
Cimbiosys: A Platform for Content-based Partial Replication

Venugopalan Ramasubramanian1, Thomas L. Rodeheffer1, Douglas B. Terry1,
Meg Walraed-Sullivan2, Ted Wobber1, Catherine C. Marshall1, Amin Vahdat2

1Microsoft Research, Silicon Valley2University of California, San Diego

Abstract
Increasingly people manage and share information
across a wide variety of computing devices from cell
phones to Internet services. Selective replication of
content is essential because devices, especially portable
ones, have limited resources for storage and communica-
tion. Cimbiosysis a novel replication platform that per-
mits each device to define its own content-based filtering
criteria and to share updates directly with other devices.

In the face of fluid network connectivity, redefinable
content filters, and changing content, Cimbiosys ensures
two properties not achieved by previous systems. First,
every device eventually stores exactly those items whose
latest version matches its filter. Second, every device
represents its replication-specific metadata in a compact
form, with state proportional to the number of devices
rather than the number of items. Such compact repre-
sentation results in low data synchronization overhead,
which permits ad hoc replication between newly encoun-
tered devices and frequent replication between estab-
lished partners, even over low bandwidth wireless net-
works.

1 Introduction
Delivering information that is relevant to different
people—or is appropriate for different devices—requires
system support for a richer notion of data synchroniza-
tion, one that incorporates personalized content filtering.
In many social and work settings, where bandwidth, stor-
age, and human attention may be at a premium, filtering
enables information to spread according to interests and
requirements. Personal information needs do not always
adhere to the rigid organizational structures imposed by
data providers [3], but rather can often be characterized
by flexible query-like predicates over the contents of di-
verse data collections.

At the same time, timely and robust information shar-
ing cannot always rely on established Internet connectiv-
ity or depend on centrally managed storage. Communi-
cation between devices may be ad hoc, taking advantage
of the proximity of neighboring devices and the avail-
ability of particular content. For example, in the wake of
Hurricane Katrina, disaster workers needed to quickly set
up ad hoc networks in which communication and control
were distributed and egalitarian [5].

In this paper, we presentCimbiosys, a replicated stor-
age platform designed to support collaboration within
loosely-organized communities with applications such as
home media management and shared calendars and to fa-
cilitate the interplay between mobile devices and cloud-
based services. The main contribution of this work is
demonstrating how to permit content-based partial repli-
cation among peers while providing two important sys-
tem properties:

• Eventual filter consistency: Each device eventually
stores precisely those items that would be returned
by running its custom filter query against the full
data collection.

• Eventual knowledge singularity: The state that is
transmitted between devices in synchronization re-
quests and is used to identify unknown latest ver-
sions converges to a size that is proportional to the
number of replicas in the system rather than the
number of stored items.

Eventual consistency has long been demanded by ap-
plications and provided in replicated systems. Ensuring
eventual filter consistency in a system that permits peer-
to-peer synchronization between devices with individual,
content-based filters is more challenging. Not only may
a device’s interest in specific items fluctuate over time
as the items are updated, but a device may vary its fil-
tering criteria, causing items with stable contents to en-
ter and leave the device’s interest set. The next section
expands on the substantial challenges of content-based
partial replication.

Eventual knowledge singularity is a new property
we have defined to convey the importance of compact
synchronization-specific state in making economical use
of bandwidth and system resources. Essentially, even-
tual filter consistency is an important correctness prop-
erty while knowledge singularity is hidden from appli-
cations but provides performance and convergence ben-
efits. In particular, this property allows Cimbiosys to
use brief intervals of connectivity between peer devices
and permits more frequent exchanges between regular
synchronization partners, thereby reducing convergence
delays. By contrast, conventional synchronization tech-
niques that exchange per-item version vectors or rely on

�������� ���	
���
��
���� �� ����� ��������
�����
��

������� ��	� � ��
��
������!"#���
��

���� ��
��
Figure 1: Photo sharing

operation logs make less effective use of relatively slow
or intermittent connections. In such systems, the data ex-
changed during synchronization is roughly proportional
to the collection size or dependent on the update rate; this
limitation becomes important as collection sizes grow
into the tens of thousands of items and items are updated
repeatedly.

2 Challenges
To further illustrate the needs of applications that manage
partially replicated data, consider the photo sharing sce-
nario depicted in Figure 1. Alice is traveling in Thailand,
photoblogging as she goes. Each night, the day’s photos
are copied from Alice’s camera to her laptop. When she
reaches a town with an Internet café, she uploads select
photos to her Flickr account. After Alice returns from her
trip, her photos are synchronized with the master collec-
tion on her PC. She spends several weeks working with
her new photos on the PC, rating them using one to five
stars, adding additional tags, and cropping or retouching
photos. Five-star photos are uploaded via a direct WiFi
connection to her living room’s photo frame. Photos that
Alice tags “public” are uploaded to a travel photoset on
Flickr and onto a photojournalism web site. A copy of all
of her family photos are retained on her laptop, so she’ll
have them with her when she travels again.

This scenario reveals an implicit set of requirements
for a modern storage platform:

• Updates may originate from multiple sites and pro-
duce new versions of items that must be selectively
disseminated to various devices.

• Interdevice communication may be ad hoc, taking
advantage of device proximity and the availability
of particular content.

• Not all devices (or even cloud-resident services)
store complete collections, and the items of inter-
est vary across devices according to their uses and
capabilities.

At first blush, adding content-based filtering to a repli-
cation protocol may seem straightforward. Start with any
protocol that fully replicates data and guarantees even-
tual consistency. Whenever a data item is about to be sent
via this protocol, check the contents of the item against
the destination device’s filter. If the item matches, and
hence is of interest to the destination, then continue to
send the item; if it does not match, then ignore the item.
Unfortunately, this simple scheme does not ensure even-
tual filter consistency.

Content-based filtering for devices with arbitrary com-
munication topologies introduces five key challenges:

• effective connectivity: ensuring, in the face of vary-
ing device-specific filters, that every item has a path
by which it can flow to all interested parties;

• partial synchronization: permitting incremental
synchronization between peers with overlapping
interests without wasting bandwidth on duplicate
items or excessive exchanges of metadata;

• item move-outs: informing devices of items they
store that no longer match their filters due to more
recent updates;

• out-of-filter updates: determining how to propagate
and when to safely discard updated items that do not
match the updating device’s own filter; and

• filter changes: allowing a device to modify its fil-
ter without completely discarding previously stored
items or failing to receive items that match its new
filter.

Unless these issues are explicitly addressed by the
replication protocol design, they can prevent eventual fil-
ter consistency. We now describe each of these problems
in more detail; solutions are presented in later sections.

A synchronizationtopologycan be viewed as a graph
where devices (or services) are the nodes, and edges in-
dicate synchronization partnerships between pairs. Cus-
tom synchronization topologies that permit indirect com-
munication between devices are desirable; Alice’s photo
frame never directly synchronizes with her camera, for
instance. In a fully replicated system, eventual consis-
tency can be achieved as long as the topology graph is
connected and devices at least occasionally synchronize
with their neighbors. As long as these basic conditions
are met,topology-independentprotocols accomodate ar-
bitrary communication patterns. In a system with par-
tially replicated collections, additional issues arise. For

example, in the scenario in Figure 1, if Alice’s home
PC never directly synchronized with her laptop, then the
only path for routing new, tagged photos from Alice’s
laptop to her PC would be through services in the cloud,
such as Flickr. In this case, the PC would only receive
laptop-resident photos that are tagged as “public” and,
hence, have been uploaded to a photo-sharing service.
Section 7 discusses the topology constraints enforced by
Cimbiosys to ensure effective connectivity.

The problem ofpartial synchronizationarises when a
device synchronizes from a partner that can only supply
some of the items that match the device’s filter. For ex-
ample, while Alice is traveling and uploading select pho-
tos to Flickr, her home PC may synchronize daily with
the service and obtain these new photos. When Alice re-
turns home and her laptop synchronizes directly with her
PC, the PC should not assume that it has already received
from Flickr any photos taken more than a day ago. In
general, a device may receive some items that match its
filter from one synchronization partner and other items
of interest from other partners. Section 4.2 introduces
the notion ofitem-set knowledgeto deal with this issue.

An item is said tomove outof a device’s interest set
when an update to the item causes it to no longer match
the device’s filter. For example, suppose that Alice de-
cides that one of her public photos is a bit too revealing,
and so she edits the photo on her PC to remove the “pub-
lic” tag. Using the simple replication approach outlined
earlier, this updated photo would not be sent to Flickr
when it next synchronizes with Alice’s PC. However, the
previous version of this photo, the one marked as pub-
lic, would remain indefinitely on Flickr’s web site, con-
trary to Alice’s intentions (and violating eventual filter
consistency). Replication protocols that support content-
based filtering not only must selectively propagate up-
dated items but also must inform devices of items that
should be discarded. Section 5.1 indicates the conditions
under which Cimbiosys delivers move-out notifications
during synchronization.

The fourth challenge is dealing without-of-filter up-
dates. A device might update an item producing a ver-
sion that does not match the device’s own filter. For ex-
ample, suppose that Alice is working on her laptop and
edits one of her private photos to remove the “family”
tag (perhaps a photo of her sister’s ex-husband). In this
case, Alice’s laptop cannot discard the photo immedi-
ately, even though it does not match the laptop’s filter,
since doing so would prevent other devices from learning
of this edit; the photo can only be discarded by the laptop
after it synchronizes with the home PC and sends it the
new version. In some situations, none of a device’s reg-
ular synchronization partners may be interested in out-
of-filter updates that it makes. Section 5.2 addresses this
issue.

A final challenge arises from the need to support
changing filters. A person’s information needs may vary
over time, causing her to change some devices’ filters.
For example, Alice might decide one day that she wants
only 5-star photos uploaded to the photojournalism web
site rather than all of her public photos. One option is for
a device, upon a change to its filter, to discard all of its lo-
cally stored items, reset its synchronization state, and es-
sentially restart as a new replica. However, this approach
wastes critical resources, such as network bandwidth and
energy, and may disrupt the person’s work. Section 5.3
details our approach to filter changes.

3 Cimbiosys Platform
Cimbiosys is a platform developed to support a variety
of applications that manage data on mobile devices, per-
sonal computers, and cloud-based services. It was de-
veloped as part of a research project exploring issues in
community information management (CIM).

3.1 System model
In the Cimbiosys distributed architecture, each partici-
pating node, hereafter simply called adevice, stores full
or partial copies of one or more data collections. A
collection, for instance, might be an individual’s digital
photo album, a family’s calendar, a shared video library,
or a company’s customer database. Each collection is
managed separately and consists of a set of items that are
not shared with other collections.

An item is an XML object plus an optional associ-
ated file. For example, a photo item stores its JPEG
data in a conventional file and the associated XML object
holds descriptive information, such as when the photo
was taken, its resolution, a quality rating, and human-
supplied keywords.

A replica contains copies of some or all of the items
in a given collection. A device can hold any number of
replicas of different collections. For simplicity, all of the
examples used in this paper involve a single collection
and a single replica per device.

Each device sharing a collection maintains its own
replica of the items of interest. The set of items included
in a device’s replica is specified by afilter, which is a se-
lection predicate over the items’ XML contents. For ex-
ample, a filter might select e-mail messages from a par-
ticular individual, files tagged with certain keywords, or
photos with a 5-star rating. The default “*” filter indi-
cates that the device is interested in all items, and hence
stores a full replica of the collection. Users can set dif-
ferent filters for each device and can change these filters
over time.

Each device is allowed to read its locally stored items
and update those items at any time, as long as such up-
dates are in accordance with the collection’saccess con-
trol policy. Update operations are applied directly to

items in the device’s local replica; such operations are
not logged or explicitly recorded. Updates produce new
versionsof items that are later sent to other replicas via a
device-to-devicesynchronization protocol. Devices gen-
erally have regular synchronization partners but may also
synchronize with any replica that they encounter.

A device can join the system simply by creating a new
(empty) replica of some collection and then synchroniz-
ing with some existing replica(s). Collections and their
replicas can be discovered by a variety of means, includ-
ing social networking web sites, e-mail invitations, nam-
ing directories, and wireless discovery protocols.

A replica may remain disconnected from the rest of
the system for an arbitrary amount of time due to device
failures or lack of network connectivity. However, we
assume that each device eventually recovers with its per-
sistent storage intact, occasionally communicates with
other devices, and correctly executes the synchronization
protocol. A device can permanently retire and discard its
local replica but must first synchronize with some other
device to ensure that updates are not lost.

At any point in time, a replica may hold older versions
of items that have been updated elsewhere, and it may not
have learned yet of recently created or deleted items. The
Cimbiosys synchronization protocol guarantees eventual
filter consistency. That is, a replica eventually receives
all versions of items that match its filter and have not
been overwritten by later versions, and the replica even-
tually discards items that are updated in such a way that
their contents no longer match the replica’s filter.

Cimbiosys does not provide other guarantees such as
causal consistency or multi-item coherence. In particu-
lar, versions may be received by a device in a different
order than they were produced. Moreover, a set of ver-
sions for items that were updated atomically at one de-
vice may be partially received by another device whose
filter only matches a subset of the items.

Naturally, because Cimbiosys allows updates to be
made at any replica without locking, two (or more) de-
vices may perform concurrent updates to the same item.
Such updates result in conflicting versions that are prop-
agated throughout the system using the synchronization
protocol. Any device whose filter selects both conflicting
versions may detect the conflict and either resolve it auto-
matically or store both versions pending manual resolu-
tion. Resolving a conflict produces a new version of the
item that supersedes all known conflicting versions. Any
existing technique for detecting conflicts, such as per-
item versions vectors [16] or concise predecessor vec-
tors [12], could be adopted for use with content-based
partial replication. Thus, no further discussion of con-
flict management appears in this paper.

$%&'()*+ ,--.)&/*)01,--.)&/*)01
2*).)*)%3 $+1&4*%5 $*0(% 6055'1)&/*)01

,74

Figure 2: Cimbiosys software architecture

3.2 Software components

Each device in Cimbiosys runs the set of software mod-
ules depicted in Figure 2. TheItem Storemanages the
items for local replicas of one or more collections. The
file portion of each item is stored in a special directory in
the device’s local file system. XML objects are stored in
an SQL Server (Compact Edition) database where they
can be queried and updated transactionally.

The Communicationmodule is responsible for trans-
mitting data to other devices using available networks,
such as the Ethernet, WiFi, cellular, or Bluetooth. It
also encapsulates the transport protocol used by the Sync
module. Devices are free to use a variety of transport
protocols, including SOAP-based RPC, HTTP, and Mi-
crosoft’s FeedSync, a set of simple extensions to RSS.
Of course, any two devices must agree on the network
and transport protocol that they use during synchroniza-
tion.

TheSyncmodule implements the synchronization pro-
tocol described in Section 4. During synchronization, it
enumerates versions of items in the local Item Store that
are unknown to the remote sync partner and sends these
along with the appropriate metadata. The remote partner
then adds the received items to its Item Store, possibly re-
placing older versions of these items. We are considering
allowing devices to keep multiple versions if requested
by an application, but our current implementation retains
only the latest known version of each item.

Cimbiosys also includes a number ofUtilities for
recording information about regular synchronization
partners, naming collections and devices, managing ac-
cess controls, and performing other configuration func-
tions.

Securityconsiderations permeate the Cimbiosys de-
sign. For example, all versions of items are digitally
signed by the originating device, and collection-specific
policies dictate which devices are allowed to create, up-
date, and delete items in a collection. Versions produced

by a device without write access to the collection (or to
the specific items) are rejected during synchronization. A
full discussion of the access control design can be found
in a companion paper [22]. Additionally, techniques
have been developed for recovering from corrupt ver-
sions that are introduced through malice or misuse [11].

Applications interact with the Cimbiosys platform us-
ing a specially developed application programming in-
terface (API). Through this API, an application can cre-
ate a new collection, create a local replica for an ex-
isting collection, add items to a collection, update and
delete items, run queries over items, initiate synchroniza-
tion between a local and a remote replica, establish regu-
lar synchronization partnerships, change access permis-
sions, and change a replica’s filter. Legacy applications
that read and write local files, and do not use the Cim-
biosys API, are supported by “watcher” processes that
monitor file system directories and import files into (or
delete items from) a local replica.

3.3 Implementation and validation

Cimbiosys has been implemented in two different en-
vironments. One implementation is in C# using Mi-
crosoft’s .NET Framework running on Windows. We
plan to port this code to Windows Mobile 6.0 so it can
run on handheld mobile devices. The other implementa-
tion is in Mace, a C++ language extension that supports
distributed systems development [8]. Both implementa-
tions are used in the evaluation presented in Section 8.

Additionally, the synchronization protocol has been
fully specified in TLA+ [10]. Extensive model check-
ing has been performed on both the TLA+ specification
and the Mace implementation to ensure that the protocol
meets the stated design goals, that is, achieves eventual
filter consistency and eventual knowledge singularity un-
der a variety of operating conditions.

Two applications have been designed and are intended
for deployment in our lab.Cimetric, implemented in C#,
is a collaborative authoring tool. It coordinates access
and updates to the complex, heterogeneous set of text,
graphics, and data files created and modified in the pro-
cess of writing a paper. Authors receive their own repli-
cas of the paper, perform local updates, and make those
updates visible to coauthors when they are ready to share
a new version.CimBib is designed as a bibliographic
database and personal digital library in which colleagues
can share references to local and remote copies of pub-
lished papers as well as personal annotations and recom-
mendations; this application is still in a user-centered de-
sign phase. The designs of both Cimetric and CimBib
were informed by a qualitative field study of scholarly
writing and reference use [13].

Photo Frame

knowledge:

{ k,p,q,r}: < A:4,C:1>

id vers contents

p A:1 rating=5

q A:3 rating=5

r C:1 rating=5

k A:4 rating=5

filter: rating=5

replicaID: B

updateCount: 0

Figure 3: Sample metadata held on the photo frame

4 CIM Sync Basics
The next three sections focus on a key aspect of the Cim-
biosys platform, the synchronization protocol. The ba-
sic protocol is introduced in this section; Sections 5 and
6 address how the protocol meets the challenges of fil-
ter consistency (storing the items that currently match a
replica’s filter and no other items) and knowledge singu-
larity (operating efficiently by optimizing the metadata
that is exchanged during synchronization).

4.1 Metadata
The CIM Sync protocol relies on both per-item and per-
replica metadata. Each collection and each item in a col-
lection has a unique identifier, as does each replica of
a collection. Each version of an item also has a unique
identifier called itsversion-id. Whenever an item is cre-
ated, updated, or deleted, the replica on which this op-
eration is performed creates a new version-id for the
item consisting of the replica’s identifier coupled with
a counter of the number of update operations that have
been performed by that replica. Deleted items are simply
marked as deleted; such items are treated as out-of-filter
versions as discussed in Section 5.2 and are eventually
discarded by all replicas.

For each item in a replica, the Cimbiosys item
store maintains the item’s unique identifier, version-id,
XML+file contents, deleted bit, and additional informa-
tion used to detect whether different versions of the item
are in conflict (similar to the made-with knowledge used
in WinFS [15]). Only the latest known version of each
item is retained in the item store. Older versions are con-
sidered obsolete.

Figure 3 depicts the data and metadata maintained by
a sample replica in our photo sharing scenario. This
particular replica, the digital photo frame, is known as
replicaB. Note that uppercase letters are used through-

out this paper as unique replica identifiers while low-
ercase letters are used as unique item identifiers. This
replica has not performed any local updates, and hence
its updateCount is zero. Its filter indicates that it is in-
terested only in photos with a 5-star rating. The replica’s
item store is shown as a table at the bottom of the figure.
It stores four photos: itemsp, q, r, andk. Every item has
a unique version-id. Itemp, for instance, has a version-
id of A:1, meaning that this version was produced by
replicaA’s first update operation, and has a rating of 5
stars. Each item has additional data and metadata that is
not shown in the figure, such as the actual photo contents
and the deleted bit. Finally, this replica has knowledge
about the items that it stores as described next.

4.2 Item-set knowledge

Each replica maintainsknowledgerecording the set of
versions that are known to the replica. Conceptually,
a replica’s knowledge is simply a set of version-ids; it
contains identifiers for any versions that (a) match the
replica’s filter and are stored in its item store, (b) are
known to be obsolete, or (c) are known to not match
the replica’s filter. Including the third class of versions,
out-of-filter versions, and using a novel representation
called item-set knowledgedistinguishes the knowledge
used in CIM Sync from that of other replication proto-
cols like Bayou [18] that do not support content-based
partial replication.

Knowledge is represented as one or more fragments
where each fragment is a version vector [16] and an as-
sociated explicit set of item ids. The version vector com-
ponent indicates, for each replica that has updated any
item in the collection, the latest known version-id gen-
erated by the replica. Semantically, if a replica holds a
knowledge fragmentS:V then the replica knows all ver-
sions of items in the setS whose version-ids are included
in the version vectorV . When a replica’s knowledge
contains multiple fragments, the replica’s overall knowl-
edge is the union of the version-ids from each fragment.
Note that, from its knowledge alone, a replica cannot de-
termine whether a known version is stored, obsolete, or
out-of-filter.

For example, replicaB in Figure 3 has a single knowl-
edge fragment whose item-set is{k, p, q, r}, the ids of
the four items that are stored by this replica, and a ver-
sion vector of<A:4, C:1>. ReplicaB, the photo frame,
does not appear in the version vector since it never di-
rectly updates items and hence does not generate any
versions. ReplicaB’s knowledge indicates that the de-
vice is aware of any versions of itemsk, p, q, or r with
a version-id ofA:1, A:2, A:3, A:4, or C:1. It does not
mean, however, that each of these version-ids is for a cur-
rent or obsolete version of one of these items. To permit
a compact knowledge representation, the version vector

may include version-ids for items that are not in the as-
sociated set; technically, those versions are not known to
the replica. For instance, versionA:2 could be the latest
version of some itemu that is not stored by replicaB and
that may or may not match its filter.

A knowledge fragment may specify “*” as the item-
set, meaning that the set includes all items in the col-
lection. Such fragments are calledstar-knowledge. In a
system consisting entirely of full replicas, each replica’s
knowledge is always a single star-knowledge fragment.
Partial replicas introduce the need for item-set knowl-
edge in addition to star-knowledge. In a system with
a mix of full and partial replicas, any replica may have
both star-knowledge and any number of item-set knowl-
edge fragments, at least temporarily. For instance, after
synchronizing from a partial replica, a full replica may
end up with item-set knowledge reflecting the set of re-
ceived items.

4.3 Filtered synchronization
Cimbiosys uses a one-way, pull-style synchronization
protocol. A replica, called thetarget replica, initiates
synchronization with another replica, called thesource
replica. Each device generally plays the role of the target
replica for some synchronization sessions and the source
replica for others. Two-way synchronization requires a
pair of devices to synchronize, switch roles, and then
synchronize again.

The target replica starts by sending a SyncRequest
message that includes the target’s knowledge and its fil-
ter. The target is not sent any versions that are already
included in its knowledge or that are not of interest. In
particular, the source replica checks its item store for
any items whose version-ids are not known to the target
replica and whose XML contents match the target’s filter.
The XML contents, file contents, and metadata for each
of these items are returned to the target. If possible, as
discussed in Section 5.1, the source replica also informs
the target replica of items that no longer match its filter.
Finally, the source replica responds with a SyncCom-
plete message including one or more knowledge frag-
ments that are added to the target’s knowledge. At the
very least, thislearned knowledgeincludes knowledge
pertaining to items transmitted during this synchroniza-
tion session but may include additional version-ids as
discussed in Section 6.1.

The messages received by the target replica can be ap-
plied to its item store individually or as a single atomic
transaction. Updating items (and the replica’s knowl-
edge) as new versions are received allows progress to
be made even when a connection is interrupted before
the synchronization protocol completes. The knowledge-
driven nature of the protocol makes it resilient to device
crashes and lost messages.

Photo Frame

knowledge:

{ k,p,q,r}: < A:4,C:1>

id vers contents

p A:1 rating=5

q A:3 rating=5

r C:1 rating=5

k A:4 rating=5

Laptop

id vers contents

r C:2 rating=5

s A:6 rating=5

t C:3 rating=4

u C:4 rating=3

k C:5 rating=1

SyncRequest ({k,p,q,r}:<A:4,C:1>, rating=5)

SyncComplete ({k,r,s}:<A:7,C:5> + *:<C:5>)

Item (r, C:2, rating=5)
filter: rating=5

replicaID: B

knowledge: *:<A:7,C:5>

filter: keyword=“family”

replicaID: C

authoritative: *: <C:5>

Item (s, A:6, rating=5)

Move-out (k, C:5)

Figure 4: Example synchronization between a target replica, the photo frame, and a source replica, the laptop

Figure 4 illustrates a synchronization session from our
scenario in which the digital photo frame (replicaB) re-
quests items from the laptop (replicaC). The state shown
for each device is the metadata and item storebeforesyn-
chronization. The arrows show the messages that are
sent during synchronization. Note that the photo frame’s
knowledge that is sent in the SyncRequest message spec-
ifies that it knows about four items, but has not seen any
updates from the laptop since versionC:1. The laptop,
the source replica in this example, returns a more recent
version of itemr that it produced and a new items that
had been created at replicaA. Itemk had also been up-
dated on the laptop to reduce the photos rating; hence the
laptop notifies that photo frame that this item is no longer
of interest. The final message informs the photo frame of
the knowledge it learned from the laptop. This learned
knowledge consists of two knowledge fragments, sepa-
rated by a plus sign, which means that the photo frame
will end up with three knowledge fragments after pro-
cessing the SyncComplete message.

The following sections describe in more detail specific
protocol features devised to support the requirements of
partial replication.

5 Eventual Filter Consistency
Although the use of item-set knowledge in the CIM Sync
protocol guarantees that replicas eventually receive all
items of interest (assuming sufficient effective connectiv-
ity), it does not ensure eventual filter consistency. This
section presents additional techniques needed to deal
with move-outs, out-of-filter updates, and filter changes.

5.1 Move-out notifications
During synchronization, the target replica may receive
move-out notificationsfrom the source replica when
items have later versions that no longer match its filter.

These cause the target to remove specified items from
its item store. There are two conditions under which the
source returns move-out notifications.

The simplest condition is when the source replica
stores an item whose version is not known to the target
replica and whose contents do not match the target’s fil-
ter. The source can send a move-out notification for any
such item. This is the condition illustrated in Figure 4
where the laptop sends a move-out notification for item
k, whose rating had been reduced.

A target replica may receive move-out notifications for
items that it does not store, such as items that are updated
and continue to not match the target’s filter, a potentially
common occurrence. For example, suppose that the lap-
top in Figure 4 updated itemt producing versionC:6 in
which the rating was unchanged but a new caption was
added to this photo. In this case, when the photo frame
next synchronizes from the laptop, it would be sent a
move-out notification for itemt even though it does not
store this item and perhaps never did. Such spurious no-
tifications do not affect eventual filter consistency since
they will simply be ignored by the receiving replica, but
they do consume network and processing resources.

To avoid spurious move-out notifications, a SyncRe-
quest message may optionally include a set of identi-
fiers for items that are stored by the requesting replica.
The source replica only sends move-out notifications for
items that are in this set. Replicas cache this item set
for their regular synchronization partners, allowing these
partners to send deltas, that is, to send just the set of
newly acquired items.

Sending move-out notifications for items that are
stored at the source replica is insufficient. Consider the
case of a replicated customer relationship database in
which a server holds the complete database, Bob’s lap-

top holds items for all California customers, and his cell
phone stores items for customers that live in Los An-
geles. Bob’s cell phone synchronizes periodically with
his laptop but never directly with the server database.
Suppose that a customer moves from Los Angeles to
Chicago. When Bob’s laptop synchronizes with the
server, it receives a move-out notification causing the
laptop to drop this customer from its local replica. But
then how does Bob’s cell phone learn that it also should
discard this item?

The second condition for sending a move-out notifi-
cation for an item is as follows: the target replica stores
the item, the source replica does not store the item, the
source replica’s filter is no more restrictive than the tar-
get’s filter, and the source’s knowledge for this item is
greater than the target’s knowledge. In other words, if
the source is interested in all items of interest to the target
and is more knowledgeable than the target, it can deduce
that any items it does not store should also be removed
from the target’s item store. This relies on the source
being informed of the set of items that are stored by the
target.

5.2 Out-of-filter updates
To preserve versions produced by out-of-filter updates,
the updated items are placed in a special portion of the
updating replica’s item store called thepush-out store.
Items in the push-out store are not visible to applications,
but are treated like any other item during synchroniza-
tion. In particular, such items are sent to a synchroniza-
tion partner if they match its filter, and may be overwrit-
ten by items received from a sync partner, possibly caus-
ing the item to move back into the regular item store.

Unfortunately, a replica might not have any synchro-
nization partner whose filter matches the items in its
push-out store. Thus, when synchronizing with any
replica with an equal or less restrictive filter, a replica
sends all items in its push-out store, and then optionally
discards these items once it learns that they were success-
fully received by the target replica. This partner accepts
these items even if they don’t match its filter. Such items
may end up in the target replica’s push-out store, from
where they are passed to another replica. However, this
could lead to situations in which two replicas play “hot
potato” by passing back and forth an item that matches
neither of their filters. Section 7 discusses restrictions
that Cimbiosys places on the synchronization topology
to avoid the hot potato problem and guarantee that out-
of-filter updates eventually reach all interested replicas.

5.3 Changing filters
Cimbiosys permits arbitrary filter changes while allow-
ing replicas to retain as many items as possible. When a
replica changes its filter it may need to discard items or
knowledge or both depending on the nature of the filter

change. If the new filter is more restrictive than the pre-
vious filter, that is, if it matches fewer items, then items
that no longer match the filter are moved to the replica’s
push-out store. The replica cannot simply discard such
items since it may be the only replica that holds the latest
versions. As discussed above, items from the replica’s
push-out store will eventually be discarded after they are
passed to another replica (or it is determined that they
are already stored by another replica). Although some
in-filter versions may become out-of-filter versions, the
replica’s knowledge does not change.

If the new filter is less restrictive than the previous fil-
ter, then previously out-of-filter versions may now match
the new filter. Such versions need to be removed from
the replica’s knowledge so that the replica will receive
them during future synchronizations. Unfortunately, the
replica cannot determine which versions in its knowl-
edge are out-of-filter and which are obsolete. So, con-
servatively, its knowledge must be retracted to include
only versions of items that it already stores. The repre-
sentation of item-set knowledge makes retraction easy.
Knowledge fragments with explicit item-sets retain the
same version vector but with a possibly smaller set of
items; any star-knowledge fragments are converted to
item-set knowledge.

If the new filter is neither less restrictive nor more
restrictive than the previous filter, that is, if the old
and new filters are incomparable, then both cases apply.
The replica may need to move non-matching items to
its push-out store. The replica also needs to retract its
knowledge.

Since replicas are allowed to change their filters at any
time, a replica may receive out-of-date move-out notifi-
cations based on a previous filter. To guard against pro-
cessing out-of-date notifications, a replica increments a
counter whenever it updates its filter. Essentially, this
counter serves as a version identifier for the replica’s fil-
ter. The filter version number is included in each syn-
chronization request and is returned in each move-out
notification. Move-out notifications that include old fil-
ter version numbers are simply ignored by the receiving
replica.

6 Eventual Knowledge Singularity

In this section, we propose mechanisms by which repli-
cas acquire and compact their knowledge. Although
the number of fragments in a replica’s knowledge may
temporarily grow after synchronization, the knowledge
tends to converge towards a single star-knowledge frag-
ment represented as a single version vector. This section
shows how we achieve the desired state of knowledge
singularity for both full and partial replicas.

6.1 Acquiring knowledge
As replicas receive items during synchronization, they
add the items’ version-ids to their knowledge, but re-
quire some other means of learning about obsolete and
out-of-filter versions. The SyncComplete message at the
end of the synchronization protocol conveys knowledge
that the target replica learned during this sync session.
The target replica adds this learned knowledge to its own
knowledge, generally as new knowledge fragments. This
knowledge can include any version-ids for items cur-
rently stored by the source replica as well as any ids for
versions that the source knows to be obsolete. It may
not, however, include versions that are out-of-filter at the
source replica but could match the target replica’s filter
as this would cause the target replica to fail to receive
such versions from other replicas.

The learned knowledge, therefore, depends on the re-
lationship between the filters of the synchronizing repli-
cas. If the source replica’s filter is no more restrictive
than the target’s filter, that is, if any item that matches
the target’s filter also matches the source’s filter, then
the source replica can send its complete knowledge in
the SyncComplete message; any out-of-filter versions in-
cluded in the source’s knowledge will also be out-of-
filter with respect to the target replica. In other cases
in which the target has a broader filter or a disjoint filter
compared to the source, the source replica must restrict
the conveyed learned knowledge to those items that it
actually stores. Figure 4 shows an example of disjoint
filters; the photo frame’s filter is based on the rating at-
tribute and the laptop’s filter is based on the value of the
photo’s keyword (in this case, ”family”).

6.2 Compacting knowledge
Whenever a replica synchronizes with another replica, it
receives new knowledge fragments. To reduce the num-
ber of fragments in its knowledge and the overall size, a
replica can compact its knowledge using a set of simple
rules. For example, suppose the replica’s knowledge in-
cludes two fragments,S1:V1 andS2:V2. If the setS1 is
a subset of setS2 and the version vectorV2 dominates
V1 (i.e. any versions inV1 are also included inV2), then
the fragmentS1:V1 is redundant and can be discarded.
If V1 andV2 are identical, then the setsS1 andS2 can
be combined into a single knowledge fragment. Table 1
enumerates compaction rules that can be applied to any
pair of knowledge fragments.

While these knowledge compaction rules are effective,
they don’t always lead to compact knowledge in practice.
Consider the case of Alice who edits photor on her lap-
top (replicaC) producing a new version with version-id
C:1, then edits this same photo again to produce a newer
versionC:2. Alice also adds keywords to photost, u, and
k, producing versionsC:3, C:4, andC:5. Suppose that

V1 V2

S1 S2

V1 V2

V1 V2

otherwise

S1 S2 S1 S2 otherwise

1 1 2 2

S2 V2 S2 V2

S2 V2 S1 V1

S1 V1 S1 V1

S1 V1 S1 S2 V1

S1 V1 V2

S1 V1 +

S2-S1 V2

S2 V2 +

S1-S2 V1

S2 V2 +

S1-S2 V1

S1 V1 V2 +

S2-S1 V2

S2 V1 V2 +

S1-S2 V1

S1 V1 +

S2 V2

S1 V1 +

S2-S1 V2

Table 1: Knowledge compaction rules

these items all match replicaC ’s filter and are never up-
dated by other replicas. The state of replicaC on Alice’s
laptop is as shown in Figure 4. When Alice’s home PC
(replicaA) synchronizes from her laptop, it will receive
these items and the associated learned knowledge. The
home PC’s knowledge would become something simi-
lar to∗:<A:9> + {k, r, t, u}:<A:7, C:5>. Unfortunately,
this knowledge cannot be compacted. This problem is
addressed in the remainder of this section.

6.3 Authoritative versions

Key to reducing the number of fragments in a replica’s
knowledge is the notion of authority. A replica isauthor-
itative for a version of an item if it either stores the item
or knows the item to be obsolete. Recall from Section 6.1
that version-ids for any stored or obsolete versions can
be included in the learned knowledge acquired by a tar-
get replica at the completion of the synchronization pro-
cess. The source replica, therefore, can return a learned
knowledge fragment in which the item-set is “*” (i.e. all
items in the collection) and the associated version vector
includes identifiers for its authoritative versions. In other
words, during synchronization, the target replica learns
of any versions of any items for which the source replica
is authoritative. Moreover, when the target replica’s filter
is equal to or less restrictive than the source’s filter, the
target replica becomes an authority for all of the source
replica’s authoritative versions.

In our previous example, the laptop (replicaC) is au-
thoritative for all of the versions that it produced, that
is, for versionsC:1 throughC:5. Thus, replicaC sends
∗:<C:5> as learned knowledge when synchronizing to
any other replica. This knowledge fragment is merged
into the receiving replica’s star-knowledge, and hence
does not lead to an increase in the overall number of
knowledge fragments. A replica’s star-knowledge grows
so that it eventually dominates other knowledge frag-
ments, which can then be discarded using the compaction
rules in Table 1.

6.4 Transferring authority
One practical issue remains, namely how to transfer au-
thority when an item is no longer of interest to the author-
itative replica, whether due to out-of-filter updates or to
filter changes. Such operations cause items to be placed
in a replica’s push-out store. The replica will cease to be
authoritative for its own versions that are pushed to an-
other replica and then discarded. Requiring a replica to
store indefinitely all of the items that it creates or updates
would be unreasonable. For instance, a digital camera
often offloads its photos to a laptop in order to free up
storage space for new photos. In practice, the system
simply needs to maintain the invariant that there exists
at least one replica that is authoritative for every version
ever generated.

In Cimbiosys, when a replica sends the items in its
push-out store to a replica with a less restrictive filter, the
receiving replica becomes authoritative for these items.
The sending replica can then discard such items without
violating the system-wide invariant. Each replica records
the version-id of the most recent version it has generated
for which it is no longer authoritative. The replica then
knows that it is authoritative for any versions it has pro-
duced with greater version-ids. The learned knowledge
sent by a replica is a star-knowledge fragment containing
the range of version-ids from the first version generated
after its last push-out to its most recently generated ver-
sion. A replica that has received multiple star-knowledge
fragments containing overlapping or contiguous version
ranges can combine these together into a single fragment.

For example, suppose Alice’s laptop (replicaC)
changes its filter so that it no longer wants items with
ratings below three. VersionC:5 of item k no longer
matches. After pushing this item to Alice’s home PC
(replicaA), as well as sending the latest versions of all
other items, the home PC will have learned∗:<C:5>. At
this point, the laptop discards itemk and recordsC:5 as
its last unauthoritative version. Now, suppose that Al-
ice performs three more updates from her laptop produc-
ing versions with identifiersC:6, C:7, andC:8. Dur-
ing synchronization to another replica, say Alice’s photo
frame (replicaB), the laptop will pass∗:<C:6..C:8> as
learned knowledge. When the photo frame synchronizes
from the home PC, it will receive learned knowledge of
∗:<C:5> in addition to knowledge of other versions for
which Alice’s home PC is authoritative. The photo frame
then combines the knowledge received from the laptop
with that received from the home PC to get a knowledge
fragment of∗:<C:8>, which in turn is merged with its
other star-knowledge.

As a replica synchronizes from other replicas, it ac-
quires star-knowledge fragments from each of these sync
partners. Such fragments are combined together into a
single star-knowledge fragment that is monotonically in-

creasing (provided the replica does not expand its filter).
As long as each replica regularly synchronizes with a set
of partners that collectively know about all versions in
the system, each replica will converge towards singu-
lar knowledge. Clearly, a device that synchronizes di-
rectly with every other device will receive a complete set
of star-knowledge. The following section describes how
Cimbiosys ensures that replicas are configured in a suit-
able topology without requiring full interconnectivity.

7 Filter-based Tree Topologies
The CIM Sync protocol can be used by any set of repli-
cas with arbitrary filters and arbitrary synchronization
patterns. When a replica synchronizes with any other
replica, it will receive all versions stored by its partner
that match its filter, and it will receive whatever move-
out notifications can be generated by the partner. More-
over, a replica never receives the same version from mul-
tiple synchronization partners (unless it engages in paral-
lel synchronizations or changes its filter). But additional
constraints must be placed on the synchronization topol-
ogy in order to achieve eventual filter consistency and
eventual knowledge singularity.

Cimbiosys forces replicas of a given collection to con-
figure themselves into a hierarchically filtered tree topol-
ogy. In particular, each replica has a single parent replica,
except for the replica at the root of the tree, and a
replica’s filter must be at least as restrictive as that of its
parent. In other words, a parent replica stores any items
that are stored by any of its children. The replica at the
root of the tree has a filter that matches all items; that is,
it stores a full copy of the collection. This root replica is
called thereference replicafor the collection. Parent and
child replicas are required to perform synchronization in
both directions, at least occasionally, but may also syn-
chronize with other replicas.

Constructing the tree is easy. When a new replica is
created for a collection, it asks an existing replica to be its
parent. If the filter of the requested parent is too restric-
tive, then the new replica walks up the existing tree until
it finds a replica that can serve as its parent. At the very
least, the reference replica can always serve as a parent
for any replica with an arbitrary filter. If a replica wishes
to retire gracefully from a collection, then this replica
should notify its children so they can select a new parent.
The retiring replica’s parent, for instance, can serve as
the new parent for its children, or, in some cases, one of
the existing children can be promoted to be the parent of
its siblings. A replica can change its parent at any time
as long as it chooses a new parent with a suitable filter
and does not violate the tree structure. For instance, a
replica may be required to find a new parent when it ex-
pands its filter or its previous parent is unreachable for
an extended period of time.

The tree synchronization topology provides four im-
portant benefits.

One, the synchronization topology ensures effective
connectivity. That is, groups of replicas for the same col-
lection cannot remain disconnected indefinitely, assum-
ing periodic synchronization between parents and chil-
dren. Moreover, each version of an item has a guaranteed
path by which it can travel from the originating replica
to any other replica whose filter matches the version.
Specifically, when a new version is created, it can flow
up the tree from child to parent replicas until it reaches
common ancestors, including the reference replica. Any
versions held by the reference replica can flow to any
other replica over a path of replicas with increasingly re-
strictive filters.

Two, move-out notifications can be delivered by a
parent to any of its children. Recall from Section 5
that move-out notifications can be sent when the source
replica has a filter than is no more restrictive than the tar-
get. This is exactly the case for replicas with a parent-
child relationship. Thus, the tree topology guarantees
that all replicas are able to receive appropriate move-out
notifications. Essentially, such notifications flow down
the tree.

Three, out-of-filter versions in a replica’s push-out
store flow up the tree until they reach replicas that are
interested in those items. During synchronization from a
child replica to its parent, the child sends all of the items
in its push-out store, regardless of whether they match
the parent’s filter. The tree topology prevents replicas
from playing “hot potato” with out-of-filter versions.

Four, the tree topology ensures eventual knowledge
singularity. As authoritative versions are passed up the
tree, a parent replica assumes authority for any versions
generated by any of its children or their descendants.
Eventually, all authoritative versions arrive at the ref-
erence replica, which produces a single star-knowledge
fragment containing all of these versions. This star-
knowledge fragment is then passed down the tree from
the reference replica to all other replicas during parent-
to-child synchronizations. In the absence of further up-
dates or filter changes, each replica’s knowledge will
eventually converge to that of the reference replica.

Although these benefits argue convincingly for hav-
ing a tree-structured synchronization topology, extended
synchronization patterns are not prevented. In Cim-
biosys, a replica can choose arbitrary synchronization
partners (in addition to its parent and children). The only
restriction is that the overall synchronization topology
must include an embedded tree with a reference replica.

All practical usage scenarios that we’ve envisioned
meet this condition. In the photo sharing scenario pre-
sented in Section 2, Alice’s home PC serves as the refer-
ence replica for her photo collection. Her laptop and dig-

ital photo frame synchronize directly with this PC, and
treat it as their parent, as do the cloud-based services that
contain selected photos. However, Alice’s laptop might
also sync with such services on occasion or sync directly
with friends’ laptops. Cloud-based services might repli-
cate data among themselves for geographic scaling, un-
beknownst to the reference replica. The digital camera,
which only synchronizes with the laptop, uses the lap-
top as its parent replica. The overlaid tree topology en-
sures that Alice’s new photos will eventually find their
way into her master photo collection as well as onto other
devices with selective filters.

8 Evaluation
In this section, we present an evaluation of Cimbiosys
based on our two implementations, one in C# for Win-
dows platforms and one in Mace for Linux platforms.
In particular, we answer the following questions with re-
spect to the goals of Cimbiosys:

• Does Cimbiosys achieve eventual filter consistency
in the presence of move-outs, out-of-filter updates,
and changing filters?

• How concise is the knowledge representation in
Cimbiosys as compared to protocols with per-item
knowledge, and does the reduction in knowledge
size lead to more efficient synchronizations?

• What are the benefits of leveraging filter re-
lationships between replicas, and how do non-
hierarchical synchronizations affect the perfor-
mance of Cimbiosys?

8.1 Experiments on the C# implementation
We performed experiments on the C# implementation by
running10 replicas on the same computer. The replicas
formed a three-level hierarchy based on filter relation-
ships with one full replica at the top, three partial replicas
in the middle, and six more partial replicas at the bottom.
Each replica’s filter was less restrictive than the filters of
any replica at a lower level.

The experimental workload had five serial phases con-
sisting of different kinds of updates to the system. Each
update consisted of a randomly chosen replica modifying
the content of a randomly chosen item in its item store.
Throughout the experiment, replicas synchronized with
randomly chosen partners at regular intervals.

1. insert phase: Randomly chosen replicas inserted a
total of 1000 items into their respective item stores
at the start of the experiment.600 synchronizations
followed the inserts.

2. update phase: 1000 updates were performed, none
of which triggered move-outs at any replicas. There

 0

 100

 200

 300

 400

 0 600 1200 1800 2400 3000

A
v

g
.
In

co
n

si
st

en
t

It
em

s
p

er
 R

ep
li

ca

Number of Syncs

Inserts Updates Move-outs Push-outs Filter
Changes

 CIM-Basic, CIM-Singular

Figure 5: Average inconsistent items per replica vs. time

were600 synchronizations in this phase, and the up-
dates happened during the start of the phase at the
rate of10 updates between each synchronization.

3. move-out phase: Replicas updated100 items; the
updated content continued to match the updater’s
filter even though it might move out of other repli-
cas’ filters.600 synchronizations followed.

4. push-out phase: Replicas performed a total of50

out-of-filter updates. That is, the updated content
did not match the updating replica’s filter. Another
600 synchronizations followed.

5. filter-change phase: Three randomly chosen par-
tial replicas changed their filters to new non-
overlapping filters. A final300 synchronizations
ended the experiment.

We evaluated two variants of the Cimbiosys system.
The first variant, calledCIM-Basic, implemented all the
core mechanisms described in Section 5 for achieving
eventual filter consistency. The second variant, called
CIM-Singular, implemented the additional mechanisms
for the accumulation of authoritative knowledge in order
to achieve eventual knowledge singularity as presented
in Section 6.

Results
We first show the progress made by replicas in achieving
eventual filter consistency. Figure 5 plots the average
number of inconsistencies in a replica’s item store over
time. Here, an inconsistency at a replica R at a certain
time includes three cases: a) an item present in R’s store
is obsolete, b) the latest version of an item matches R’s
filter but no version of the item is present in R’s store,
and c) an item is present in R’s store but does not match
R’s filter. We counted these inconsistencies by tracking
the global state of the system.

Figure 5 confirms that both CIM-Basic and CIM-
Singular eventually achieve a state of zero inconsisten-

 0

 10

 20

 30

 40

 0 600 1200 1800 2400 3000

A
v

g
.
K

n
o

w
le

d
g

e
S

iz
e

p
er

 R
ep

li
ca

 (
K

B
)

Number of Syncs

Inserts Updates Move-outs Push-outs Filter
Changes

 CIM-Basic
 CIM-Singular

Figure 6: Average size of knowledge per replica vs. time

 0

 40

 80

 120

 160

 0 600 1200 1800 2400 3000

C
u
m

u
la

ti
v
e

S
y
n
c

O
v
er

h
ea

d
 (

M
B

)

Number of Syncs

Inserts Updates Move-outs Push-outs Filter
Changes

 CIM-Basic
 CIM-Singular

Figure 7: Cumulative synchronization overhead incurred
vs. time

cies in the presence of partial synchronization, move-
outs, out-of-filter updates, and filter changes. They also
converge at the same rate (and the graphs are identical)
because they share the same core mechanisms to support
partial replication.

We next evaluate knowledge compaction in Cim-
biosys. Figure 6 shows the average size of the knowl-
edge of each replica over time. As expected, the size of
knowledge in CIM-Basic increases as updates are per-
formed and reaches a peak value dependent on the num-
ber of items stored in the replica and the number of up-
dates performed to each item. In CIM-Singular, however,
knowledge is fragmented in the initial stages but eventu-
ally converges to the size of a single version vector at
the end of each phase. In other words, CIM-Singular
achieves eventual knowledge singularity.

Figure 7 demonstrates the positive effect that knowl-
edge compaction has on synchronization overhead. It
shows the cumulative overhead incurred during synchro-
nizations in the insert and the update phases. The over-
head includes the cost of transmitting knowledge from
the target to the source in the initial SyncRequest mes-
sage and from the source to the target in the final Sync-
Complete message.

 0

 100

 200

 300

 400

 500

 600

 0 4000 8000 12000 16000

K
no

w
le

dg
e

S
iz

e
(K

B
)

Time (sec)

hierarchy
no hierarchy

Figure 8: Effect of leveraging filter relationships

Knowledge compaction provides a significant reduc-
tion in the sync overhead over a period of time as evi-
dent from the difference between CIM-Basic and CIM-
Singular in the figure. Low synchronization overhead
means that replicas can synchronize more often and
learn updates sooner with the same bandwidth budget.
It also enables effective synchronization for replicas on
bandwidth-constrained mobile devices.

8.2 Experiments on the Mace implementation
We evaluated the Mace implementation of Cimbiosys
using ModelNet [21] to simulate a variety of network
topologies on a cluster of machines.

For these experiments, we used a system of 10 repli-
cas, a binary-tree filter hierarchy, and a collection size of
10,000 items, which reflects the average size of a con-
sumer photo collection. Using ModelNet, we emulated a
clique of 10 routers, each connected to a single replica.
The link speed between all routers and replicas was set
to 100 Mbps. The trends in the experimental results were
similar with lower bandwidths.

Each experiment consisted of two phases. During
phase 1, replicas created items such that 10,000 total
items existed in the system at the conclusion of this
phase. During phase 2, synchronizations proceeded until
the knowledge at all replicas converged to a stable state.

Results
The general trends in the size of knowledge and the sync
overhead for the MACE experiments were similar to the
results of the C# experiments discussed earlier, and so
we do not present them here. Instead, we focus on evalu-
ating the impacts of filter relationships and synchroniza-
tion patterns.

We first discuss the effects of leveraging the hier-
archical filter relationships overlaid upon the network
topology. We performed experiments where each replica
chose a parent or a child as its synchronization partner
50% of the time and an arbitrary replica at other times.
In the first experiment, calledhierarchy, replicas would

 0

 100

 200

 300

 400

 500

 600

 0 2000 4000 6000 8000 10000 12000 14000

K
no

w
le

dg
e

S
iz

e
(K

B
)

Time (sec)

random
hierarchy only

Figure 9: Effects of out-of-hierarchy synchronization

synchronize as parents or children when their filters were
in the proper relation according to the filter hierarchy. In
the second experiment, calledno hierarchy, every syn-
chronization was treated as if the filters were unrelated.

Figure 8 shows the benefits of leveraging parent-
child relationships between replicas. Replicas can ac-
cept knowledge from their parents and can then directly
merge this knowledge with their own, as they know after
synchronizing with a parent that all versions included in
the parent’s knowledge should be included in their own.
Similarly, replicas can become authoritative for versions
authored by their descendants, and this information can
flow up the hierarchy until it reaches a reference replica,
at which point it flows downward in a compact form.
Without a hierarchy, replicas can only claim authority
over versions they themselves store. We can still achieve
eventual knowledge singularity without a filter hierarchy
but it takes longer for replicas to reach that state.

Finally, we discuss how the choice of synchronization
partners (only parent or children versus arbitrary repli-
cas) affects the performance of Cimbiosys. Figure 9
compares an experiment in which replicas only synchro-
nized with their parents and children with an experiment
in which the replicas selected synchronization peers at
random. As the figure shows, restricting synchroniza-
tions to parents and children allows knowledge to con-
verge much more quickly. This is because knowledge
tends to flow within a hierarchy in a more compact form.
On the other hand, synchronizations with arbitrary peers
may allow quicker exchange of updated items between
replicas at the cost of increased fragmentation in knowl-
edge.

9 Related Work
The Cimbiosys design presented in this paper builds
upon previous work on content-based filtering and es-
pecially weak-consistency replication protocols. In this
section, we discuss related work with an eye toward how
the systems fall short of meeting the challenges intro-

System
Selection
criteria Partial sync

Effective
connectivity Move-outs

Out-of-filter
updates Filter changes

Cimbiosys Content-based
filters

Item-set
knowledge

Filter-constrained
embedded tree

topology

Explicit move-out
notifications

Push-out store Knowledge
retraction and
push-out store

Ficus File IDs Metadata
exchange

Per-file ring
topology

Cannot occur Cannot occur Not addressed

PRACTI File IDs /
directories

Log exchange Policy Not addressed Not addressed Not addressed

EnsemBlue File IDs +
persistent queries

Client-server Client-server Not addressed Write back to
server

Not addressed

Perspective Views, i.e.
attribute-based

filters

Log or metadata
exchange

Not addressed Logged pre and
post versions

Retain until pulled
by device

Not addressed

Table 2: Key design decisions in Cimbiosys and related work.

duced by content-based replication with a peer-to-peer
synchronization model, particularly in an environment
characterized by changing content, user interests, and de-
vice connectivity.

The HomeViews system has the similiar goal of sup-
porting selective data sharing in a peer-to-peer system
model [6]. It allows users to export their data, includ-
ing digital photos and other files, as views defined by
content-based queries written in SQL. Although views
are essentially equivalent to filters in Cimbiosys, they are
defined by the data exporter rather than by the devices
that import the data. Moreover, data is not replicated
among devices but rather views are accessed remotely
and searched via distributed queries.

The filters supported in Cimbiosys also resemble those
of content-based publish/subscribe systems, though such
systems offer a completely different replication model [1,
4]. Subscribers in a pub/sub system advertise their fil-
ters to a collection of brokers, which build routing tables
used to route events from a publisher to the set of inter-
ested subscribers. Each event is independent and stored
temporarily in the brokers’ message queues. New sub-
scribers (or those with new filters) observe only future
events. In Cimbiosys, on the other hand, replicas even-
tually and persistently store all items that match their fil-
ters, can update items, and disseminate new and updated
items among themselves through direct communication.

Some systems support partial replication but with a
client-server model. Coda, for instance, allows clients
to cache some or all of the files residing on a server,
thereby supporting disconnected operation on mobile de-
vices [9]. A hoard profile, which could be considered a
type of filter, specifies the files of interest to each client,
though Coda clients may cache other files based on ac-
cess patterns. Clients reconcile their local changes di-
rectly with the server(s). BlueFS [14] provides a simi-
lar system model but emphasizes energy efficiency when
dealing with small, mobile devices. As opposed to Cim-
biosys, neither Coda nor BlueFS permits clients to share
updates directly with each other.

EnsemBlue [17] extends BlueFS by allowing discon-
nected clients to organize into a temporary ensemble
headed by a client acting in place of the server. No-
tably, EnsemBlue supports persistent queries that can be
used by clients, along with server-provided callbacks for
cache invalidation, to provide a form of content-based
replication. Select operations on files that match a per-
sistent query are logged by the server in a special file
that can be retrieved and read by clients. A client then
explicitly fetches new files that match its query and dis-
cards updated files that no longer match the query. Un-
like Cimbiosys, the burden is placed on servers to record
which files are cached where and on clients to fetch up-
dated files in order to determine whether the contents are
of interest.

Some topology-independent replication systems allow
arbitrary communication patterns but lack support for
content-based filters. Bayou, for instance, includes an
efficient log-based, peer-to-peer synchronization proto-
col but assumes that all replicas are interested in all
items [18]. WinFS, like Bayou, maintains a single ver-
sion vector per replica that is transmitted on every syn-
chronization, but uses state-exchange rather than log-
exchange [15]. WinFS supports replication of arbitrary
file folders but not per-replica filters. Cimbiosys ex-
tends the WinFS design to support content-based filter-
ing while ensuring eventual filter consistency; the even-
tual knowledge singularity property ensures that the per-
replica overhead converges to a single version vector as
in Bayou and WinFS.

A few other systems have combined topology inde-
pendence with some form of partial replication. One
early peer-to-peer replication system, Ficus [7], was ex-
tended to support selective replication [19]. Each replica
can store an arbitrary subset of a file system volume and
can alter the set of locally stored files at any time. Be-
cause the set of interesting files is explicitly specified by
file ids, and not based on file contents, several of the key
concerns with content-based filtering do not arise in Fi-
cus, including out-of-filter updates and move-outs. Syn-

chronization is a heavy weight operation since a replica
must pull information about all of the files stored on a
remote replica in order to determine those that have been
updated or newly created. To reduce communication
costs and ensure effective connectivity, the sites replicat-
ing a given file are organized into a ring where synchro-
nizations occur between neighbors in the ring, essentially
renouncing topology-independence.

PRACTI is another replication system with topology-
independence and partial replication (and arbitrary con-
sistency) [2]. In PRACTI, each replica maintains a log
of invalidations for objects that have been updated. A
synchronization protocol similar to Bayou’s exchanges
log entries between pairs of replicas. Partial replica-
tion is achieved by allowing replicas to selectively fetch
invalidated objects. Imprecise invalidations that cover
a range of objects let partial replicas maintain smaller
logs. While PRACTI permits each replica to define its
own “interest set”, the current design equates interest sets
with file folders, and issues such as effective connectivity
are left as policy decisions. Adding practical support for
content-based filtering to PRACTI would require many
of the techniques developed in Cimbiosys.

More recently, the Perspective project at CMU has
been exploring a replication paradigm most closely re-
sembling that of Cimbiosys, but with a very different
system design [20]. Each device in Perspective defines
an attribute-based filter called a “view”. Only files in-
cluded in a device’s view are stored on the device. Un-
like Cimbiosys, each device is aware of all other devices
and their views; hence, Perspective is more suitable for a
small, fixed set of devices, such as those in a consumer’s
home media system. Upon updating a file, a device sends
a notification to all other available devices. Devices, in
turn, fetch the updated files on demand. A disconnected
device that misses update notifications is later brought
up-to-date by synchronizing directly with other devices.
A device can modify its view at any time, but it must
inform the other devices and behave as a new replica
during synchronization to obtain the files that match its
new view. Cimbiosys, by contrast, allows content-based
filters, bandwidth-efficient synchronization, incremental
filter changes, incomplete knowledge of other replicas,
and arbitrary synchronization partners.

Table 2 summarizes the key design decisions in previ-
ous partial replication systems as well as Cimbiosys. It
focuses on the steps taken by the designers of these sys-
tems to address the five key challenges of content-based
partial replication presented in Section 2.

10 Conclusion
Cimbiosys is a new storage platform that provides fil-
tered replication of content through peer-to-peer syn-
chronization. Its design was motivated by the needs of

loosely-organized communities and of individuals man-
aging multiple devices. Cimbiosys allows each device
to express its individual information needs as a content-
based filter, permits devices to enter or leave the system
without global coordination, accommodates dynamically
changing content and filters, efficiently propagates up-
dated items while avoiding duplicate delivery, exploits
opportunistic encounters between devices with overlap-
ping filters, and supports flexible synchronization topolo-
gies (within certain constraints).

Eventual filter consistency, whereby a device’s replica
converges towards a state containing exactly those items
that match its filter and nothing more, is achieved
through a combination of novel technologies and prag-
matic design decisions. Item-set knowledge, compactly
represented as one or more version vectors and associ-
ated items, records not only the versions that have been
received by a device but also obsolete versions and ver-
sions of items that no longer match its filter. Given a
device’s knowledge and filter, the synchronization pro-
tocol can readily determine exactly those versions of in-
terest, thus meeting the challenge of partial synchroniza-
tion. Under specific conditions, devices receive move-
out notifications during synchronization and can discard
out-of-filter versions without losing updates. When mod-
ifying its filter, a device can adjust its knowledge so that
its local item store is incrementally updated to match its
new filter.

Remarkably, knowledge converges towards a single
version vector for all devices, with full or partially repli-
cated contents. This eventual knowledge singularity
property is achieved by ensuring that at least one device
is authoritative for every version ever generated, trans-
mitting star-knowledge for authoritative versions during
synchronization, and compacting knowledge fragments.
Our experimental evaluation, which was based on imple-
mentations of our protocol, as well as model checking
performed on a formal specification, demonstrate that
eventual knowledge singularity is indeed realized if up-
dates cease for a sufficiently long period. In a system
with frequent updates and filter changes, devices may
never actually reach knowledge singularity, but the tech-
niques used to drive the system in that direction serve to
keep knowledge to a manageable size.

Using the CIM Sync protocol, eventual filter consis-
tency and knowledge singularity will be attained in sys-
tems where every device synchronizes occasionally with
every other device. However, requiring full inter-device
connectivity is unrealistic in many of the scenarios that
we wish to support. By enforcing a hierarchically filtered
tree topology, Cimbiosys maintains the desired proper-
ties while providing some degree of flexibility in estab-
lishing synchronization partnerships and still allowing ad
hoc communication between peers.

Acknowledgements
We thank Rama Kotla, who made considerable sugges-
tions for improving this paper, Daniel Peek for many
early design discussions, Mike Dahlin for aiding our un-
derstanding of PRACTI, Brandon Salmon for answering
our questions about Perspective, Robbert van Renesse for
his insightful comments on an earlier version, and our
shepherd, Steve Gribble, for his advice and guidance in
producing the final version of this paper. Chip Killian,
James W. Anderson, and Ryan Braud provided much as-
sistance with Mace and ModelNet. Lev Novik, Mike
Clark, and Moe Khosravy were a valuable source of in-
formation on the Microsoft Sync Framework and con-
tributed product code to our C# implementation.

References
[1] M. K. Aguilera, R. E. Strom, D. C. Sturman, M. Astley,

and T. D. Chandra. Matching events in a content-based
subscription system. InProceedings of the 18th Annual
ACM Symposium on Principles of Distributed Computing
(PODC), pages 53–61, May 1999.

[2] N. Belaramani, M. Dahlin, L. Gao, A. Nayate,
A. Venkataramani, P. Yalagandula, and J. Zheng.
PRACTI replication. InProceedings of the USENIX Sym-
posium on Networked Systems Design and Implementa-
tion (NSDI), pages 59–72, May 2006.

[3] P. Dourish, W. K. Edwards, A. Lamarca, and M. Sal-
isbury. Presto: An experimental architecture for fluid
interactive document spaces.ACM Transactions on
Computer-Human Interaction, 6(2):133–161, June 1999.

[4] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Ker-
marrec. The many faces of publish/subscribe.ACM Com-
puting Surveys, 35(2):114–131, June 2003.

[5] S. Farnham, E. Pedersen, and R. Kirkpatrick. Observa-
tion of Katrina/Rita Groove deployment: Addressing so-
cial and communication challenges of ephemeral groups.
In Proceedings of the 3rd International ISCRAM Confer-
ence, pages 39–49, May 2006.

[6] R. Geambasu, M. Balazinska, S. D. Gribble, and H. M.
Levy. HomeViews: Peer-to-peer middleware for personal
data sharing applications. InProceedings of the ACM
SIGMOD International Conference on Management of
Data, pages 235–246, June 2007.

[7] R. G. Guy, J. S. Heidemann, W. Mak, T. W. Page, Jr.,
G. J. Popek, and D. Rothmeir. Implementation of the Fi-
cus replicated file system. InProceedings of the Summer
USENIX Conference, pages 63–71, June 1990.

[8] C. E. Killian, J. W. Anderson, R. Braud, R. Jhala, and
A. M. Vahdat. Mace: Language support for building dis-
tributed systems. InProceedings of the ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), pages 179–188, June 2007.

[9] J. J. Kistler and M. Satyanarayanan. Disconnected op-
eration in the Coda file system.ACM Transactions on
Computer Systems, 10(1):3–25, Feb. 1992.

[10] L. Lamport. Specifying Systems: The TLA+ Lan-
guage and Tools for Hardware and Software Engineers.
Addison-Wesley, 2003.

[11] P. Mahajan, R. Kotla, C. C. Marshall, V. Ramasubrama-
nian, T. L. Rodeheffer, D. B. Terry, and T. Wobber. Effec-
tive and efficient compromise recovery for weakly con-
sistent replication. InProceedings of the EuroSys 2009
Conference, Apr. 2009.

[12] D. Malkhi and D. B. Terry. Concise version vectors
in WinFS. Distributed Computing, 20(3):209–219, Oct.
2007.

[13] C. C. Marshall. From writing and analysis to the
repository: Taking the scholars’ perspective on scholarly
archiving. InProceedings of the 8th ACM/IEEE-CS Joint
Conference on Digital Libraries (JCDL), pages 251–260,
June 2008.

[14] E. B. Nightingale and J. Flinn. Energy-efficiency and stor-
age flexibility in the Blue file system. InProceedings of
the 6th Symposium on Operating Systems Design and Im-
plementation (OSDI), pages 363–378, Dec. 2004.

[15] L. Novik, I. Hudis, D. B. Terry, S. Anand, V. Jhaveri,
A. Shah, and Y. Wu. Peer-to-peer replication in WinFS.
Technical Report MSR-TR-2006-78, Microsoft Research,
June 2006.

[16] D. S. Parker, Jr., G. J. Popek, G. Rudisin, A. Stoughton,
B. J. Walker, E. Walton, J. M. Chow, D. A. Edwards,
S. Kiser, and C. S. Kline. Detection of mutual inconsis-
tency in distributed systems.IEEE Transactions on Soft-
ware Engineering, 9(3):240–247, May 1983.

[17] D. Peek and J. Flinn. EnsemBlue: Integrating distributed
storage and consumer electronics. InProceedings of the
7th Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 219–232, Nov. 2006.

[18] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer,
and A. J. Demers. Flexible update propagation for weakly
consistent replication. InProceedings of the 16th ACM
Symposium on Operating Systems Principles (SOSP),
pages 288–301, Oct. 1997.

[19] D. Ratner, P. L. Reiher, G. J. Popek, and R. G. Guy. Peer
replication with selective control. InProceedings of the
First International Conference on Mobile Data Access
(MDA), pages 169–181, Dec. 1999.

[20] B. Salmon, S. W. Schlosser, L. F. Cranor, and G. R.
Ganger. Perspective: Semantic data management for the
home. InProceedings of the 7th USENIX Conference on
File and Storage Technologies (FAST), Feb. 2009.

[21] A. Vahdat, K. Yocum, K. Walsh, P. Mahadevan, D. Kos-
tic, J. Chase, and D. Becke. Scalability and accuracy in
a large-scale network emulator. InProceedings of the
5th USENIX Symposium on Operating System Design and
Implementation (OSDI), pages 271–284, Dec. 2002.

[22] T. Wobber, T. L. Rodeheffer, and D. B. Terry. Access con-
trol for peer-to-peer replication. Technical Report MSR-
TR-2009-15, Microsoft Research, Feb. 2009.

