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Abstract In this paper, we presefimbiosysa replicated stor-

Increasingly people manage and share informatio®@€ Platform designed to support collaboration within
across a wide variety of computing devices from Ce”Ioosely—orgamzed communities with applications such as

phones to Internet services. Selective replication ofl?Me mediamanagementand shared calendars and to fa-

content is essential because devices, especially portab‘l:él't""te the interplay between mobile devices and cloud-

ones, have limited resources for storage and communice?—ased services. The main contribution of this work is

tion. Cimbiosyss a novel replication platform that per- demonstrating how to permit content-based partial repli-

mits each device to define its own content-based filteringf""t'on among peers while providing two important sys-

criteria and to share updates directly with other devices.'eM Properties:
In the face of fluid network connectivity, redefinable
content filters, and changing content, Cimbiosys ensures
two properties not achieved by previous systems. First,
every device eventually stores exactly those items whose
latest version matches its filter. Second, every device
represents its replication-specific metadata in a compact e Eventual knowledge singularityThe state that is
form, with state proportional to the number of devices transmitted between devices in synchronization re-
rather than the number of items. Such compact repre-  quests and is used to identify unknown latest ver-
sentation results in low data synchronization overhead,  sions converges to a size that is proportional to the
which permits ad hoc replication between newly encoun- number of replicas in the system rather than the
tered devices and frequent replication between estab- number of stored items.
lished partners, even over low bandwidth wireless net-

e Eventual filter consistencyeach device eventually
stores precisely those items that would be returned
by running its custom filter query against the full
data collection.

works. Eventual consistency has long been demanded by ap-
) plications and provided in replicated systems. Ensuring
1 Introduction eventual filter consistency in a system that permits peer-

Delivering information that is relevant to different to-peer synchronization between devices with individual,
people—or is appropriate for different devices—requirescontent-based filters is more challenging. Not only may
system support for a richer notion of data synchronizaa device’s interest in specific items fluctuate over time
tion, one that incorporates personalized content filteringas the items are updated, but a device may vary its fil-
In many social and work settings, where bandwidth, stortering criteria, causing items with stable contents to en-
age, and human attention may be at a premium, filteringer and leave the device’s interest set. The next section
enables information to spread according to interests andxpands on the substantial challenges of content-based
requirements. Personal information needs do not alwaypartial replication.
adhere to the rigid organizational structures imposed by Eventual knowledge singularity is a new property
data providers [3], but rather can often be characterizedve have defined to convey the importance of compact
by flexible query-like predicates over the contents of di-synchronization-specific state in making economical use
verse data collections. of bandwidth and system resources. Essentially, even-
At the same time, timely and robust information shar-tual filter consistency is an important correctness prop-
ing cannot always rely on established Internet connectiverty while knowledge singularity is hidden from appli-
ity or depend on centrally managed storage. Communieations but provides performance and convergence ben-
cation between devices may be ad hoc, taking advantaggfits. In particular, this property allows Cimbiosys to
of the proximity of neighboring devices and the avail- use brief intervals of connectivity between peer devices
ability of particular content. For example, in the wake of and permits more frequent exchanges between regular
Hurricane Katrina, disaster workers needed to quickly sesynchronization partners, thereby reducing convergence
up ad hoc networks in which communication and controldelays. By contrast, conventional synchronization tech-
were distributed and egalitarian [5]. niques that exchange per-item version vectors or rely on



e Not all devices (or even cloud-resident services)
store complete collections, and the items of inter-
est vary across devices according to their uses and
capabilities.

Servers
public photos

At first blush, adding content-based filtering to a repli-
cation protocol may seem straightforward. Start with any
protocol that fully replicates data and guarantees even-
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Laptop E Home PC tual consistency. Whenever a data item is about to be sent
f“m’lyphoff’\s_‘ g photos via this protocol, check the contents of the item against
— ¢ Y the destination device’s filter. If the item matches, and
P 7 | Photo Frame hence is of interest to the destination, then continue to
o N % | Sstar photos send the item; if _|t dpes not match, then ignore the item.
Cameri™ Unfo_rtunately,_thls simple scheme does not ensure even-
new photos tual filter consistency.

Content-based filtering for devices with arbitrary com-

Figure 1: Photo sharing munication topologies introduces five key challenges:

o effective connectivityensuring, in the face of vary-
ing device-specific filters, that every item has a path
by which it can flow to all interested parties;

operation logs make less effective use of relatively slow
or intermittent connections. In such systems, the data ex-
changed during synchronization is roughly proportional
to the collection size or dependenton the update rate; this ¢ partial synchronization permitting incremental
limitation becomes important as collection sizes grow  gynchronization between peers with overlapping
into the tens of thousands of items and items are updated  jnterests without wasting bandwidth on duplicate

repeatedly. items or excessive exchanges of metadata;

2 Challenges e item move-outs informing devices of items they
store that no longer match their filters due to more

To further illustrate the needs of applications that manage recent updates:

partially replicated data, consider the photo sharing sce-
nario depicted in Figure 1. Alice is traveling in Thailand, e out-of-filter updatesdetermining how to propagate
photoblogging as she goes. Each night, the day’s photos and when to safely discard updated items that do not
are copied from Alice’s camera to her laptop. When she match the updating device’s own filter; and

reaches a town with an Internet café, she uploads select
photos to her Flickr account. After Alice returns from her
trip, her photos are synchronized with the master collec-
tion on her PC. She spends several weeks working with
her new photos on the PC, rating them using one to five

stars, adding additional tags, and cropping or retouching pless these issues are explicitly addressed by the

photos. Five-star photos are uploaded via a direct WiFjgpjication protocol design, they can prevent eventual fil-

connection to her living room’s photo frame. Photos thatter consistency. We now describe each of these problems
Alice tags “public” are uploaded to a travel photoset onj, more detail; solutions are presented in later sections.

Flickr and onto a photojournalismweb site. A copy ofall ~ p synchronizatiortopologycan be viewed as a graph
of her family photos are retained on her laptop, so she'liyhere devices (or services) are the nodes, and edges in-
have them with her when she travels again. dicate synchronization partnerships between pairs. Cus-
This scenario reveals an implicit set of requirementstom synchronization topologies that permit indirect com-
for a modern storage platform: munication between devices are desirable; Alice’s photo
frame never directly synchronizes with her camera, for
e Updates may originate from multiple sites and pro-instance. In a fully replicated system, eventual consis-
duce new versions of items that must be selectivelytency can be achieved as long as the topology graph is
disseminated to various devices. connected and devices at least occasionally synchronize
with their neighbors. As long as these basic conditions
¢ Interdevice communication may be ad hoc, takingare mettopology-independemtrotocols accomodate ar-
advantage of device proximity and the availability bitrary communication patterns. In a system with par-
of particular content. tially replicated collections, additional issues ariser F

o filter changes allowing a device to modify its fil-
ter without completely discarding previously stored
items or failing to receive items that match its new
filter.



example, in the scenario in Figure 1, if Alice’s home A final challenge arises from the need to support
PC never directly synchronized with her laptop, then thechanging filters. A person’s information needs may vary
only path for routing new, tagged photos from Alice’s over time, causing her to change some devices’ filters.
laptop to her PC would be through services in the cloudFor example, Alice might decide one day that she wants
such as Flickr. In this case, the PC would only receiveonly 5-star photos uploaded to the photojournalism web
laptop-resident photos that are tagged as “public” andsite rather than all of her public photos. One option is for
hence, have been uploaded to a photo-sharing servica.device, upon a change to its filter, to discard all of its lo-
Section 7 discusses the topology constraints enforced bgally stored items, reset its synchronization state, and es
Cimbiosys to ensure effective connectivity. sentially restart as a new replica. However, this approach

The problem opartial synchronizatiorarises when a  wastes critical resources, such as network bandwidth and
device synchronizes from a partner that can only supplgnergy, and may disrupt the person’s work. Section 5.3
some of the items that match the device’s filter. For ex-details our approach to filter changes.

ample, while Alice is traveling and uploading select pho—3 Cimbiosys Platform

tos to Flickr, her home PC may synchronize daily with ~ } )
the service and obtain these new photos. When Alice reCIMbiosys is a platform developed to support a variety

turns home and her laptop synchronizes directly with he @Pplications that manage data on mobile devices, per-
PC, the PC should not assume that it has already receivetpn@l computers, and cloud-based services. It was de-
from Flickr any photos taken more than a day ago. inveloped as part of a research project exploring issues in
general, a device may receive some items that match it§°MMunity information management (CIM).

filter from one synchronization partner and other items3.1 System model

of interest from other partners. Section 4.2 introducegp the Cimbiosys distributed architecture, each partici-
the notion ofitem-set knowledg®e deal with this issue. pating node, hereafter simply callediavice stores full

An item is said tomove outof a device’s interest set or partial copies of one or more data collections. A
when an update to the item causes it to no longer matcBollection for instance, might be an individual’s digital
the device's filter. For example, suppose that Alice dephoto album, a family’s calendar, a shared video library,
cides that one of her public photos is a bit too revealingor a company’s customer database. Each collection is
and so she edits the photo on her PC to remove the “pulmanaged separately and consists of a set of items that are
lic" tag. Using the simple replication approach outlined not shared with other collections.
earlier, this updated photo would not be sent to Flickr  An itemis an XML object plus an optional associ-
when it next synchronizes with Alice’s PC. However, the ated file. For example, a photo item stores its JPEG
previous version of this photo, the one marked as pubdata in a conventional file and the associated XML object
lic, would remain indefinitely on Flickr's web site, con- holds descriptive information, such as when the photo
trary to Alice’s intentions (and violating eventual filter was taken, its resolution, a quality rating, and human-
consistency). Replication protocols that support cortentsupplied keywords.
based filtering not only must selectively propagate up- A replica contains copies of some or all of the items
dated items but also must inform devices of items thatn a given collection. A device can hold any number of
should be discarded. Section 5.1 indicates the conditiongeplicas of different collections. For simplicity, all dfe
under which Cimbiosys delivers move-out nOtiﬁC&tiOﬂSexamples used in this paper involve a single collection
during synchronization. and a single replica per device.

The fourth challenge is dealing witbut-of-filter up- Each device sharing a collection maintains its own
dates A device might update an item producing a ver- replica of the items of interest. The set of items included
sion that does not match the device’s own filter. For ex-in a device’s replica is specified byfiter, which is a se-
ample, suppose that Alice is working on her laptop andection predicate over the items’ XML contents. For ex-
edits one of her private photos to remove the “family” ample, a filter might select e-mail messages from a par-
tag (perhaps a photo of her sister's ex-husband). In thisicular individual, files tagged with certain keywords, or
case, Alice’s laptop cannot discard the photo immediphotos with a 5-star rating. The default “*” filter indi-
ately, even though it does not match the laptop’s filter,cates that the device is interested in all items, and hence
since doing so would prevent other devices from learningstores a full replica of the collection. Users can set dif-
of this edit; the photo can only be discarded by the laptofferent filters for each device and can change these filters
after it synchronizes with the home PC and sends it thever time.
new version. In some situations, none of a device'’s reg- Each device is allowed to read its locally stored items
ular synchronization partners may be interested in outand update those items at any time, as long as such up-
of-filter updates that it makes. Section 5.2 addresses thidates are in accordance with the collecticactsess con-
issue. trol policy. Update operations are applied directly to



items in the device’s local replica; such operations are

not logged or explicitly recorded. Updates produce new [ ] [ ]
versionof items that are later sent to other replicasviaa API | |
device-to-devicaynchronization protocoDevices gen-
erally have regular synchronization partners but may also
synchronize with any replica that they encounter.

A device can join the system simply by creating a new
(empty) replica of some collection and then synchroniz-
ing with some existing replica(s). Collections and their
replicas can be discovered by a variety of means, includ-
ing social networking web sites, e-mail invitations, nam-
ing directories, and wireless discovery protocols. \

Communication

"

A replica may remain disconnected from the rest of Figure 2: Cimbiosys software architecture
the system for an arbitrary amount of time due to device
failures or lack of network connectivity. However, we
assume that each device eventually recovers with its pe
sistent storage intact, occasionally communicates wittEach device in Cimbiosys runs the set of software mod-
other devices, and correctly executes the synchronizatiounles depicted in Figure 2. THe&em Storemanages the
protocol. A device can permanently retire and discard itstems for local replicas of one or more collections. The
local replica but must first synchronize with some otherfile portion of each item is stored in a special directory in
device to ensure that updates are not lost. the device’s local file system. XML objects are stored in

o . . an SQL Server (Compact Edition) database where they
At any pointin time, a replica may hold older versions . .
can be queried and updated transactionally.

of items that have been updated elsewhere, and it may no o ) )
have learned yet of recently created or deleted items. The _T_he Commumcatmn*nodule IS -respons.|ble for trans-
Cimbiosys synchronization protocol guarantees eventudittng data to other dew_ce_s using available networks,
filter consistency. That is, a replica eventually receivesUCh @s the Ethernet, WiFi, cellular, or Bluetooth. It
all versions of items that match its filter and have notSC €ncapsulates the transport protocol used by the Sync
been overwritten by later versions, and the replica evenModule. Devices are free to use a variety of transport

tually discards items that are updated in such a way tha?rotocc?ls, including SOAP-bas_ed RPC, HTTP’ and Mi-
their contents no longer match the replica’s fiter. crosoft’s FeedSync, a set of simple extensions to RSS.

o . Of course, any two devices must agree on the network

Cimbiosys does not provide other guarantees such agnd transport protocol that they use during synchroniza-
causal consistency or multi-item coherence. In particution.
lar, versions may be received by a device in a different TheSynanodule implements the synchronization pro-
order than they were produced. Moreover, a set of veryaco| described in Section 4. During synchronization, it
sions for items that were updated atomically at one deanymerates versions of items in the local Item Store that
vice may be partially received by another device whoseyre ynknown to the remote sync partner and sends these
filter only matches a subset of the items. along with the appropriate metadata. The remote partner

Naturally, because Cimbiosys allows updates to pdhen adds the received items to its Item Store, possibly re-
made at any replica without locking, two (or more) de- placing older versions of these items. We are considering
vices may perform concurrent updates to the same itenfllowing devices to keep multiple versions if requested
Such updates result in conflicting versions that are propby an application, but our currentimplementation retains
agated throughout the system using the synchronizatiofinly the latest known version of each item.
protocol. Any device whose filter selects both conflicting Cimbiosys also includes a number bltilities for
versions may detect the conflict and either resolve it autorecording information about regular synchronization
matically or store both versions pending manual resolupartners, naming collections and devices, managing ac-
tion. Resolving a conflict produces a new version of thecess controls, and performing other configuration func-
item that supersedes all known conflicting versions. Anytions.
existing technique for detecting conflicts, such as per- Securityconsiderations permeate the Cimbiosys de-
item versions vectors [16] or concise predecessor vecsign. For example, all versions of items are digitally
tors [12], could be adopted for use with content-basedigned by the originating device, and collection-specific
partial replication. Thus, no further discussion of con-policies dictate which devices are allowed to create, up-
flict management appears in this paper. date, and delete items in a collection. Versions produced

3.2 Software components



by a device without write access to the collection (or to ( Photo Frame \
the specific items) are rejected during synchronization. A

full discussion of the access control design can be found replicalD: B
in a companion paper [22]. Additionally, techniques updateCount: 0
have been developed for recovering from corrupt ver- knowledge:
sions that are introduced through malice or misuse [11]. {kp,qrk:<A4,C:1>
Applications interact with the Cimbiosys platform us- filter: rating=5
ing a specially develope(_zl application p_rogramming in- w | vaes | memmrs
terface (API). Through this API, an application can cre- X
; : p A1 rating=5
ate a new collection, create a local replica for an ex-
isting collection, add items to a collection, update and q A:3 | rating=5
delete items, run queries over items, initiate synchreniza r C:1 rating=5
tion between a local and a remote replica, establish regu- i -
L . . k A4 rating=5
lar synchronization partnerships, change access permis- \ )

sions, and change a replica’s filter. Legacy applications
that read and write local files, and do not use the Cim- Figure 3: Sample metadata held on the photo frame
biosys API, are supported by “watcher” processes that
monitor file system directories and import files into (or .
delete items from) a local replica. 4 CIM Sync Basics

The next three sections focus on a key aspect of the Cim-

_ o biosys platform, the synchronization protocol. The ba-

3.3 Implementation and validation sic protocol is introduced in this section; Sections 5 and

Cimbi has b imol ted in two diff ¢ 6 address how the protocol meets the challenges of fil-

vilrr:nrlr?:?lltss aéﬂ:?;g{g?ﬂ?:;}:ﬂ iI: in % 4 Iu(sairr?gr]] I\jin'ter consistency (storing the items that currently match a
' ) . " replica’s filter and no other items) and knowledge singu-

crosoft's .NET Framework running on Windows. We b ) g 9

plan to port this code to Windows Mobile 6.0 so it can larity (operating efficiently by optimizing the metadata

run on handheld mobile devices. The other implementaghat 's exchanged during synchronization).

tion is in Mace, a C++ language extension that supportal.1 Metadata

d_|str|buted syst_ems development [8]. BOth_ mpler_nenta—The CIM Sync protocol relies on both per-item and per-
tions are used in the evaluation presented in Section 8.

replica metadata. Each collection and each item in a col-
Additionally, the synchronization protocol has been|ection has a unique identifier, as does each replica of
fully specified in TLA+ [10]. Extensive model check- gz collection. Each version of an item also has a unique
ing has been performed on both the TLA+ specificationjdentifier called itsversion-id Whenever an item is cre-
and the Mace implementation to ensure that the protocoted, updated, or deleted, the replica on which this op-
meets the stated design goals, that is, achieves eventugfation is performed creates a new version-id for the
filter consistency and eventual knowledge singularity un4tem consisting of the replica’s identifier coupled with
der a variety of operating conditions. a counter of the number of update operations that have
Two applications have been designed and are intendelgeen performed by that replica. Deleted items are simply
for deployment in our labCimetric, implemented in C#, marked as deleted; such items are treated as out-of-filter
is a collaborative authoring tool. It coordinates accesyersions as discussed in Section 5.2 and are eventually
and updates to the complex, heterogeneous set of texdjscarded by all replicas.
graphics, and data files created and modified in the pro- For each item in a replica, the Cimbiosys item
cess of writing a paper. Authors receive their own repli-store maintains the item’s unique identifier, version-id,
cas of the paper, perform local updates, and make thos¢ML+file contents, deleted bit, and additional informa-
updates visible to coauthors when they are ready to shar#n used to detect whether different versions of the item
a new version.CimBib is designed as a bibliographic are in conflict (similar to the made-with knowledge used
database and personal digital library in which colleaguesn WIinFS [15]). Only the latest known version of each
can share references to local and remote copies of pulitem is retained in the item store. Older versions are con-
lished papers as well as personal annotations and recorasidered obsolete.
mendations; this application is still in a user-centered de  Figure 3 depicts the data and metadata maintained by
sign phase. The designs of both Cimetric and CimBiba sample replica in our photo sharing scenario. This
were informed by a qualitative field study of scholarly particular replica, the digital photo frame, is known as
writing and reference use [13]. replicaB. Note that uppercase letters are used through-



out this paper as unique replica identifiers while low- may include version-ids for items that are not in the as-
ercase letters are used as unique item identifiers. Thisociated set; technically, those versions are not known to
replica has not performed any local updates, and hencte replica. For instance, versioh2 could be the latest
its updateCount is zero. Its filter indicates that it is in- version of some item that is not stored by replic& and
terested only in photos with a 5-star rating. The replica’sthat may or may not match its filter.

item store is shown as a table at the bottom of the figure. A knowledge fragment may specify “*” as the item-
It stores four photos: items ¢, r, andk. Every item has set, meaning that the set includes all items in the col-
a unique version-id. Iterp, for instance, has a version- lection. Such fragments are callsthr-knowledge In a

id of A:1, meaning that this version was produced bysystem consisting entirely of full replicas, each repkca’
replicaA’s first update operation, and has a rating of Sknowledge is always a single star-knowledge fragment.
stars. Each item has additional data and metadata that Rartial replicas introduce the need for item-set knowl-
not shown in the figure, such as the actual photo contentsdge in addition to star-knowledge. In a system with
and the deleted bit. Finally, this replica has knowledgea mix of full and partial replicas, any replica may have

about the items that it stores as described next. both star-knowledge and any number of item-set knowl-
edge fragments, at least temporarily. For instance, after
4.2 Item-set knowledge synchronizing from a partial replica, a full replica may

Each replica maintainknowledgerecording the set of end up with item-set knowledge reflecting the set of re-
versions that are known to the replica. Conceptuallyceived items.

a replica’s knowledge is simply a set of version-ids; it . L

contains identifiers for any versions that (a) match the*-3  Filtered synchronization

replica’s filter and are stored in its item store, (b) areCimbiosys uses a one-way, pull-style synchronization
known to be obsolete, or (c) are known to not matchprotocol. A replica, called théarget replica initiates
the replica’s filter. Including the third class of versions, synchronization with another replica, called thaurce
out-of-filter versionsand using a novel representation replica. Each device generally plays the role of the target
called item-set knowledgdistinguishes the knowledge replica for some synchronization sessions and the source
used in CIM Sync from that of other replication proto- replica for others. Two-way synchronization requires a
cols like Bayou [18] that do not support content-basedpair of devices to synchronize, switch roles, and then
partial replication. synchronize again.

Knowledge is represented as one or more fragments The target replica starts by sending a SyncRequest
where each fragment is a version vector [16] and an asmessage that includes the target's knowledge and its fil-
sociated explicit set of item ids. The version vector com-ter. The target is not sent any versions that are already
ponent indicates, for each replica that has updated anycluded in its knowledge or that are not of interest. In
item in the collection, the latest known version-id gen- particular, the source replica checks its item store for
erated by the replica. Semantically, if a replica holds aany items whose version-ids are not known to the target
knowledge fragmen$:V then the replica knows all ver- replica and whose XML contents match the target’s filter.
sions of items in the s&f whose version-ids are included The XML contents, file contents, and metadata for each
in the version vecto/. When a replica’s knowledge of these items are returned to the target. If possible, as
contains multiple fragments, the replica’s overall knowl- discussed in Section 5.1, the source replica also informs
edge is the union of the version-ids from each fragmentthe target replica of items that no longer match its filter.
Note that, from its knowledge alone, a replica cannot deFinally, the source replica responds with a SyncCom-
termine whether a known version is stored, obsolete, oplete message including one or more knowledge frag-
out-of-filter. ments that are added to the target’s knowledge. At the

For example, replic# in Figure 3 has a single knowl- very least, thidearned knowledgéncludes knowledge
edge fragment whose item-set{is, p, ¢, '}, the ids of  pertaining to items transmitted during this synchroniza-
the four items that are stored by this replica, and a vertion session but may include additional version-ids as
sion vector of<A:4, C:1>. ReplicaB, the photo frame, discussed in Section 6.1.
does not appear in the version vector since it never di- The messages received by the target replica can be ap-
rectly updates items and hence does not generate armlied to its item store individually or as a single atomic
versions. Replica3’s knowledge indicates that the de- transaction. Updating items (and the replica’s knowl-
vice is aware of any versions of iter&s p, ¢, or r with edge) as new versions are received allows progress to
a version-id ofA:1, A:2, A:3, A:4, or C:1. It does not be made even when a connection is interrupted before
mean, however, that each of these version-ids is for a cuthe synchronization protocol completes. The knowledge-
rent or obsolete version of one of these items. To permitiriven nature of the protocol makes it resilient to device
a compact knowledge representation, the version vectarashes and lost messages.
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Figure 4: Example synchronization between a target repleaphoto frame, and a source replica, the laptop

Figure 4 illustrates a synchronization session from ourrhese cause the target to remove specified items from
scenario in which the digital photo frame (repliBare- its item store. There are two conditions under which the
guests items from the laptop (repli€d. The state shown source returns move-out notifications.
for each device is the metadata and item shaferesyn- The simplest condition is when the source replica
chronization. The arrows show the messages that ar§iores an item whose version is not known to the target
sent during synchronization. Note that the photo frame’seplica and whose contents do not match the target's fil-
knowledge that is sentin the SyncRequest message spegr. The source can send a move-out notification for any
ifies that it knows about four items, but has not seen anygych item. This is the condition illustrated in Figure 4

updates from the laptop since versiohl. The laptop, where the laptop sends a move-out notification for item
the source replica in this example, returns a more recent, whose rating had been reduced.

\r/]e:jst))n of itemr t;at I pr&(;uced anﬁl %HTW |:)esnthat Atarget replica may receive move-out notifications for
ad been created at replica [temk had also been up- jiomg that it does not store, such as items that are updated

dated on t_h_e laptop to reduce the phOt.OS_ rating; hence the, 4 continue to not match the target’s filter, a potentially
laptop notifies that photo frame that this item is no longer

. . . common occurrence. For example, suppose that the lap-
of interest. The final message informs the photo frame Otop in Figure 4 updated itemproducing versiorC':6 in

the knowledge it_ learned from the laptop. This Iearnedwhich the rating was unchanged but a new caption was
knowledge consists of two knowledge fragments, sepazjqq to this photo. In this case, when the photo frame

rqted by a pIu§ sign, which means that the photo fram%ext synchronizes from the laptop, it would be sent a
wil e_nd up with three knowledge fragments after pro- o6 oyt notification for item even though it does not
cessing the SyncCompIete message. ) . store this item and perhaps never did. Such spurious no-
The following sections describe in more det‘?"l SpecifiCications do not affect eventual filter consistency since
protocol features devised to support the requirements %ey will simply be ignored by the receiving replica, but

partial replication. they do consume network and processing resources.

5 Eventual Filter Consistency To avoid spurious move-out natifications, a SyncRe-

Although the use of item-set knowledge in the CIM Syncq.uest message may optionally include a set of idelnti-
protocol guarantees that replicas eventually receive a |(;rs for items tlhat ar? storzd by the re?ueﬁ_mgt_rephfca.
items of interest (assuming sufficient effective connectiv € Source replica only sends move-out notifications tor

ity), it does not ensure eventual filter consistency. Thigtems that are in this set. Replicas cache this item set

section presents additional techniques needed to degi)r their regular synchronization partners, allowing thes

with move-outs, out-of-filter updates, and filter changes.partners to.sen_d deltas, that is, to send just the set of
newly acquired items.

5.1 Move-out notifications Sending move-out notifications for items that are

During synchronization, the target replica may receivestored at the source replica is insufficient. Consider the
move-out notificationgrom the source replica when case of a replicated customer relationship database in
items have later versions that no longer match its filterwhich a server holds the complete database, Bob's lap-



top holds items for all California customers, and his cellchange. If the new filter is more restrictive than the pre-
phone stores items for customers that live in Los An-vious filter, that is, if it matches fewer items, then items
geles. Bob’s cell phone synchronizes periodically withthat no longer match the filter are moved to the replica’s
his laptop but never directly with the server databasepush-out store. The replica cannot simply discard such
Suppose that a customer moves from Los Angeles tdtems since it may be the only replica that holds the latest
Chicago. When Bob’s laptop synchronizes with theversions. As discussed above, items from the replica’s
server, it receives a move-out notification causing thepush-out store will eventually be discarded after they are
laptop to drop this customer from its local replica. But passed to another replica (or it is determined that they
then how does Bob’s cell phone learn that it also shouldare already stored by another replica). Although some
discard this item? in-filter versions may become out-of-filter versions, the
The second condition for sending a move-out notifi- replica’s knowledge does not change.
cation for an item is as follows: the target replica stores |f the new filter is less restrictive than the previous fil-
the item, the source replica does not store the item, thear, then previously out-of-filter versions may now match
source replica’s filter is no more restrictive than the tar-the new filter. Such versions need to be removed from
gets filter, and the source’s knowledge for this item iSthe replica's knowledge so that the replica will receive
greater than the target's knowledge. In other words, ifthem during future synchronizations. Unfortunately, the
the source is interested in all items of interest to the targereplica cannot determine which versions in its knowl-
and is more knowledgeable than the target, it can deducggge are out-of-filter and which are obsolete. So, con-
that any items it does not store should also be removederyatively, its knowledge must be retracted to include
from the target's item store. This relies on the sourcegnly versions of items that it already stores. The repre-
being informed of the set of items that are stored by thesentation of item-set knowledge makes retraction easy.
target. Knowledge fragments with explicit item-sets retain the
5.2 Out-of-filter updates same version vector but with a possibly smaller set of

To preserve versions produced by out-of-filter updates',temS; any star-knowledge fragments are converted to

the updated items are placed in a special portion of thdtem-set knowledge.

updating replica’s item store called tipeish-out store If the new filter is neither less restrictive nor more

ltems in the push-out store are not visible to applicationsfestrictive than the previous filter, that is, if the old

but are treated like any other item during synchroniza-2nd new filters are incomparable, then both cases apply.

tion. In particular, such items are sent to a synchronizal he replica may need to move non-matching items to

tion partner if they match its filter, and may be overwrit- its push-out store. The replica also needs to retract its

ten by items received from a sync partner, possibly causknowledge.

ing the item to move back into the regular item store. Since replicas are allowed to change their filters at any
Unfortunately, a replica might not have any synchro-time, a replica may receive out-of-date move-out notifi-

nization partner whose filter matches the items in itscations based on a previous filter. To guard against pro-

push-out store. Thus, when synchronizing with anycessing out-of-date notifications, a replica increments a

replica with an equal or less restrictive filter, a replicacounter whenever it updates its filter. Essentially, this

sends all items in its push-out store, and then optionallycounter serves as a version identifier for the replica’s fil-

discards these items once it learns that they were succesgr. The filter version number is included in each syn-

fully received by the target replica. This partner acceptchronization request and is returned in each move-out

these items even if they don’t match its filter. Such itemsnotification. Move-out naotifications that include old fil-

may end up in the target replica’s push-out store, fromter version numbers are simply ignored by the receiving

where they are passed to another replica. However, thigeplica.

could lead to situations in which two replicas play “hot

potato” by passing back and forth an item that matches

neither of their filters. Section 7 discusses restrictions6  Eventual Knowledge Singularity

that Cimbiosys places on the synchronization topology . ) . , )

to avoid the hot potato problem and guarantee that out!" this section, we propose mechanisms by which repli-

offilter updates eventually reach all interested replicas €2S acquire and compact their knowledge. ~Although
the number of fragments in a replica’s knowledge may

5.3 Changing filters temporarily grow after synchronization, the knowledge
Cimbiosys permits arbitrary filter changes while allow- tends to converge towards a single star-knowledge frag-
ing replicas to retain as many items as possible. When anent represented as a single version vector. This section
replica changes its filter it may need to discard items orshows how we achieve the desired state of knowledge
knowledge or both depending on the nature of the filtersingularity for both full and partial replicas.



6.1 Acquiring knowledge SiVi+SaVy =
As replicas receive items during synchronization, they s,cs, S=$, S5S,

otherwise

add the items’ version-ids to their knowledge, but re- SoVot SoVot
H H VicV, SV, S, Vo 272 272
quire some other means of learning about obsolete and SrSaVi | SrSaVs
out-of-filter versions. The SyncComplete message at the
. . Vi=V, S, V, NYRZ] SV, SuS2: Vs
end of the synchronization protocol conveys knowledge
that the target replica learned during this sync session. Vo v, SiVi+ Seve eV, SpVi+
The target replica adds this learned knowledge to its own SrSiiVa SzSi:Va
knowledge, generally as new knowledge fragments. This e | StViVet | g .y, | SaVaVer | SeVi+
knowledge can include any version-ids for items cur- SzSiVe SrSaVs SaVs

rently stored by the source replica as well as any ids for
versions that the source knows to be obsolete. It may
not, however, include versions that are out-of-filter at the

source replica but could match the target replica’s filterthese items all match repli¢é’s filter and are never up-

as this would cause the target replica to fail to receivegated by other replicas. The state of repli¢an Alice’s

such versions from other replicas. laptop is as shown in Figure 4. When Alice’s home PC
The learned knowledge, therefore, depends on the rgreplicaA) synchronizes from her laptop, it will receive

lationship between the filters of the synchronizing repli- these items and the associated learned knowledge. The

cas. If the source replica’s filter is no more restrictive home PC’s knowledge would become something simi-

than the target's filter, that is, if any item that matcheslar to x:<A4:9> + {k, r, ¢, u}:<A:7, C:5>. Unfortunately,

the target’s filter also matches the source’s filter, therthis knowledge cannot be compacted. This problem is

the source replica can send its complete knowledge iddressed in the remainder of this section.

the SyncComplete message; any out-of-filter versions in-

cluded in the source’s knowledge will also be out-of-

filter with respect to the target replica. In other cases6.3 Authoritative versions

in which the target has a broader filter or a disjoint filter

compared to the source, the source replica must restridt€y to reducing the number of fragments in a replica’s
the conveyed learned knowledge to those items that iknowledge is the notion of authority. A replicadsthor-
actually stores. Figure 4 shows an example of disjoinﬂtative for a version of an item if it either stores the item
filters; the photo frame’s filter is based on the rating at-O" knows the item to be obsolete. Recall from Section 6.1

tribute and the laptop’s filter is based on the value of thethat version-ids for any stored or obsolete versions can

Table 1: Knowledge compaction rules

photo’s keyword (in this case, "family”). be included in the learned knowledge acquired by a tar-
_ get replica at the completion of the synchronization pro-
6.2 Compacting knowledge cess. The source replica, therefore, can return a learned

Whenever a replica synchronizes with another replica, iknowledge fragment in which the item-set is **” (i.e. all
receives new know|edge fragments_ To reduce the nurﬁ-IemS in the CO”eCtion) and the associated version vector
ber of fragments in its knowledge and the overall size, dncludes identifiers for its authoritative versions. In@th
replica can compact its knowledge using a set of simplévords, during synchronization, the target replica learns
rules. For example, suppose the replica’s knowledge inof any versions of any items for which the source replica
cludes two fragmentsS;:V; andSs:Ve. If the setS; is is authoritative. Moreover, when the target replica’sfilte
a subset of sef, and the version vectdr, dominates is equal to or less restrictive than the source’s filter, the
Vi (i.e. any versions ifv; are also included ift), then target replica becomes an authority for all of the source
the fragmentS;:V; is redundant and can be discarded.replica’s authoritative versions.
If V1 and V5 are identical, then the sefs and.S, can In our previous example, the laptop (repliCdis au-
be combined into a single knowledge fragment. Table Ithoritative for all of the versions that it produced, that
enumerates compaction rules that can be applied to anig, for versiong’:1 throughC:5. Thus, replicaC sends
pair of knowledge fragments. x:<(C:5> as learned knowledge when synchronizing to
While these knowledge compaction rules are effectiveany other replica. This knowledge fragment is merged
they don’t always lead to compact knowledge in practiceinto the receiving replica’s star-knowledge, and hence
Consider the case of Alice who edits pheton her lap- does not lead to an increase in the overall number of
top (replicaC) producing a new version with version-id knowledge fragments. A replica’s star-knowledge grows
C'1, then edits this same photo again to produce a neweso that it eventually dominates other knowledge frag-
versionC':2. Alice also adds keywords to photgs:, and  ments, which can then be discarded using the compaction
k, producing version§’:3, C:4, andC"5. Suppose that rulesin Table 1.



6.4 Transferring authority creasing (provided the replica does not expand its filter).

One practical issue remains, namely how to transfer auAS long as each replica regularly synchronizes with a set
thority when an item is no longer of interest to the author-Of partners that collectively know about all versions in
itative replica, whether due to out-of-filter updates or tothe system, each replica will converge towards singu-
filter changes. Such operations cause items to be placd@l knowledge. Clearly, a device that synchronizes di-
in a replica’s push-out store. The replica will cease to be€ctly with every other device will receive a complete set
authoritative for its own versions that are pushed to an®f star-knowledge. The following section describes how
other replica and then discarded. Requiring a replica td~imbiosys ensures that replicas are configured in a suit-
store indefinitely all of the items that it creates or updatesiPle topology without requiring full interconnectivity.
would be unreasonable. For instance, a digital camera] . .
often offloads its photos to a laptop in order to free up Filter-based Tree TOpOIOgleS
storage space for new photos. In practice, the systerthe CIM Sync protocol can be used by any set of repli-
simply needs to maintain the invariant that there existsas with arbitrary filters and arbitrary synchronization
at least one replica that is authoritative for every versiorpatterns. When a replica synchronizes with any other
ever generated. replica, it will receive all versions stored by its partner
In Cimbiosys, when a replica sends the items in itsthat match its filter, and it will receive whatever move-
push-out store to a replica with a less restrictive filteg, th out notifications can be generated by the partner. More-
receiving replica becomes authoritative for these itemsover, a replica never receives the same version from mul-
The sending replica can then discard such items withoutiple synchronization partners (unless it engages in paral
violating the system-wide invariant. Each replica recorddel synchronizations or changes its filter). But additional
the version-id of the most recent version it has generatedonstraints must be placed on the synchronization topol-
for which it is no longer authoritative. The replica then ogy in order to achieve eventual filter consistency and
knows that it is authoritative for any versions it has pro-eventual knowledge singularity.
duced with greater version-ids. The learned knowledge Cimbiosys forces replicas of a given collection to con-
sent by a replica is a star-knowledge fragment containindigure themselves into a hierarchically filtered tree topol-
the range of version-ids from the first version generatedgy. In particular, each replica has a single parent replica
after its last push-out to its most recently generated verexcept for the replica at the root of the tree, and a
sion. A replica that has received multiple star-knowledgereplica’s filter must be at least as restrictive as that of its
fragments containing overlapping or contiguous versiorparent. In other words, a parent replica stores any items
ranges can combine these together into a single fragmerthat are stored by any of its children. The replica at the
For example, suppose Alice’s laptop (replicd) root of the tree has a filter that matches all items; that is,
changes its filter so that it no longer wants items withit stores a full copy of the collection. This root replica is
ratings below three. Versio@':5 of item k£ no longer called thereference replicdor the collection. Parent and
matches. After pushing this item to Alice’s home PC child replicas are required to perform synchronization in
(replicaA), as well as sending the latest versions of allboth directions, at least occasionally, but may also syn-
other items, the home PC will have learnedC:5>. At  chronize with other replicas.
this point, the laptop discards itelnand record€”:5 as Constructing the tree is easy. When a new replica is
its last unauthoritative version. Now, suppose that Al-created for a collection, it asks an existing replica to be it
ice performs three more updates from her laptop producparent. If the filter of the requested parent is too restric-
ing versions with identifier€’:6, C:7, andC:8. Dur- tive, then the new replica walks up the existing tree until
ing synchronization to another replica, say Alice’s photoit finds a replica that can serve as its parent. At the very
frame (replicaB), the laptop will pass:<C:6..C:8>as least, the reference replica can always serve as a parent
learned knowledge. When the photo frame synchronizefor any replica with an arbitrary filter. If a replica wishes
from the home PC, it will receive learned knowledge of to retire gracefully from a collection, then this replica
*:<(C":5> in addition to knowledge of other versions for should notify its children so they can select a new parent.
which Alice’s home PC is authoritative. The photo frame The retiring replica’s parent, for instance, can serve as
then combines the knowledge received from the laptoghe new parent for its children, or, in some cases, one of
with that received from the home PC to get a knowledgethe existing children can be promoted to be the parent of
fragment of«:<C':8>, which in turn is merged with its its siblings. A replica can change its parent at any time
other star-knowledge. as long as it chooses a new parent with a suitable filter
As a replica synchronizes from other replicas, it ac-and does not violate the tree structure. For instance, a
quires star-knowledge fragments from each of these synieplica may be required to find a new parent when it ex-
partners. Such fragments are combined together into pands its filter or its previous parent is unreachable for
single star-knowledge fragment that is monotonically in-an extended period of time.



The tree synchronization topology provides four im- ital photo frame synchronize directly with this PC, and
portant benefits. treat it as their parent, as do the cloud-based services that
One, the synchronization topology ensures effectivecontain selected photos. However, Alice’s laptop might
connectivity. That s, groups of replicas for the same col-also sync with such services on occasion or sync directly
lection cannot remain disconnected indefinitely, assumwith friends’ laptops. Cloud-based services might repli-
ing periodic synchronization between parents and chil-cate data among themselves for geographic scaling, un-
dren. Moreover, each version of an item has a guarantedseknownst to the reference replica. The digital camera,
path by which it can travel from the originating replica which only synchronizes with the laptop, uses the lap-
to any other replica whose filter matches the versiontop as its parent replica. The overlaid tree topology en-
Specifically, when a new version is created, it can flowsures that Alice’s new photos will eventually find their
up the tree from child to parent replicas until it reachesway into her master photo collection as well as onto other

common ancestors, including the reference replica. Anydevices with selective filters.

versions held by the reference replica can flow to any, .

other replica over a path of replicas with increasingly re-8 Evaluation

strictive filters. In this section, we present an evaluation of Cimbiosys
Two, move-out notifications can be delivered by aPased on our two implementations, one in C# for Win-

parent to any of its children. Recall from Section 5 dows platforms and one in Mace for Linux platforms.

that move-out notifications can be sent when the sourc? Particular, we answer the following questions with re-
replica has a filter than is no more restrictive than the tarSPeCt to the goals of Cimbiosys:
get. This is exactly the case for replicas with a parent-
child relationship. Thus, the tree topology guarantees
that all replicas are able to receive appropriate move-out
notifications. Essentially, such notifications flow down
the tree. e How concise is the knowledge representation in
Three, out-of-filter versions in a replica’s push-out Cimbiosys as compared to protocols with per-item
store flow up the tree until they reach replicas that are  knowledge, and does the reduction in knowledge
interested in those items. During synchronization from a size lead to more efficient synchronizations?
child replica to its parent, the child sends all of the items . ) .
in its push-out store, regardless of whether they match ® What are the benefits of leveraging filter re-
the parents filter. The tree topology prevents replicas  lationships between replicas, and how do non-
from playing “hot potato” with out-of-filter versions. h|erarch|cal_ sy_nchronlzatmns affect the perfor-
Four, the tree topology ensures eventual knowledge mance of Cimbiosys?

singularity. As authoritative versions are passed up th% 1 Experiments on the C# implementation
tree, a parent replica assumes authority for any versions’ P P

generated by any of its children or their descendants/Ve Performed experiments on the C# implementation by
Eventually, all authoritative versions arrive at the ref-Tunning10 replicas on the same computer. The replicas
erence replica, which produces a single star-knowledgéP'med a three-level hierarchy based on filter relation-
fragment containing all of these versions. This star-ShiPs with one full replica at the top, three partial repdica
knowledge fragment is then passed down the tree fronf! the mld_dle, and six more partlal_re_pllcas at the pottom.
the reference replica to all other replicas during parent_Each repllca’s filter was less restrictive than the filters of
to-child synchronizations. In the absence of further up-2nY replica at a lower level. _ _
dates or filter changes, each replica’s knowledge wil _T_he expgrlmentallworkload had five serial phases con-
eventually converge to that of the reference replica.  Sisting of different kinds of updates to the system. Each
Although these benefits argue convincingly for hav_update consisted of a randomly chosen replica modifying

ing a tree-structured synchronization topology, extende(1ihhe con:]ent 0:]6‘ randomly chosel_n Item In ';S item gtofeh-
synchronization patterns are not prevented. In Cim- nroughout the experiment, replicas synchronized wit

biosys, a replica can choose arbitrary synchronizatioﬁanoIomly chosen partners at regular intervals.

partners (in addition to its parent and children). The only 1. insert phase Randomly chosen replicas inserted a

restrt|<_:t|0|n dls that thgz g\ée;at" syng?hromz?non topololgy total of 1000 items into their respective item stores
mustinclude an embedded tree with a reference replica. 5 yhe start of the experimert00 synchronizations

All practical usage scenarios that we've envisioned followed the inserts.
meet this condition. In the photo sharing scenario pre-
sented in Section 2, Alice’s home PC serves as the refer- 2. update phasel000 updates were performed, none
ence replica for her photo collection. Her laptop and dig- of which triggered move-outs at any replicas. There

e Does Cimbiosys achieve eventual filter consistency
in the presence of move-outs, out-of-filter updates,
and changing filters?
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dates happened during the start of the phase at the
rate of10 updates between each synchronization.
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3. move-out phaseReplicas updated00 items; the
updated content continued to match the updater’s
filter even though it might move out of other repli-
cas'’ filters.600 synchronizations followed.
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out-of-filter updates. That is, the updated content 0
did not match the updating replica’s filter. Another
600 synchronizations followed.
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5. filter-change phase Three randomly chosen par- vs. time

tial replicas changed their filters to new non-
overlapping filters. A final300 synchronizations

: cies in the presence of partial synchronization, move-
ended the experiment.

outs, out-of-filter updates, and filter changes. They also
converge at the same rate (and the graphs are identical)
‘because they share the same core mechanisms to support
artial replication.

We evaluated two variants of the Cimbiosys system
The first variant, calle€IM-Basic implemented all the
core mechanisms described in Section 5 for achieviné) L .
eventual filter consistency. The second variant, calle .We ne>§t evaluate knowledge compact|0n in Cim-
CIM-Singular, implemented the additional mechanisms losys. Figure 6 _ShOWS th_e average size of the "T‘O"V"
for the accumulation of authoritative knowledge in orderedge of each replica over time. As expected, the size of

to achieve eventual knowledge singularity as presente{ﬁnOWIGdge in CIM-Basic increases as updates are per-
in Section 6. ormed and reaches a peak value dependent on the num-

ber of items stored in the replica and the number of up-

Results dates performed to each item. In CIM-Singular, however,
We first show the progress made by replicas in achievingnowledge is fragmented in the initial stages but eventu-
eventual filter consistency. Figure 5 plots the averageilly converges to the size of a single version vector at
number of inconsistencies in a replica’s item store ovetthe end of each phase. In other words, CIM-Singular
time. Here, an inconsistency at a replica R at a certaiachieves eventual knowledge singularity.
time includes three cases: a) an item present in R’s store Figure 7 demonstrates the positive effect that knowl-
is obsolete, b) the latest version of an item matches R'®dge compaction has on synchronization overhead. It
filter but no version of the item is present in R’s store, shows the cumulative overhead incurred during synchro-
and c) an item is present in R’s store but does not matcizations in the insert and the update phases. The over-
R’s filter. We counted these inconsistencies by trackinghead includes the cost of transmitting knowledge from
the global state of the system. the target to the source in the initial SyncRequest mes-

Figure 5 confirms that both CIM-Basic and CIM- sage and from the source to the target in the final Sync-
Singular eventually achieve a state of zero inconsisten€omplete message.
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Figure 8: Effect of leveraging filter relationships Figure 9: Effects of out-of-hierarchy synchronization

Knowledge compaction provides a significant reduc-synchronize as parents or children when their filters were
tion in the sync overhead over a period of time as evi-in the proper relation according to the filter hierarchy. In
dent from the difference between CIM-Basic and CIM- the second experiment, called hierarchy every syn-
Singular in the figure. Low synchronization overheadchronization was treated as if the filters were unrelated.
means that replicas can synchronize more often and Figure 8 shows the benefits of leveraging parent-
learn updates sooner with the same bandwidth budgeghild relationships between replicas. Replicas can ac-
It also enables effective synchronization for replicas oncept knowledge from their parents and can then directly
bandwidth-constrained mobile devices. merge this knowledge with their own, as they know after
8.2 Experiments on the Mace implementation synchroniz,ing with a parent that al! versiong included in
We evaluated the Mace implementation of Cimbiosysth.e parents k_nowledge should be mcI_ud(_ed In their own.

. . X Similarly, replicas can become authoritative for versions
using ModeINet [21] to S|muIaFe a variety of network authored by their descendants, and this information can
topologies on a cluster of machines. iﬂow up the hierarchy until it reaches a reference replica,

For tbhese e?pe?-rl‘;\engg we ﬁSEd 3systﬁmt9f 10. replﬁt/ which point it flows downward in a compact form.
cas, a binary-ree [iter hierarchy, and a coflection SIZ€ Oy, ¢ 5 hierarchy, replicas can only claim authority

10,000 items, Wh'ch reflec_ts the average size of a CON5ver versions they themselves store. We can still achieve
sumer photo collection. Using ModelNet, we emulated a,

i £10 rout h ted t al i eventual knowledge singularity without a filter hierarchy
clique o routers, each connected 10 a siNg'e replica, i i taes longer for replicas to reach that state.
The link speed between all routers and replicas was set _. . . o
Finally, we discuss how the choice of synchronization

to 100 Mbps. The trends in the experimental results Wer%artners (only parent or children versus arbitrary repli-
similar with lower bandwidths.

Each experiment consisted of two phases. Durin cas) affects the performance of Cimbiosys. Figure 9

phase 1, replicas created items such that 10,000 totgl pares an experiment in which replicas only synchro-
items ex,isted in the svstem at the conclusior,l of thisnized with their parents and children with an experiment
) y o in which the replicas selected synchronization peers at

phase. During phase 2, synchronizations proceeded unr'!amdom As the figure shows, restricting synchroniza-
the knowledge at all replicas converged to a stable state.. ' gure. ' g sy
tions to parents and children allows knowledge to con-

Results verge much more quickly. This is because knowledge

The general trends in the size of knowledge and the syntends to flow within a hierarchy in a more compact form.
overhead for the MACE experiments were similar to theOn the other hand, synchronizations with arbitrary peers
results of the C# experiments discussed earlier, and s@ay allow quicker exchange of updated items between
we do not present them here. |nstead' we focus on eva“jeplicas at the cost of increased fragmentation in knowl-
ating the impacts of filter relationships and synchroniza-€dge.
tion patterns.

We first discuss the effects of leveraging the hier-9 Related Work
archical filter relationships overlaid upon the network The Cimbiosys design presented in this paper builds
topology. We performed experiments where each replicaipon previous work on content-based filtering and es-
chose a parent or a child as its synchronization partnepecially weak-consistency replication protocols. In this
50% of the time and an arbitrary replica at other times.section, we discuss related work with an eye toward how
In the first experiment, callelierarchy; replicas would the systems fall short of meeting the challenges intro-



Selection Effective Out-of-filter

System criteria Partial sync  connectivity Move-outs updates Filter changes
Cimbiosys Content-based Item-set Filter-constrained Explicit move-out Push-out store Knowledge
filters knowledge embedded tree notifications retraction and
topology push-out store

Ficus File IDs Metadata Per-file ring Cannot occur Cannot occur Not addressed

exchange topology
PRACTI File IDs / Log exchange Policy Not addressed Not addressed Not aédress
directories
EnsemBlue File IDs + Client-server Client-server Not addressed Write back to Not addressed
persistent queries server
Perspective Views, i.e. Log or metadata  Not addressed Logged pre andRetain until pulled Not addressed
attribute-based exchange post versions by device

filters
Table 2: Key design decisions in Cimbiosys and related work.

duced by content-based replication with a peer-to-peer EnsemBlue [17] extends BlueFS by allowing discon-
synchronization model, particularly in an environmentnected clients to organize into a temporary ensemble
characterized by changing content, user interests, and deeaded by a client acting in place of the server. No-
vice connectivity. tably, EnsemBlue supports persistent queries that can be
The HomeViews system has the similiar goal of sup-used by clients, along with server-provided callbacks for
porting selective data sharing in a peer-to-peer Systerﬁache invalidation, to provide a form of content-based
model [6]. It allows users to export their data, includ- replication. Select operations on files that match a per-
ing digital photos and other files, as views defined bysistent query are logged by the server in a special file
content-based queries written in SQL. Although viewsthat can be retrieved and read by clients. A client then
are essentially equivalent to filters in Cimbiosys, they areexplicitly fetches new files that match its query and dis-
defined by the data exporter rather than by the devicesards updated files that no longer match the query. Un-
that import the data. Moreover, data is not replicatedike Cimbiosys, the burden is placed on servers to record

among devices but rather views are accessed remoteWhich files are cached where and on clients to fetch up-
and searched via distributed queries. dated files in order to determine whether the contents are

The filters supported in Cimbiosys also resemble thos&f interest.
of content-based publish/subscribe systems, though such Some topology-independent replication systems allow
systems offer a completely different replication model [1,arbitrary communication patterns but lack support for
4]. Subscribers in a pub/sub system advertise their filcontent-based filters. Bayou, for instance, includes an
ters to a collection of brokers, which build routing tables efficient log-based, peer-to-peer synchronization proto-
used to route events from a publisher to the set of intercol but assumes that all replicas are interested in all
ested subscribers. Each event is independent and storégms [18]. WinFS, like Bayou, maintains a single ver-
temporarily in the brokers’ message queues. New subsion vector per replica that is transmitted on every syn-
scribers (or those with new filters) observe only futurechronization, but uses state-exchange rather than log-
events. In Cimbiosys, on the other hand, replicas evenexchange [15]. WinFS supports replication of arbitrary
tually and persistently store all items that match their fil- file folders but not per-replica filters. Cimbiosys ex-
ters, can update items, and disseminate new and updatéghds the WinFS design to support content-based filter-
items among themselves through direct communicationing while ensuring eventual filter consistency; the even-

Some systems support partial replication but with atual knowledge singularity property ensures that the per-
client-server model. Coda, for instance, allows clientsteplica overhead converges to a single version vector as
to cache some or all of the files residing on a serverin Bayou and WinFS.
thereby supporting disconnected operation on mobile de- A few other systems have combined topology inde-
vices [9]. A hoard profile, which could be considered apendence with some form of partial replication. One
type of filter, specifies the files of interest to each client,early peer-to-peer replication system, Ficus [7], was ex-
though Coda clients may cache other files based on ad¢ended to support selective replication [19]. Each replica
cess patterns. Clients reconcile their local changes diean store an arbitrary subset of a file system volume and
rectly with the server(s). BlueFS [14] provides a simi- can alter the set of locally stored files at any time. Be-
lar system model but emphasizes energy efficiency whenause the set of interesting files is explicitly specified by
dealing with small, mobile devices. As opposed to Cim-file ids, and not based on file contents, several of the key
biosys, neither Coda nor BlueFS permits clients to shareoncerns with content-based filtering do not arise in Fi-
updates directly with each other. cus, including out-of-filter updates and move-outs. Syn-



chronization is a heavy weight operation since a replicdoosely-organized communities and of individuals man-
must pull information about all of the files stored on a aging multiple devices. Cimbiosys allows each device
remote replica in order to determine those that have beeto express its individual information needs as a content-
updated or newly created. To reduce communicatiorbased filter, permits devices to enter or leave the system
costs and ensure effective connectivity, the sites refplica without global coordination, accommodates dynamically
ing a given file are organized into a ring where synchro-changing content and filters, efficiently propagates up-
nizations occur between neighborsin the ring, essentiallglated items while avoiding duplicate delivery, exploits
renouncing topology-independence. opportunistic encounters between devices with overlap-
PRACTI is another replication system with topology- ping filters, and supports flexible synchronization topolo-
independence and partial replication (and arbitrary congies (within certain constraints).
sistency) [2]. In PRACTI, each replica maintains a log Eventual filter consistency, whereby a device’s replica
of invalidations for objects that have been updated. Aconverges towards a state containing exactly those items
synchronization protocol similar to Bayou’s exchangesthat match its filter and nothing more, is achieved
log entries between pairs of replicas. Partial replicathrough a combination of novel technologies and prag-
tion is achieved by allowing replicas to selectively fetch matic design decisions. Item-set knowledge, compactly
invalidated objects. Imprecise invalidations that coverrepresented as one or more version vectors and associ-
a range of objects let partial replicas maintain smallerated items, records not only the versions that have been
logs. While PRACTI permits each replica to define its received by a device but also obsolete versions and ver-
own “interest set”, the current design equates interest sekions of items that no longer match its filter. Given a
with file folders, and issues such as effective connectivitydevice’s knowledge and filter, the synchronization pro-
are left as policy decisions. Adding practical support fortocol can readily determine exactly those versions of in-
content-based filtering to PRACTI would require many terest, thus meeting the challenge of partial synchroniza-
of the techniques developed in Cimbiosys. tion. Under specific conditions, devices receive move-
More recently, the Perspective project at CMU hasout notifications during synchronization and can discard
been exploring a replication paradigm most closely re-out-of-filter versions without losing updates. When mod-
sembling that of Cimbiosys, but with a very different ifying its filter, a device can adjust its knowledge so that
system design [20]. Each device in Perspective define#s local item store is incrementally updated to match its
an attribute-based filter called a “view”. Only files in- new filter.

cluded in a device’s view are stored on the device. Un- Remarkably, knowledge converges towards a single
like Cimbiosys, each device is aware of all other devices/ersion vector for all devices, with full or partially repli
and their views; hence, Perspective is more suitable for @ated contents. This eventual knowledge singularity
small, fixed set of devices, such as those in a consumergroperty is achieved by ensuring that at least one device
home media system. Upon updating a file, a device sends authoritative for every version ever generated, trans-
a notification to all other available devices. Devices, inmitting star-knowledge for authoritative versions during
turn, fetch the updated files on demand. A disconnectedynchronization, and compacting knowledge fragments.
device that misses update notifications is later broughur experimental evaluation, which was based on imple-
up-to-date by synchronizing directly with other devices. mentations of our protocol, as well as model checking
A device can modify its view at any time, but it must performed on a formal specification, demonstrate that
inform the other devices and behave as a new replicaventual knowledge singularity is indeed realized if up-
during synchronization to obtain the files that match itsdates cease for a sufficiently long period. In a system
new view. Cimbiosys, by contrast, allows content-basedyith frequent updates and filter changes, devices may
filters, bandwidth-efficient synchronization, increménta never actually reach knowledge singularity, but the tech-
filter changes, incomplete knowledge of other replicasniques used to drive the system in that direction serve to
and arbitrary synchronization partners. keep knowledge to a manageable size.

Table 2 summarizes the key design decisions in previ- ysing the CIM Sync protocol, eventual filter consis-
ous partial replication systems as well as Cimbiosys. lency and knowledge singularity will be attained in sys-
focuses on the steps taken by the designers of these syigms where every device synchronizes occasionally with
tems to address the five key challenges of content-basedery other device. However, requiring full inter-device

partial replication presented in Section 2. connectivity is unrealistic in many of the scenarios that
. we wish to support. By enforcing a hierarchically filtered
10 Conclusion tree topology, Cimbiosys maintains the desired proper-

Cimbiosys is a new storage platform that provides fil-ties while providing some degree of flexibility in estab-
tered replication of content through peer-to-peer syniishing synchronization partnerships and still allowirth a
chronization. Its design was motivated by the needs ohoc communication between peers.
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