
three elements for each result list entry (i.e., title, text 
content, URL). They found that the three elements 
influence each other and this has a differential effect on task 
performance. For example, the longer the text snippet was, 
the shorter was the time spent viewing the title or the URL; 
this improved performance on some tasks and hurt others.  
For our study, we wanted to: 1) quantify how very different 
tasks or other variables may influence the pattern of gaze 
across a variety of pages; and 2) see if we could use the 
collection of gaze and Web page data to create a predictive 
model of which page elements are likely to be looked at 
when users explore a page. 

METHODS 
The fundamental premise of our study is that since gaze 
data can be seen as a proxy for attention, understanding 
how people look at Web pages may reveal something about 
the salience, recognizability, and importance of different 
areas that we can then use in a predictive manner. To 
generalize these findings to underlying elements or 
abstractions of all pages, we need two things: 

• a mechanism that maps gaze data to elements of the 
HTML-induced document object model (DOM) as 
rendered by the browser; and 

• a set of features that can be used to describe single 
DOM elements. The feature set is based on 
information in the HTML source and information 
about how the elements are rendered by the browser. 

We can use our mechanism for mapping gaze data to DOM 
elements to build up a salience map of elements in different 
contexts. Machine learning techniques can then be used to 
try to learn and predict the attentional salience of a given 
element based on the set of features. In the end, we are 
aiming at a model that takes the DOM of an HTML page as 
input and produces predicted salience values of each DOM 
element as output.  

DOM-Based Feature Extraction 
For describing single DOM elements, we derive two main 
classes of features, HTML-related and rendering-related 
features. In general, HTML-related features can be 
computed very easily just by looking at the HTML source 
code. In contrast, rendering-related features can only be 
calculated after the page has been rendered by a browser. 
For HTML-related features, we created 44 simple binary 
features for the most frequent element names (e.g., “A”, 
“DIV”, “H1”, etc.). For example, for an A element (i.e., a 
link) the feature “A” has the value 1, all the other features 
are 0. Furthermore, we computed 3 more abstract features:  

• DOMTreeLevel is the level of an element in the DOM 
(i.e., the BODY element is always the root element with 
level 0; all other elements are below having a higher 
level based on their hierarchical nesting depth). 

• LogoImage is a binary feature only applicable to 
image elements (“IMG”). It tells whether the file name 
of the image contains the substring “logo”. 

• HomeLink is a binary feature only applicable to link 
elements (“A”). It tells whether the destination of the 
link is the top-level page of the entire Web site. 

We also computed 12 rendering-related features: 
• Size of the element, computed as width · height. 
• AspectRatio is computed as   

min(width, height) / max(width, height). 
• 10 positional binary features, i.e., 3x3 equal-sized 

regions above the fold (TopLeft, TopCenter, …, 
BottomRight), and the entire area below the fold 
(BelowFold). The position of an element is decided by 
the position of its center point. The 10 positions are all 
computed with respect to the visible area of a page in 
the browser. All elements that are not visible without 
scrolling after opening a page are below the fold. In 
our experiment, the area above the fold amounted to 
996 x 716 pixels at the top of a viewed page. 

Experimental design and procedure 
To help us understand Web page viewing behavior, we 
designed a user study to collect gaze data from participants 
engaging in Web tasks. To maximize the ecological validity 
of our tests, we had participants perform several different 
tasks. For our analyses, we collapsed these tasks into two 
broad categories: information foraging and page 
recognition tasks. 
A common requirement in eye-tracking research is to 
decrease variance by insuring that many of the Web pages 
that people view are the same. To this end, we designed 
eight tasks with very specific information needs and 
provided participants with small sets of more or less 
relevant Web pages to work with. In order to simulate the 
common occurrence of page revisitation under different 
task needs, these tasks were constructed in pairs that were 
on the same topic; each pair used a common set of Web 
pages, for a total of four distinct sets of pages. We selected 
four different task topics: cars, kite surfing, wind energy, 
and diabetes. For each topic, we provided links to nine Web 
pages to be used to complete the tasks. The task 
descriptions are given in Table 1.  
The nine pages for each topic were carefully selected and 
most contained at least some relevant information for each 
of the two tasks. Each set of 9 pages was constructed to 
include a variety of page types and layouts, such as pages 
from well-known domains, text-only pages, pages with lots 
of images, etc. Each set also contained pages of different 
types, e.g., news, product descriptions, home pages, and 
encyclopedia articles. We used a factorial design for the 
order of the task topics for each participant. When starting a 



new task, the task goal was displayed and a list of links to 
the nine preselected Web pages was presented in 
randomized order. Participants were free to choose which 
of the nine Web pages to open and in what sequence. 
Participants were given about five minutes to complete each 
task and were encouraged to use most of that time. 
We also wanted to explore how participants freely navigate 
the Web in pursuit of their own interests, so we had two 
“free query” tasks (see Table 1). For these tasks, the 
participants were also given about five minutes each, but 
they were free to search and browse any Web pages.  
Finally, to get a sense of how participants look at pages for 
recognition or revisitation, we included a task in which 
participants were asked to indicate their familiarity with all 
the pages they looked at in the experiment, as well as 
twelve other pages not seen in the experiment. These latter 
twelve included well-known pages like commercial Web 
portals (e.g., amazon.com), news portals (e.g., cnn.com), 
search engines (e.g., google.com), and entertainment portals 
(e.g., youtube.com), as well as more obscure sites such as a 
personal home page, web portals of public organizations, 
commercial pages of small companies, etc. For each page, 
participants gave two assessments on a 5-point scale 
(ranging from “never” to “frequently”): First, how often 
they had seen that specific page before, and second, how 
often they had seen any page from that Web site before (not 
including the page views during the study). 
The experimental sequence was as follows: 

1) Participants completed the first four tasks for each 
topic (cars, kite surfing, wind energy, and diabetes), 
with topic order balanced using a factorial design and 
link order randomized. 

2) They then completed two “free query” tasks with very 
broad information needs. During this phase, the 
participants could freely surf the Web. 

3) This was followed by the second four tasks for each 
topic. 

4) Participants were then asked to enter a variety of 
demographic and Web experience information. 

5) Finally, they were asked to state their familiarity with 
each previously seen page and the twelve other pages. 

With this experimental design, participants may have 
viewed some of the pages in three different task contexts: 
The first time during phase 1, the second time during phase 
3, and the third time during phase 5. We refer to the 
structurally similar tasks during phases 1, 2, and 3 (finding 
specific information somewhere on the page) as 
information foraging tasks. The main goal during phase 5 
was recognition of pages and sites, so we refer to this as a 
page recognition task. 

Apparatus 
All Web pages were shown in Internet Explorer 7; the 
browser window was sized to 1024x741 pixels. The use of 
tabs or additional windows was prohibited. Eye tracking 
was performed using the Tobii x50 eye tracker (see 
http://www.tobii.se/) paired with a 17” LCD monitor (96 
dpi) set at a resolution of 1024x768. The eye tracker 
sampled the position of users’ eyes at the rate of 50Hz and 
had an accuracy of 0.5°. Gaze data was logged by Tobii 
Studio. Before starting the tasks, we performed a 9 point 
calibration of the eye tracker for each participant using 
Tobii Studio. After the last task, a manual 9 point 
calibration was applied to determine the average tracking 
error for each participant. This was used after the 
experimental run to manually correct for systematic 
tracking errors as much as possible. Using a browser plug-
in, we took a screenshot of every viewed Web page on the 
fly and stored its DOM in a file. So, at the end of each 
experimental run, we had three associated data sets which 
we used for offline analysis: the gaze log file, the set of 
DOM files, and the set of screenshots. 

Participants 
Twenty participants (10 male) ranging in age from 18 to 69 
years old (Ø = 33.0, σ = 14.2) with a diverse range of jobs, 
backgrounds and education levels were recruited for this 
study from a user-study pool. All participants were native 
English speakers. An experimental run took approximately 
1 hour for each participant. 

Gaze-Based Measures and DOM Elements 
Processing gaze data on a Web page starts with detecting 
fixations and mapping them onto viewed pages. We used 
the software bundled with the eye tracker (Tobii Studio) for 
fixation detection and adjusting the gaze position for 
scrolling in the browser. A fixation was detected by Tobii 
Studio after steadily gazing in an area with a radius of 50 
pixels for at least 100 ms. For each viewed Web page, Tobii 
Studio reported a stream of fixation coordinates and 
durations relative to the page coordinates. From this data, 
we computed several gaze-based measures in parallel for 
each DOM element. Our intention was to build prediction 
models for each of the four gaze-based measures and then 
to analyze whether there was a difference between these 
models. If the models are very similar, then this indicates 

Topic First task Second task 
Cars Which of three given cars 

(Porsche, BMW, Audi) 
has the best performance? 

Which of those cars is 
small enough to fit in a 
tiny garage? 

Diabetes What are risk factors for 
type 2 diabetes that cannot 
be controlled / changed? 

In the U.S., what are 
estimated yearly costs 
for diabetes therapy? 

Kite 
surfing  

Find a kite surfing school 
where you don't have to 
have your own equipment. 

What basic equipment 
is recommended for 
kite surfing? 

Wind 
energy 

What are drawbacks and 
problems of wind power 
generation? 

Find detailed info about 
how much wind power 
is generated in the U.S. 

“Free 
query” 

Find information about 
places you might want to 
visit (e.g., a vacation) 

Find some new 
equipment for your 
favorite hobby. 

Table 1: Descriptions of the information foraging tasks. 



that all the measures have the same expressiveness 
concerning salience or importance of different features. We 
computed three measures which are described in detail 
below: Median fixation impact, Viewing frequency, and 
Median time to first fixation. 
Fixation impact is probably the most unusual concept and 
bears some discussion. Human vision is characterized by a 
very narrow window of high acuity (the fovea) that covers 
about 2° of visual angle. When people fixate an area of the 
visual field, they also gather a smaller amount of 
information from the region around this point. Therefore, 
for each fixation we look at the surrounding area and 
determine the DOM elements that lie (partly) within this 
area. We chose the diameter of the area to be 2° of visual 
angle (i.e., matching the foveal area) which corresponded in 
our setting to 0.8 inches or 66 pixels on the display. Of 
course, this is a simplification since the focus of attention is 
not always in the center of the fixation; the locus of 
attention is also dependent on visual salience and context 
(e.g., while reading). 
For a given fixation f, we first determine all DOM elements 
that intersect the circle around the fixation point. Then, we 
compute a Gaussian distribution with volume 1 and lay it 
over the circle around the fixation point. We calculate a 
distance impact value d(e, f) for each element e which is 
given by the volume of the Gaussian distribution above the 
element. So, if an element e completely covers the fixation 
circle, it gets a value of d(e, f)=1. If an element e covers the 
fixation circle only in parts, its value for d(e, f) is smaller 
(see Figure 2). 
Having computed the distance impact value d(e, f), we 
calculate the fixation impact value i(e, f) for a given 
element e by multiplying d(e, f) with the duration of the 
fixation f in milliseconds. So, an element that completely 
covers the fixation circle gets the full fixation duration as 
fixation impact value i(e, t). This kind of computation is 
motivated by observations from vision research indicating 
fixation duration correlates with the amount of visual 
information processed. The longer a fixation, the more 
information around the fixation center is processed [21]. 
For each DOM element on a page, we keep track of all 
fixations and the fixation impact associated with it over all 
page views. A page view is the time between opening a 
Web page until closing it again by any participant, and a 
given participant may create several page views for the 

same page. Therefore, for each DOM element e, we 
calculate the following. Note that in all cases, an element e 
is “looked at” during a fixation f if it got some fixation 
impact i(e, t) > 0 from that fixation (i.e., if the element is 
close to the fixation point). 

• Median fixation impact: mi(e). We first computed the 
accumulated fixation impact on e for each page view 
and then stored these values in the set I(e). So, each 
value in I(e) describes the accumulated fixation impact 
of e during one specific page view. mi(e) is the median 
of these values, i.e., the median across participants and 
page views. 

• Viewing frequency: p(e). The percentage of 
participants who looked at the element e on a page out 
of all participants that viewed that page at all. 

• Median time to first fixation: mt(e). Time-to-first-
fixation is the time in milliseconds measured from 
opening the Web page until looking at the element e. 
This is the median of the time-to-first-fixation values 
across all participants and page views.  

RESULTS 
During the study, gaze data from 2,126 page views on 361 
different Web pages was recorded. Each of the 9 pre-
selected Web pages for the 4 task topics was viewed by 
11.3 participants on average. This gave us a high overlap of 
gaze data across participants for 4x9=36 out of the 361 
viewed Web pages. 
For this analysis, we had two principal goals. First, we 
wanted to get an overview of the distribution of visual 
attention across Web pages. That is, we wanted to get a 
general sense of how users spatially allocate their visual 
attention at a high level for different tasks: which locations 
on a page generally attract most visual attention from users? 
Does this vary depending on tasks? Second, we wanted to 
see if we could create computational models based on the 
DOM of Web pages that can predict the visual salience of 
single elements on a page. Given an arbitrary Web page and 
HTML, can we predict what people will look at and how 
much? 

General Characteristics of Web Page Viewing Behavior 

Location-Based Overview 
Figure 3 shows the median time to first fixation across all 
pages and page views for both information foraging and 
page recognition tasks. Here, each of 10 regions of the 
screen is represented in a corresponding rectangle: 9 equal-
sized regions above the fold and everything else below the 
fold. We did not differentiate any further below the fold 
since it cannot be seen immediately after opening a page. 
Within each region is a circle proportional to the value in 
that region; smaller circles correspond to faster times to 
first fixation. The corresponding figures for median fixation 
impact (over the entire task duration) are shown in Figure 4. 
Here, larger circles correspond to greater fixation impact. 
Figure 6 illustrates median fixation impact when we limit 
the data to the first second of viewing for each page. We 

Figure 2: Fixation distance impact on nearby elements. 
The volume under the Gaussian distribution is 

represented by the color intensity around the fixation. 



included this analysis for the first second of each page view 
based on observations in [12]. They found that the first few 
fixations are controlled by visual features and global 
semantic characteristics of the visual scene. In our scenario 
of Web page viewing, such global semantic characteristics 
might result in expectations about where to find the most 
relevant information on a page before having seen the page. 
So, the first few fixations may reveal the locations where 
users expect to find relevant information on a page before 
they begin detailed exploration and reading. We did not 
exclude the very first fixation on a page despite the fact that 
it cannot have been influenced by the page’s content, 
because it might still express the user’s expectation about 
where to find important information. 
These results illustrate several characteristics of viewing 
behavior. Some of these appear to apply to all viewing 
scenarios, while others seem to be task-dependent. 
It is striking that the entire right side above the fold is 
neglected for both information foraging and page recogni-
tion tasks. Participants took about 3 seconds to fixate the 
three regions on the right side of a page for information 
foraging tasks, and about 2 seconds for recognition tasks. 
The median fixation impact on these regions is 0 for all 
tasks, indicating that even when they do look at these 
regions, participants don’t spend much time there. In 
contrast, the four upper left regions generally attracted 
visual attention faster than all others. Independent of the 
task, the time to first fixation was lowest for these regions. 
There are also interesting task-dependent differences in the 
relative importance of different regions of pages. This is 

particularly clear during the first second of each page view. 
For information foraging tasks, the center-left region 
attracts more and earlier attention than other regions. For 
recognition tasks, the top-left region attracts the most and 
earliest attention. 
More generally (again mainly looking at the first second of 
page views and the time to first fixation), the three regions 
center-left, top-left, and center-center seem to be most 
important for information foraging tasks. For page 
recognition tasks, the top-left, top-center, and center-left 
regions appear to be most important. The very large 
difference in median fixation impact below the fold across 
the full duration of tasks (Figure 4), is likely due to the in-
depth reading and exploration associated with our 
information foraging tasks. 
Figure 5 shows the viewing frequency of the 10 regions 
during the first second of the page views (i.e., the 
percentage of people looking at the page who looked at a 
given region). Supporting the observations from above, the 
figures also indicate that the four top left regions are most 
important, especially for page recognition tasks. The 
bottom-left and bottom-center regions above the fold are 
viewed much more frequently during information foraging 
than page recognition tasks. Generally, the viewing 
behavior during the first second of page recognition tasks 
seems to be less diverse than during the same time span of 
information foraging tasks. 

Differences Among Participants 
To further explore the distribution of visual attention, we 
wondered if gender, age, Web site familiarity, or experience 

 Information foraging Page recognition

Figure 3: Median time to first fixation on the 10 page regions 
across all pages and page views (in milliseconds). 

 Information foraging Page recognition

Figure 4: Median fixation impact on the 10 page regions 
across all pages and page views (in milliseconds) across the 

entire duration of tasks. 

0 

 Information foraging, first sec Page recognition, first sec

Figure 6: Median fixation impact on the 10 page regions 
across all pages and page views (in milliseconds) during the 

first second of page views. 

 Information foraging, first sec Page recognition, first sec

Figure 5: Viewing frequency of the 10 page regions across all 
pages during the first second of the page views. 



in Web browsing might affect how different people viewed 
the 10 screen regions. 
Generally, during page recognition tasks women tend to be 
more thorough, looking significantly longer at the page and 
at every region on it than men (mean women: 3432ms, 
mean men: 2866ms; two-tailed t-test: t=2.1, p < 0.05; mean 
age of both groups: 33.0). This is reminiscent of the 
findings of Lorigo et al. [19], who found large differences 
between the scanpaths of men and women for commercial 
Web search pages. During the first second of information 
foraging tasks, the differences for the top-center, top-right, 
and below-the-fold regions approached statistical 
significance (Bonferroni corrections of α=0.005). Here, 
men tended to spend less time on the top-center region, but 
more time on the top-right and below-the-fold regions. 
To explore the influence of age, we divided the participants 
in two groups: those under 30 years old (n=10; mean age: 
22.3) and those older than 30 (n=10; mean age: 43.7). 
During the recognition task, participants older than 30 years 
looked significantly longer at the page and at every region 
than younger participants (mean older than 30: 3699ms, 
mean younger than 30: 2593ms, t=4.1, p < 0.001). During 
the first second of information foraging tasks, younger 
participants looked significantly longer at the center-center 
region, but significantly shorter at the center-left position. 
Especially during the first second of page views of 
information foraging tasks there are significant differences 
with respect to Web site familiarity. When viewing pages 
from familiar Web sites participants looked significantly 
longer at the top-left, top-right, and bottom-left regions 
compared to pages from unfamiliar sites. At the same time, 
they looked for a shorter while at the center-center and 
bottom-center regions. 
Most of our participants (17) were very experienced with 
Web browsing; only 3 stated that they didn’t browse the 
Web multiple times a day. We found that these less-
experienced participants generally looked longer at pages 
during page recognition tasks. However, this finding was 
not significant and we need to collect data from more 
people who only rarely use the Web to explore this effect. 

Discussion  
Our results suggest that for page recognition, users expect 
the most important features of Web pages to be in the top 
left-hand corner of the page. The very low times to first 
fixation and complementary large median fixation impacts 
and viewing frequencies for these regions support this 
finding (Figures 3-6, right). For our Web page recognition 
task, it is clear that the top left 4 regions are the most 
informative regions. 
For more goal-directed, information-driven tasks, the first 
few fixations (i.e., during the first second of each page 
view) seem to be similar to the recognition task. Again, the 
4 top left regions are looked at earliest (see Figure 3). 
However, the first few fixations remain longer in the center-
left region (as opposed to the top-left region, as during the 

page recognition task) (see Figure 5). Here, fixations seem 
to be more directed by the user’s intention to find task-
specific information within a page. 
We were somewhat surprised to see that the right third of 
Web pages attracted almost no visual attention at all during 
the first second of each page view. This suggests that our 
participants have low expectations of information content 
or general relevance on the right side of most Web pages. 
This seems plausible because many Web pages display 
advertisements on the right side. Most people seem to 
entirely ignore this region, only occasionally looking there. 
This finding seems consistent with results of previous 
studies that reported triangular- or F-shaped scan patterns 
on Web pages [14, 20]. 
In general, independent of the task they are engaged in, 
there seems to be a common orientation phase when people 
first view a Web page. In the first few moments, people 
quickly scan the top left of the page, presumably looking 
for clues about the content, provenance, type of 
information, etc. for that page. The elements that are 
normally displayed in the upper left third of Web pages 
(e.g., logos, headlines, titles or perhaps an important picture 
related to the content) seem to be important for recognizing 
and categorizing a page. 
In the study we analyzed only the average viewing behavior 
with heat map-like techniques over a wide variety of page 
types, layouts, and designs. Presumably, certain layouts or 
designs have a specific influence on eye movements and 
there may be temporal behaviors (e.g., scan paths) that we 
did not detect here. However, in-depth analysis of these 
issues remains for future work. 

Prediction of Salient Elements 
In order to create a computational model for predicting 
salient DOM elements on a page we consider every DOM 
element as AOI (area of interest) and use sets of features to 
describe the AOIs and group them together. I.e., we have 
the set of HTML- and rendering-related features that can be 
used to describe a specific element (59 different features, 
see “Methods” section). In addition, we have the 3 different 
measures of gaze data described in the “Methods” section 
(fixation impact, viewing frequency, and time to first 
fixation). These gaze-based measures build the ground truth 
of salience for each DOM element (AOI) that we will 
attempt to predict. 
A certain amount of preprocessing of the data was 
necessary prior to learning a prediction model. First, we 
removed all DOM elements larger than 200,000 pixels (e.g., 
450x450) from the data set (6% of all elements). Very large 
elements, like the BODY element, that span the entire page 
are not interesting for us to predict and tend to produce 
outliers with respect to the gaze-based measures since they 
are associated with virtually any fixation on the page. 
Second, we normalized the values of all non-binary features 
and our gaze-based measures to (0, 1) intervals. All feature 
normalization was linear, except for DOMTreeLevel. This 



was normalized logarithmically, since some of the Web 
pages had very deep DOM trees while others were very flat. 
Logarithmic normalization emphasized the differences 
between lower levels in the tree (i.e., closer to the root). 
Overall, our dataset consisted of about 150,000 DOM 
elements coming from 361 different Web pages that were 
viewed by at least one participant during the experiment. 

Feature Information Gains 
As a first step we wanted to reduce the number of relevant 
features to a more tractable number, so we computed the 
information gain (as computed by the WEKA toolkit based 
on entropy, http://www.cs.waikato.ac.nz/ml/weka/) for each 
of the 59 features with respect to the 4 gaze-based 
measures. Therefore, we discretized the values of the 
measures to either 1 or 0 dependent on whether an element 
was assigned a value ≥0 or =0. Table 2 shows 10 features 
with the largest information gain based on median fixation 
impact, with task type and viewing time considered. 
Seven of the top 10 features with the highest information 
gain are based on rendering-related information of the 
elements: their size, position on the page, and aspect ratio. 
The feature with the highest information gain of all HTML-
based features is DOMTreeLevel.  
For all 4 gaze measures, Size is among the features 
providing the highest information gains. This conforms to 
the intuition that bigger elements (like a DIV box spanning 
the entire navigation bar) are looked at more often that 
smaller elements (e.g., a specific link in the navigation bar). 
Table 2 indicates that while the top features for information 
foraging and recognition tasks are very similar in many 
cases, there are some notable differences. This is 
particularly clear for AspectRatio, DOMTreeLevel, and 
some positional features. Note that the relative importance 
(represented by color intensity in Table 2) differs 
considerably for task type. 
The relative differences of the feature information gains 
were very similar with respect to all 3 gaze-based measures. 
Further, all 3 measures could be predicted with comparable 
quality by two different prediction methods we used in the 

following sections. As a result, for the balance of the paper 
we concentrate on median fixation impact as our gaze-
based measure of choice. 

Linear Regression: Feature Weights 
Having determined the top 10 features based on information 
gain, we wanted to see what influence each measure had on 
median fixation impact. The feature weights as computed 
by linear regression are presented in Table 3. 
As suggested by information gain, Size is the most decisive 
factor and is positively related to fixation impact; larger 
elements accumulate more fixation impact. All positional 
features above the fold have positive weight and BelowFold 
has negative weight. In concordance with our findings 
regarding the region-based gaze distribution, the 
CenterCenter position is more important for information 
foraging tasks whereas the TopLeft and TopCenter positions 
are more important for recognition tasks. AspectRatio, DIV 
and A are generally not very useful in combination with the 
other features. 
Interestingly, DOMTreeLevel has a negative weight for 
recognition tasks but a slight positive weight for the 
information foraging tasks. This indicates that elements that 
are deeper down the DOM tree are penalized more for 
recognition tasks. It can be assumed that elements on 
deeper levels in the tree are more (topically) specific than 
elements on higher levels. Thus, for recognition tasks, more 
general elements are important; for information foraging 
tasks more specific elements are important. 

Performance of Prediction Methods 
While there are many possible applications for predicting 
attentional salience of Web page elements, we decided to 
focus first on scenarios of page re-finding (e.g., Web 
history). Because information re-finding is particularly 
dependent on recognizing previously seen pages, we focus 
on the data from the recognition task. The information gains 
are always higher when we look at the entire time of each 
page view as opposed to just the first second (see Table 2), 
so we used median fixation impact from the entire time of 
page views for the recognition tasks for generating our 

 
Task  Info foraging Recognition Both

Feature name 
all 

time 
1st 
sec 

all 
time 

1st 
sec 

all 
time 

1st

sec 
Size 0.075 0.032 0.099 0.062 0.06 0.03

BelowFold 0.042 0.037 0.098 0.057 0.047 0.025
AspectRatio 0.028 0.01 0.101 0.056 0.023 0.01

TopCenter 0.008 0.007 0.066 0.048 0.023 0.012
TopLeft 0.002 0.002 0.052 0.031 0.009 0.005

DOMTreeLevel 0.006 0.003 0.033 0.02 0.011 0.006
CenterCenter 0.015 0.014 0.003 0.001 0.008 0.004

DIV 0.002 0.001 0.007 0.004 0.004 0.002
A 0.005 0.002 0.003 0.002 0.004 0.002

CenterLeft 0.007 0.004 0.002 1E-04 0.003 8E-04

 
Table 2: Information gain of the top 10 features for 

median fixation impact. Color intensity represents relative 
importance compared to the other features. 

 

Task Info foraging Recognition

 Feature name
all

time 1st sec 
all 

time 1st sec 
Size 0.318 0.231 0.291 0.262

BelowFold -0.016 -0.013 -0.004 -0.002
AspectRatio 0.005 0.009 -0.009 -0.009

TopCenter 0.003 0.016 0.134 0.121
TopLeft 0.006 0.012 0.069 0.064

DOMTreeLevel 0.021 0.006 -0.038 -0.02
CenterCenter 0.055 0.084 0.033 0.032

DIV -0.004 -0.003 0.006 -5.E-04
A 6.E-04 0.001 0.001 0.002

CenterLeft 0.023 0.021 0.022 0.017
 

Table 3: Feature weights of the top 10 features as 
determined by linear regression with respect to median 
fixation impact. Color and intensity correspond to sign 

and magnitude of the weights. 



models of salience prediction. There are myriad machine 
learning techniques that we could potentially use for our 
predictions. Rather than immediately dive into sophisticated 
models, we decided to begin with fairly simple and easy-to-
understand models of linear regression and decision trees to 
gauge the utility of the idea. 
Linear regression for approximating median fixation impact 
based on the top 10 features from Table 2 yielded a 
correlation coefficient of 0.50 and a root mean squared 
error (RMSE) of 0.08 milliseconds. The quality measures 
were determined by 10-fold cross validation. 
We further determined a decision tree (C4.5, pruned to 65 
leaves) for predicting whether a DOM element has any 
fixation impact (yes or no). As determined by 10-fold cross 
validation, the decision tree had a Kappa coefficient of 
0.59, a precision of 75%, and a recall of 53%. 
Generally, the correlation and Kappa coefficients of the two 
prediction methods were promising, so we implemented a 
new prediction method based on a combination of these two 
methods: First, the decision tree from above is applied for 
deciding whether an element received any fixation impact 
at all. If this is the case, then the linear regression method is 
used to approximate the magnitude of the fixation impact 
on that element. This combined prediction method yielded a 
fairly good correlation coefficient of 0.69 and a relatively 
low RMSE of 0.08 milliseconds. 
We also wondered how much the quality of prediction 
would drop if all rendering-based features were excluded. 
To predict salient elements based only on HTML-related 
features is especially interesting for search engines that 
cannot render every page while crawling. Based on the 
information gain seen in Table 2, it is not surprising that 
prediction was rather poor. Linear regression based only on 
the HTML-based features had a correlation coefficient of 
0.28 and an RMSE of 0.10 ms. A decision tree performed 
with similarly poor quality. 
To actually see the page elements and their predicted 
values, we visualized the actual and predicted median 
fixation impact for each Web page. In Figure 7, we show 
those visualizations for two representative Web pages. All 
DOM elements on the page are outlined by a black 
rectangle. The red color intensity of those rectangles 
represents the actual (left) and predicted (right) median 
fixation impact on each element, with deeper red color 
signifying more fixation impact. 

Discussion 
Generally, the prediction method seems to work well and 
finds the most important elements for recognizing a page. 
However, it is biased to prefer elements that are on the 
upper left-hand side of a page. As the region-based analysis 
has shown, this should be expected for the general case 
(e.g., the car review page in Figure 7). 
For specific Web pages, however, the prediction method 
may miss important elements on the right side of the page, 
such as the CNN home page in Figure 7. This is especially 

apparent for pages from Wikipedia.org where illustrative 
images are frequently located on the far right side of the 
page. As noted above, however, our prediction models were 
(purposely) very simple. We believe that more sophisticated 
models could yield much higher accuracy for these cases. 
Depending on the area of application, one could make use 
of the prediction in different ways. For example, to create 
recognizable small visual representations of a Web page (as 
motivated in the introduction), one could extract the image 
of a certain size that is predicted to be most salient together 
with the logo of the page and maybe a highest-ranked small 
text section. These three elements could be emphasized in a 
more intelligent thumbnail for a page, e.g., by enlarging 
them. With increasing size available for this “intelligent” 
visual representation (e.g., depending on the available space 
on the screen of desktop computers, laptops, mobile 
phones, etc.), one could emphasize more and more of the 
elements in the order of their predicted salience. 

CONCLUSION 
We have presented the methods and findings of a study 
aimed at understanding people’s visual attention patterns 
when viewing Web pages. This work entailed several 
contributions, including: 
• A method for mapping gaze data to Web page elements 

based on the concept of fixation impact. 
• A model of the most salient regions on Web pages, 

taking into account task type (information foraging vs. 

   
 

    
 Median fixation impact Prediction 
Figure 7: Measured median fixation impact and its prediction 

for CNN front page (top) and a car review page (bottom). 



recognition) and demographics. 
• A method for predicting salient DOM elements for a 

Web page. 
This increased understanding of users’ web-viewing 
behavior is valuable not only for improving Web page 
design, but also for creating new types of Web user 
interfaces. For example, compact representations of Web 
pages are desirable, but thumbnails of an entire page are 
unusable at small sizes [18]. Our model could be used to 
select the most salient regions of Web pages to create 
compact collages representing these pages. For information 
foraging tasks, our model could be used to create represen-
tations for page previews (i.e., thumbnails accompanying a 
search results list), while for recognition tasks it could be 
used to create representations for re-finding (i.e., 
thumbnails accompanying a bookmarks or history list). 
In future work, we hope to explore more powerful methods 
of machine learning and classification to improve our 
prediction methods for DOM element salience. In addition, 
we would like to look at more complex models to explain 
why and when the eyes move to certain regions of a page. 
Those models should include a variety of visual features of 
Web pages like color, contrast, shape, etc, and they should 
also consider the temporal aspect of fixations. Finally, we 
would like to use the salient elements predicted by our 
model to automatically generate small visual represen-
tations of pages to help users recognize them for re-use. 
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